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ABSTRACT

As traverse rates in machine tools have increased, slideways have been largely
replaced by rolling-element bearings. Whereas machines with slideways typi-
cally exhibit between three and four per cent of critical damping in their lowest
few modes of vibration, those with rolling-element bearings typically exhibit
less than three per cent. But as rates of operation are pushed ever higher, res-
onant conditions in machine structures become increasingly difficult to avoid
and damping plays a central role in limiting resonant response.

In the present work, basic guidelines for the analysis and design of damping
treatments are set forth. Then new mehtods are presented for transverse
vibration of linear bearings, longitudinal vibration of leadscrews, and three-
dimensional flexural and torsional vibration of beams. Finally, it is shown how
the methods developed in this thesis can be used to increase the damping of
the lowest two modes of vibration of a wafer-handling robot by roughly four
per cent of critical.

Thesis Supervisor: Alexander H. Slocum
Title: Alex and Brit d’Arbeloff Professor of Mechanical Engineering
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CHAPTER 1

Introduction

1.1 Background

Among the definitions of “machine” listed in the Webster’s Dictionary (1983)
is “a device that transmits or modifies force or motion, as a lever or pulley.” At
first glance, this seems a hopelessly narrow delimitation, but it points to the
essential ingredients of anything we would like to think of as a machine: force
and motion. Even the most sophisticated CNC milling machine is, at heart,
a lever that pushes a cutting tool through a workpiece, and its performance
is determined by how well it can impose prescribed motions and forces on the
workpiece.

Why Study Damping?

Few machines operate so slowly that the forces involved can be regarded as
static, and even such machines are subject to dynamic external disturbances.
Even small dynamic forces, if they resonate with a machine, can cause large
oscillations or instability. Hence designers have long focused on the avoidance
of resonance by manipulation of the stiffness and inertia so as to move the
resonant frequencies of a machine away from the frequencies of forces acting
upon or within a machine. It is, however, often impractical or impossible to
avoid resonance entirely, and if resonance occurs, the damping plays a critical
role in maintaining machine performance.

11



alumina

6063 aluminum ||

lead
polymer concrete
granite f

cast Iron [=

0.000 0.001 0.002 0.003 0.004 €.005 0.006
loss factor

Figure 1.1 Loss factors typical of various structural materials (Lazan, 1968).

Why Add Damping?

Damping in machine structures can arise from a number of physical mecha-
nisms, principally: coupling to viscous flow, transduction to electrical or mag-
netic fields, material hysteresis, and microslip at material interfaces. Unless
introduced deliberately, fluid, electrical, and magnetic dissipation contribute
almost nothing to the damping in a machine. Material hysteresis is negligible
for most structural materials unless they are deformed beyond the clastic limit
(see Fig. 1.1).

Careful measurement of components and assemblies shows that the damp-
ing in machines arises almost entirely from rubbing at material interfaces and
coupling to ground. An example of such measurements carried out for a lathe
in various stages of assembly is shown in Fig. 1.2. The first measurement was
taken on the lathe bed alone, and the loss factor of approximately one per
cent is mostly due to vibration transmitted to ground through the supports.
Successive measurements show that the loss factor increases progressively to
about eight per cent as the carriage, spindle stock, and tail stock are assem-
bled to the machine. Most of this damping arises from relative motion in the
lubricated slideways.

The damping is usually considerably lighter in machines where rolling-
element bearings are used in licu of slideways. Experience tells us to expect

12
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Figure 1.3  Isometric of a wafer-handling robot.
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(depending on the details of the design) appear something like those shown
in Fig. 1.4. The first mode involves significant twist and flexure of the base,
transverse deformation of the linear bearings, and flexure of the column in the
y direction; the second mode involves flexure of the column in the z direction,
transverse deformation of the linear bearings, and longitudinal deformation
of the z-axis drive. Upon review of the literature, we find that tools for the
design of damping treatments for these modes of vibration do not exist. The
development of such tools is the goal of the present work.

The Design of Damping Treatments

Before introducing damped elements into a machine, it is important to un-
derstand how the dynamics of the machine will be affected. In Chapter 2,
we examine the behavior of systems with damped elements and develop some
guidelines for placement and sizing of dampers in machines. As we shall see,
the distribution of stiffness and inertia in a machine determines to a large
extent where dampers should be placed.

There are many physical mechanisms of damping, any of which could be
employed to augment the damping in a given machine element. The choice
is constrained by a number of factors, and a successful damper is often the
result of considerable ingenuity on the part of the designer. Among the most
effective, robust, and economical methods of dissipating energy in structures
is the inducement of strain in viscoelastic materials. Hence we focus on their
application in this work.

Damping Flexural and Torsional Vibration

Often, stiffness against flexure and torsion in slender beam-like elements can
be obtained only at the cost of a considerable increase in mass. This places
a severe limitation on dynamic performance, especially in servomachinery, so
designers have long sought effective dampers of vibration of beam-like ele-
ments. Sandwich beams consisting of alternating elastic and viscoelastic lay-
ers are known to have particularly high damping. This construct, known as a
constrained-layer damper, has found wide application in civil, mechanical, and
especially aerospace structures over the last forty years. But the theory and
practice has focused almost exclusively on the damping of bending vibration
in one plane.

15
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It is therefore a goal of this research to develop analytical models of three-
dimensional motion of structures that incorporate viscoelastic laminae. In
the latter part of Chapter 2, we provide a review of the theory of planar
constrained-layer damping (i.e., vibration of sandwich beams in the plane nor-
mal to that of lamination) and develop a finite-beam element suitable for anal-
ysis of planar motion of built-up structures with constrained-layer dampers.

In Chapter 3, we consider flexural motion of a sandwich beam in its plane
of lamination. Approximating the behavior of the viscoelastic material as
frequency-independent hysteretic, we derive an analytical model in the form
of a boundary-value problem and study the resonant frequencies and loss fac-
tors for simpie boundary conditions. Next, we develop approximate solutions
by the classical Rayleigh-Ritz and low-order finite-element discretizations for
cases including mixed boundary conditions and segmented elastic layers. In
Chapter 4, we take up the problem of torsional vibration and develop a model
for the Saint-Venant torsion of thin-walled elastic viscoelastic tubes. We de-
velop a general set of equations and matching conditions for the warping dis-
placement of the composite tube and then use these to derive expressions for
the complex torsional stiffness of some basic tube geometries.

Damping Leadscrew Drives

Manufacturers of machine tcols and precision manipulators have long relied
on leadscrew drives for accurate positioning of linear-motion systems. But as
speeds of operation increase, the dynamical behavior of leadscrew mechanisms
takes on increasing importance in determining the stability and accuracy of
machines (Chen and Tlusty, 1995). In Chapter 5, we present a new method for
damping axial motion in leadscrew drives through the leadscrew’s supports.

Sensitivity Analysis

For relatively simple lumped-parameter models it is a straightforward task to
determine the “best” values for stiffness, inertia, and damping for a given ar-
rangement. But for machines that require high-order or distributed-parameter
modeling, and where there are a large number of design parameters to be set,
our task is far more difficult, and an iterative approach is usually the most
practical. Sensitivity analysis is at the heart of such optimization techniques,
and we provide a survey of the methods and applications of sensitivity analysis

17



in Chapter 6.

Decoupled Eigenvalue Sensitivities

The most vital information in iterative design optimization is the sensitivity
of performance measures to changes in design parameters. But if the number
of parameters is large, this information, while useful to numerical schemes in
the raw, lends little insight to the designer. In Chapter 7, we explore the idea
of finding a set of infitessimal design changes such that each member of the set
modifies only a particular natural frequency of a structure. Such a set would
decompose the design space into subspaces corresponding to the individual
eigenvalues of structural vibration and would give the designer considerable
guidance in optimization of machine performance.

Design Example

A number of methods for augmenting the damping in machine elements are
developed in this thesis, and their individual application is illustrated by ex-
amples along the way. In Chapter 8, we use the example of the machine shown
in Fig. 1.3 to illustrate their use in concert to obtain loss factors of better than
seven per cent for the lowest two modes.

We begin by applying the methods of Chapter 6 to adjust key dimensions of
the machine to maximize the lowest resonant frequency and then use the results
obtained in Chapters 2-5 to individually size dampers for each of the major
elements of the machine. Next, we use a low-order finite-element model to
predict the damping of the first two modes of the machine with these dampers
in place and to tune the design parameters to maximize the damping.

1.3 Summary of Contributions

1. Non-planar flexure of elastic-viscoelastic beams: We show that a sand-
wich beam with elastic and viscoelastic layers can be designed to have
high damping in flexural vibration both in the plane of lamination and
the plane normal to lamination.

2. Torsion of elastic-viscoelastic beams: We derive formulae for the damp-
ing of closed, thin-walled tubes with constrained viscoelastic layers in tor-

18



sion and find that significant damping can arise from differential warping
of the tube wall and constraining layers.

. Low-order finite-element modeling of damped structures: We develop a
finite-beam element for rapid modeling of built-up structures involving
elastic-viscoelastic beams.

. Longitudinal vibration in leadscrew drives: We present a new method of
damping longitudinal vibration in leadscrew drives through the support
bearings. We show that the attainable damping is proportional to the
preload force necessary to accommodate thermal expansion in the screw.

. Decoupled eigenvalue sensitivities: We develop the idea of orthogonal-
izing the sensitivities of the eigenvalues to shape changes so that each
member of the set of sensitivities modifies only one eigenvalue of a struc-
ture.

19



CHAPTER 2

The Design of Damping Treatments

2.1 Modeling Damping

A system in which the damping forces at any instant are proportional to the
velocity of motion is said to have viscous damping. For a single-degree-of-
freedom oscillator the equation of motion takes the familiar form

mi+ct + kz = F(t) (2.1)
which is usually written as
£ + 20wt + Wiz = F(t)/m (2.2)

where ¢ = c¢/2vkm is the damping ratio and w, = \/k/m is the undamped
natural frequency of oscillation.

Loss Factor

Unfortunately, most of the damping present in machine structures does not
obey the viscous damping model, and mathematical descriptions of the damp-
ing force are too cumbersome for practical use. Hence, rather than attempting
to set forth a model for the damping force, we characterize it by the amount of
energy dissipated under steady harmonic motion. 1The most common measure
of this dissipation is the loss factor 7, which is formed by taking the ratio of

20



the average energy dissipated per radian to the peak potential energy during

a cycle. That is,
W
= — 2.3
n= 5 (2.3)
where W is the energy dissipated per cycle and U is the peak potential energy.
For example, in a system with viscous damping, the energy dissipated during

a period of harmonic motion z = asinwt is
2rfw 9
W=fca':d:c=/ cz® dt = mewa® (2.4)
0

At resonance, w = /k/m and we have W = 2mCka? and therefore the loss
factor at resonance is 2¢. For most materials and structures, we can’t derive
an expression for the loss factor and must instead rely on measurements of the
stiffness and loss factor as a function of temperature and frequency.

A direct extension of Eq. (2.3) is that a system composed of N elements
each with loss factor 7, has a system loss factor given by

N
> mUk
k=1

N
2 Us
k=1

where Uy is the peak energy stored in the kth element while undergoing vi-
bration. This formula is often used to approximate the loss factor of a system
if one has an idea of the mode shape. It also confirms for us the intuitive
notion that to increase the damping we must channel the strain energy into
lossy elements of a machine.

n= (2.5)

Hysteretic Damping and Complex Stiffness

Now supposing that we impose the cyclic deformation z = a coswt on a, sample
and find that the force lags the displacement by the angle ¢ so that it can be
written as

f = kacos(wt + ¢) = ka (cos ¢ coswt — sin ¢ sinwt) (2.6)

Then the work done per cycle is

2n fw
W = /0 fdz = mka®sin ¢ (2.7)

21
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Figure 2.1  Combinations of elastic and hysteretic elements: (a) parallel, (b) series,
and (c) parallel stacked.

and the maximum potential energy is (ka?cos¢)/2 so that 7 = tan¢. The
harmonic force can then be written as

f = ak' (coswt — nsinwt) (2.8)

If we introduce complex notation and write z = ae’, then the force can be
written as

f =Re[K'(1 + jn)1] (2.9)

The quantity £'(1 + jn) is known as the complex stiffness. It can only be used
for under the condition of steady harmonic motion.

In a causal system, the complex stiffness is necessarily a function of fre-
quency (Crandall, 1970); hence to predict the loss factor of a given resonance
we must first estimate its frequency well enough to specify the correct complex
stiffness for the various components. Fortunately, the complex stiffness usually
varies slowly enough with frequency to make this approach practical.

2.2 Basic Damper Configurations
Consider the problem of damping the vibration of an elastic structure of ef-

fective mass m, and stiffness k; by the introduction of a hysteretic damping
element. If, as shown in Fig. 2.1(a), a hysteretic damping element of complex

22



stiffness k,(1+j7,) is placed in parallel with k;, the complex stiffness k(1 + jn)
of the structure (normalized against k,) becomes

Ek:(l +jn)=(1+Y) (1+j1}::’;/) (2.10)

where the “stiffness ratio” Y = k,/k;. Hence, for a parallel combination
of hysteretic and elastic springs, the damping as well as the static stiffness
increases monotonically as the stiffness ratio Y is increased. and the loss factor
approaches that of the hysteretic damping element as Y — oo. Under static
load, the creeping deflection is limited to Y times the instantaneous deflection.
Unfortunately, it is rarely possible to introduce a damping element in parallel
to the load path in a machine.

On the other hand, it is usually easy to introduce a hysteretic element into
the load path in series with the load-carrying elements to obtain the config-
uration shown in Fig. 2.1(b). In this case, the effective normalized complex
stiffness is

, g+ 9*(1+n?) : o
By P 2.11
RS g U T e ) .

where the “coupling parameter” g = k,/k;. Thus we see that in a series
combination the loss factor drops (and the stiffness increases) monotonically
as the coupling parameter g is increased. Such a configuration may be useful
when it is permissible to allow the stiffness to drop in exchange for damping.
But series configurations are rarely used because the creeping deflection is
limited only by the hysteretic element, and hence is usually unacceptably
large.

In practice, then, we strive for a parallel configuration, but often fall short
of this ideal because (as we shall see in many examples) we can’t find a rigid
support for the hysteretic element. In this case, we have the “parallel stack”
configuration of Fig. 2.1(c), where the series combination of a hysteretic ele-
ment and an elastic element act in parallel with the load path. We define a
coupling parameter g as k,/k, and a stiffness parameter Y as ky/k,, and write
the components of complex stiffness k(1 + jn) in the form

k _g1+Y)(1+n))+9(2+Y)+1 (2.12)

ky (14 9)% + (gm)?

23



and

9Yn,
1T FAEV) A m) 92+ )+ 1 (2.13)
From Eq. (2.13), we see that for a given Y the loss factor does not increase
monotonically with g, but reaches a peak at an intermediate value of g as
shown in Fig. 2.2.

It is therefore useful to establish a formula for the optimal value of g for a
given Y. Following the approach of Marsh and Hale (1997), we differentiate
Eq. (2.13) with respect to g, equate the result to zero, and find that the optimal
value of g is given by

1
2
= 2.14
O TFVT ) (214
which corresponds to the maximum loss factor
Y
m i (2'15)

T Y42+ 2[(1+Y)Q+ 2

We plot the maximum loss factor 7., as a function of Y for various 7, in Fig. 2.3.
The damping increases monotonically with the stiffness ratio Y provided that
g is maintained at its optimum value, and the key to the successful design of
damping treatments is the maximization of the stiffness ratio Y in the face of
weight or space penalties.

It is useful to note that the stiffness ratio can be interpreted as the frac-
tional increase in stiffness when the hysteretic element is varied from perfectly
compliant to perfectly rigid; that is,

(2.16)

where Kk, and kg are, respectively, the stiffnesses of the structure when the
hysteretic element is perfectly rigid and perfectly compliant. The coupling
parameter g is in general the ratio of the stiffnesses of the hysteretic element
and its series companion; it is a measure of where a particular design lies
between the perfectly compliant and perfectly rigid extremes.

Example: Damping Transverse Motion in Bearings

A resonance frequently encountered in linear-motion systems, such as the one
shown in Fig. 2.4, is a “rigid-body” mode involving roll of the carriage about
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Figure 2.2 Stiffness and loss factor of the parallel stacked system of Fig. 2.1(c) as a
function of the coupling parameter g with 1, = 1 and various values of Y.
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Figure 2.4 A carriage on linear guides: An additional bearing on each linear guade
serves to stiffen and damp rolling motion of the carriage about its axis of teavel
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its axis of travel. One method of raising the natural frequency as well as the
damping of such a mode is the introduction of an additional linear bearing on
each rail and coupling it to the carriage via a layer of viscoelastic material. If
the only compliance in the system is the linear bearings, then we have exactly
the the parallel stack configuration of Fig. 2.1(c). Because the additional
bearings have presumably the same stiffness as the four original bearings, we
have Y = 0.5. Hence, assuming a lossy viscoelastic material with 7, = 1, we
compute from Eq. (2.15) that the maximum achievable loss factor is 0.084.
This maximum damping is obtained with g = 0.58 and the stiffness against
roll with this value of g is 22 per cent greater than that of the carriage without
additional bearings.

So is this any better than rigidly coupling the additional bearing to the
carriage? Rigidly coupling the carriage to the extra bearings would not sig-
nificantly increase the damping, but it would raise the stiffness against roll by
o0 per cent over that of the carriage without additional bearings. Whether it
is more important to raise the damping or the stiffness depends on the design
objectives as well as the nature of the disturbances, but an important factor
in comparing the performance of these designs is the degree of damping that
would be present in the rigidly coupled case. Measurements indicate that 7 is
typically between 0.005 and 0.03 if the carriage is on recirculating ball bear-
ings, and between 0.02 and 0.04 if it is on recirculating roller bearings. If the
loss factor of the rigidly coupled system is at the high end of this range, it
may not pay off to augment the damping using viscoelastic material.

2.3 Constrained-Layer Damping

Consider the elastic-viscoelastic sandwich beam shown in Fig. 2.5. It consists
of a principal load-carrying layer to which are laminated relatively compliant
viscoelastic layers followed by constrairing layers with stiffness comparable to
that of the principal layer. When this viscoelastic sandwich beam undergoes
flexural vibration in the z direction (the direction normal to the plane of lam-
ination), the viscoelastic layers are subjected to large shear strains and energy
is dissipated; this so-called constrained-layer or shear damping mechanism has
found application in aerospace, automotive, machine-tool, and civil structures.

In this section, we provide a brief review of the theory of vibration of
viscoelastic beams in the plane normal to lamination (the zz plane in Fig. 2.5),
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Figure 2.5  Sketch of a five-layer sandwich beam.

and develop a finite sandwich-beam element for use in the analysis of built-up
struc:tu:es with constrained viscoelastic layers.

2.3.1 Background

A substantial body of literature on constrained-layer damping has developed
in the forty years since the concept was first suggested by Plass (1957) and
Kerwin (1959). The theoretical foundation for much of the work that followed
was laid by Ross et al. (1959) who analyzed the vibration of a three-layer sand-
wich beam under sinusoidal deflections. Since then, various researchers have
extended the theory to include various boundary conditions (DiTaranto, 1965;
Mead and Markus, 1969; Rao, 1978), segmented and multiple constrained
layers (e.g., Plunkett and Lee, 1970), and a host of other geometries as sum-
marized in the review by Torvik (1980). '

The theory has also been extended to account for higher-order effects such
as rotary inertia and shear deformation (e.g., Rao, 1977; Chen and Levy,
1996). Other researchers have presented simplified analyses for design along
with fabrication methods for internal shear dampers (Ruzicka, 1961; Marsh
and Slocum, 1996). In recent years, a number of studies have focused on the
construction of damped sandwich structures with anisotropic layers (e.g., Rao
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and He, 1993). The work cited in the foregoing is only a small sarple of that
which has appeared over the years. For a more comprehensive survey, the
reader is directed to the review article by Torvik (1980).

2.3.2 Three-Layer Laminate

The basic model of vibration of elastic-viscoelastic beams in the direction
normal to the plane of lamination was set forth by Ross, Ungar, and Kerwin
in 1959 (Ross et al., 1959) and is often referred to in the literature as the
“RKU model.” Their analysis is based on the following assumptions:

1. The shear strains in the elastic layers are negligible in comparison with
the shear strains in the viscoelastic layers.

2. The normal stresses in the viscoelastic layers are negligible in comparison
with the normal stresses in the elastic layers.

3. Transverse strains in both the elastic and viscoelastic layers are negligible
so that the transverse deflections of the various layers are equal.

4. Longitudinal and rotary inertia are negligible.

Using these assumptions, Ross et al. obtained an expression for the damping
of a laminate vibrating in the shape of a sine wave.

Later, DiTaranto (1965) formulated a sixth-order equation which, along
with suitable boundary conditions, forms an eigenvalue problem for the res-
onant frequencies and loss factors of a finite-length sandwich beam and later
discussed methods for its solution (Ditaranto and Blasingame, 1967). Though
DiTaranto formulates the sixth-order equation of motion in terms of the longi-
tudinal deflection, subsequent researchers (e.g., Mead and Markus, 1968; Rao,
1978) have preferred to write the equation of motion in terms of the transverse
deflection. In this work we wish to design built-up structures which contain
sandwich beams and it is simplest to set forth the boundary conditions if the
governing equations are written in terms of both the transverse and longitu-
dinal displacements.

Under assumptions 1-4 above, the deformation of a three-layer laminate is
as shown in Fig. 2.6, and the shear strain in the viscoelastic layer is given by

Yee(z) = tl [u2(2) — w () + cw'(z)] (2.17)

v
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Figure 26  Undeformed and deformed configurations of an element of a three-layer
sandwich beam: Points on the neutral axes of the elastic layers undergo longitudinal
deflections u,(z) and u3(z) as the sandwich beam undergoes a transverse deflection
w(z).

where w(z) is the transverse displacement of the composite beam, u,(z) and
up(z) are the longitudinal displacements of the neutral axes of the elastic layers,
t, is the thickness of the viscoelastic layer, and c is the distance between the
neutral axes of the elastic layers. Making use of this expression and introducing
the complex shear modulus G and width 2h of the viscoelastic layer, we write
the equations of longitudinal equilibrium in the elastic layers as

E1A1U'1' + 2Gh

(ug — up + cw') 0 (2.18)

v

2Gh

v

"
E2A2 Uqg —

(up—uy+cw’) = 0 (2.19)

where E)1 A, and F3A3 are the extensional rigidities of, respectively, the bot-
tom and top elastic layers of the laminate. For steady harmonic motion with
angular frequency €2, the equation of equilibrium in the transverse direction
takes the form

2Ghc , ,

—Q% (p1 Ay + p2Al) w + (B + By ) w' = (ug — u) +cw”) (2.20)

v
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where, in accordance with the usual notation for an elastic layer, the flexural
rigidities are E; I, and E,I> and the masses per unit length are py A; and p,A,.
Equations (2.18)-(2.20) appear to form an eighth-order system, but in fact one
of the longitudinal equations can be eliminated because we must have

ElAl'U'l + E2A2u,2 =0 (221)

in order to maintain longitudinal equilibrium of the composite beam.
We now introduce the dimensionless coordinate ¢ = x/L and characteristic

time
= I?, [21A1 + o2 Ay
to=1L Bl + Bl (2.22)

which is recognized to be proportional to the period of oscillation of the cou-
pled beam system if the shear stiffness of the viscoelastic layer is set to zero.
Combining Egs. (2.18)-(2.21), we can write a single differential equation in w:

2
%— (1+Y)%+w2(%—gw) =0

3 (2.23)

where w is the dimensionless frequency of motion and the coupling or shear
parameter is

2GhL? (E\A, + E,A,
= gr 7y) = 2
9= 0.1+ jm) = = (St (2.24)
and the stiffness or geometric parameter is
C2 E1A|E2A2
Y = ( ) 2.25
E\IL + E;I, \E A, + E> A, (2.25)

Equation (2.23) with three boundary conditions involving up to the fifth
derivative of w at each end form an eigenvalue problem for the complex reso-
nant frequency w.

A closed-form solution of Eq. (2.23) is available for a simply supported
beam without longitudinal restraints. The dimensionless frequency of the nth
mode is given by

(nm)* + (nm)2(2 + Y)g+ (1 +n2)(1 + Y)g? 1/2
(nm)* + 2(nm)2g + (1 + n2)g?

Re w, = (nm)? (2.26)
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and the corresponding loss factor is

T = - (n7r)2g}’1’v
" (nm)t+ (nm)2(2+Y)g+ (1 +2)(1 + Y)g?

(2.27)

It is interesting to note that these results correspond exactly to Eq. (2.13)
if we replace L by the effective length L/nm in the definition of g given in
Eq. (2.24). Hence we see that constrained-layer daraping corresponds exactly
to the parallel stacked model of Fig. 2.1(c). For other boundary conditions, the
behavior is much the same, but we must resort to numerical or approximate
methods to find the effective length.

2.3.3 Finite-Element Model

In the analysis of built-up structures, we often resort to finite-element tech-
niques, and it is somewhat cumbersome to write constraints in a form suitable
for the sixth-order differential equation of Eq. (2.23). We choose instead to
develop a finite-beam element in terms of the longitudinal and transverse coor-
dinates in a manner that it may be incorporated into a standard finite-element
code for framed structures.

Finite-element models for structures are readily obtained using an energy
approach, but hysteretic damping is valid only in the frequency domain and
energy methods cannot be applied directly. We can, however, introduce virtual
displacements in the frequency domain and use these to obtain variational
forms of the equations of motion and thence derive the desired finite-element
model.

Multiplying Eqgs. (2.18), (2.19), and (2.20), respectively, by the virtual
displacements #,, @, and W, summing, integrating by parts, and discarding
the boundary terms, we obtain a weak variational form of the equations of
motion:

L
./0 [(Elfl + EQIQ)’U)”’E)" - Qz(plAl + pzAg)wu')] dr = (228)

L 2Gh N/ - — —7 EA 1 =1 EA ! =1 d
/0 T (uz — uy + cw') (3 — @y + ') — (B\ Ay @) + ExAqubyiih) | da

The terms on the left-hand side of this equation correspond to the usual Euler-
Bernoulli equations for beam bending and the second term on the right-hand
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side accounts for the longitudinal stiffness of the elastic layers. Of interest
here are the components of the element stiffness due to the first term on the
right-hand side of Eq. (2.28).

Using the standard cubic beam element, we expand the transverse displace-
ment in terms of the displacement and slope at the ends of an element in the
form

w = ¢1(z)w(0) + do(x)w'(0) + ¢ds(z)w(L) + ¢4(z)w'(L) (2.29)

where the interpolation functions are given by

$i(§) = 1-3¢+2¢° (2.30)
$2(§) = £-22+¢° (2.31)
¢a(§) = 3¢*-2¢° (2.32)
$a(€) = -€+¢° (2.33)

and § = z/L. For the longitudinal deflections, we use the linear interpolation
functions

Vi) =1-€ and 9(€)=¢ (2.34)
and expand in the form

u = ’¢71 (:z:)ul(O) + ¢2(1‘)U|(L) (235)

uz = Y1(r)u2(0) + o(z)ua(L) (2.36)

Substituting into the weak form given by Eq. (2.28) and requiring that the
result be stationary with respect to each coordinate in turn, we obtain dis-
cretized equations of motion. If we let

o ul(O) o UQ(O)
i [50] w-]uo) -
and
7
W= w(L) (2.38)
w'(L)



we can write the discretized eigenvalue problem in matrix form as

~GIi+ (K14 G3) iy —Gaiia = 0 (2.39)
GTw — (K24 Ga) il — Gait; = 0 (2.40)

and
(K3 + Gy — Q*My) 1 + G (ify — @) = 0 (2.41)

The matrices G through G3 account for the stiffness of the viscoelastic layer;
they are defined as

Gy = % <¢:: ¢;> (2.42)
(Ga);; = ?:w (65 %)) (2.43)
(Gs)ij = 25;—0’1 (¥i, ¥5) (2.44)

where (f(z), 9(z)) = f¢ f(z) g(z)dz. The matrices M; and K, through K,
are the beam mass and stiffness matrices in the standard form tabulated in
many texts (e.g., Thomson, 1988):

(K, = EiAi (¥, 9)) (2.45)
(Ka2)j; = EpA; <¢f, 'P;) (2.46)
(K3)y; = (Eih + Eal) ( A ¢;’> (2.47)
(M3)ij = (p1Ay + p2A2) (di, 0}) (2.48)

2.3.4 Five-Layer Symmetric Laminates

Many of the most useful designs make use of a central elastic layer with iden-
tical constrained viscoelastic layers mounted to each face. In this case, the net
longitudinal force on the principal layer is zero, and the neutral axis of the
composite beam coincides with its center line. Hence, the differential equation
(2.23) derived for a three-layer beam can be used for a five-layer beam by
setting

_ 2B (2.49)

E\I, +2E,1,
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Figure 2.7  Cross section of a ceramic box beam with constrained viscoelastic layers:
The beam is 0.914 m long and is composed of a principal layer with Ey = 311 GPa,
constraining layers with E, = 372 GPa, and viscoelastic layers with G = 7.6(1 +
71.0) MPa (at 1000 Hz) and thickness 0.25 mm.

and
_ GhL?

- t,E2A,

It is also straightforward to couple any number of layers using our finite-
element model, but it is most computationally efficient to take advantage of
the symmetry by constraining extension of the first layer and lumping the
stiffness and inertia of both constraining layers into the second layer of the
finite-element model.

g (2.50)

Example: Ceramic Box Beam

Consider the ceramic box beam shown in Fig. 2.7 with constrained viscoelastic
layers mounted on its interior. The principal layer is a box beam composed
of 96 per cent alumina ceramic with Young's modulus F; = 311 GPa and the
constraining layers are 99.5 per cent aluminum oxide with E; = 372 GPa. The
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Figure 2.8  Loss factor of the first (+) and second (x) modes of the ceramic beam of

Fig. 2.7 on simple supports: The solid lines are the closed-form solution and the symbols
are the results of a finite-element calculation.

viscoelastic layers are composed of EAR C-1002 damping elastomer, which at
1000 Hz and room temperature has complex modulus G = 7.6(1 + j1.0) MPa.

For this configuration, we have Y = 0.37, and we can plot the loss factor
of the first two modes of the simply supported beam as a function of the
coupling parameter g as shown in Fig. 2.8. The solid lines correspond to the
closed-form solution of Eq. (2.27) and the symbols correspond to the results
of a ten-element finite-element model.

Next, consider the same beam with free ends. The loss factor of the first
two modes are plotted in Fig. 2.9 as a function of the real part g, of the
coupling parameter g. From the plot, it is apparent that the highest damping
of the first mode is attainable with g, between five and eight. A sampie was
constructed using viscoelastic layers with thickness 0.25 mm, which for the
material properties at 1000 Hz and room temperature has g = 5.4(1+51.0). We
suspended the beam at its quarter points (approximately at the nodes of the
first mode) using light surgical tubing and measured the endpoint receptance
in the vertical direction; the results are shown in Fig. 2.10. The measured
data compare to the finite-element predictions as follows:

frequency (Hz) loss factor
measured | predicted | measured | predicted

804 812 0.051 0.058

1980 2115 0.031 0.034
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Figure 2.9  Finite-element prediction of the loss factor of the first (solid line) and
second (dashed line) modes of the ceramic beam of Fig. 2.7 with free ends.
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Figure 2.10  Measured endpoint receptance in the y (dashed line) and z (solid line)
directions of the ceramic beam of Fig. 2.7: A free-free condition was approximated by
suspending the beam with light surgical tubing.
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The significant discrepancies between the measured and predicted values of
damping may be attributed to errors in the viscoelastic material properties
and—in the case of the second mode-—coupling to the surgical tubing on which
the beam is suspended.

The dashed line in Fig. 2.10 is the receptance in the plane of lamination
(i.e., the y direction in Fig. 2.7). It is notable that the second mode in the
y direction is better damped than its counterpart in the z direction. The
mechanism of this damping is the subject of the next chapter.
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CHAPTER 3
Vibration of Elastic-Viscoelastic Sandwich
Beams in the Plane of Lamination

3.1 Introduction

We have seen in Chapter 2 that a sandwich beam consisting of alternating
elastic and viscoelastic layers is potentially an effective dissipator of flexural
vibration in the plane normal to lamination (the zz plane in Fig. 3.1). This
potential was recognized some forty years ago, and an extensive literature and
practice has developed since that time, as detailed in Section 2.3. We have also
seen experimental evidence (Fig. 2.10) that significant dissipation can occur
when such a sandwich beam vibrates in the plane parallel to lamination (the
zy plane in Fig. 3.1). But a search of the literature reveals no studies on the
vibration of sandwich beams parallel to their plane of lamination. It is our
goal in this chapter to develop a model for such vibration.

Though we will develop the theory for a general N-layer laminate, it is
perhaps worthwhile to note at the outset that we are interested primarily in
three- and five-layer laminates of the type shown in Fig. 3.1 where one of the
layers is far more massive than the others. This layer bears the applied loads
and we designate it the “principal layer.” We refer to the remaining elastic
layers as “constraining layers.” Though there is no distinction in our formu-
lation between the principal and constraining layers, some of the modeling
assumptions we will employ depend on the constraining layers being much
thinner than the principal layer.
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Figure 3.1  Sketch of a five-layer symmetric sandwich beam.

3.2 The Nature of Motion

When a sandwich beam such as the one shown in Fig. 3.1 vibrates in its planc
of lamination, the elastic layers need not deflect together and significant strains
can be induced in the viscoelastic layers, resulting in potentially high damping.
In this section, we develop a picture of the deformations and stresses that arise
in such motion and obtain estimates of their relative magnitudes.

3.2.1 Lumped-Parameter Analogy

A lumped-parameter analogy for vibration in the plane of lamination of a
sandwich beam such as that shown in Fig. 3.1 can be obtained by lumping the
mass and stiffness of each layer as shown in Fig. 3.2. The effective mass and
flexural stiffness of the principal layer are lumped into m, and k. Likewise,
we model the first constraining layer as an effective mass m, and flexural
stiffness k; and the second as mj and k3. Although the viscoelastic layers have
negligible mass, they act as springs kj, and k3 that couple the elastic layers.

For a symmetric laminate such as that shown in Fig. 3.1, we have k, = kj,
my = mg3, and kj2 = ky3; and the mode shapes of the structure will be cither
symmetric or antisymmetric. If we for the moment consider k;; to be real,
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Figure 3.2  Lumped-parameter model for vibration in the plane of lamination of a five-
laver beam: The principal layer with effective mass m; is coupled via the viscoelastic
layers with effective stiffness k12 and kg3 to the constraining layers with effective mass
m) and mg.

the mode shapes can be visualized as in Fig. 3.3. The mode shape labeled (d)
consists of antisymmetric motion of the constraining layers while the principal
layer is still. In (c) the principal layer and constraining layers move in opoosite
phase. For laminates with reasonably stiff viscoelastic layers, both of these
modes impart a great deal of strain energy into the viscoelastic layer, and
hence correspond to high-frequency, well-damped modes. The mode shape in
(b), on the other hand, corresponds to a relatively low-frequency resonance
with somewhat less damping. Here, the largest displacement belongs to the
principal layer and hence we refer to such modes as “principal modes.” It is
our primary goal to develop an accurate model of these.

3.2.2 Coupling Between Bending and Twist

In general the elastic layers that make up a beam like that shown in Fig. 3.1
do not bend together in the zy plane, and their relative motion produces a
shearing stress in the viscoelastic layers. These shearing stresses act in such a
way as to produce a twisting moment on the elastic layers, in effect coupling
bending and twist of the composite beam. In the following, we estimate the
angle of twist that results from displacement of one elastic layer relative to
another and establish conditions under which the coupling between bending
and twist can be ignored.

42



Figure 3.3 Mode shapes from the lumped-parameter model of a symmetric five-layer
laminate oscillating in its plane of lamination: (a) static configuration, (b) primary
mode, (c) high-frequency symmetric mode, and (d) antisymmetric mode.

Symmetric Modes

For symmetric modes, the principal layer will not twist at all, and we are
concerned with rotation of the constraining layers relative to the principal
layer. If we neglect the torsional stiffness of the constraining layers, we can
treat a constraining layer as a rigid block on a compliant sheet as shown in
Fig. 3.4. In response to a force applied at a distance a above the foundation,
the displacement v is related to the rotation 1 by

(o)

where G and E are, respectively, the shear and elongational moduli of the
compliant layer. In our problem, the distance a is the distance from the
center of mass of the constraining layer to its base, and the quantity hy is
the magnitude of the vertical deflection at the edge of the constraining layer.
Hence, as long as a < h, the deflection hy due to twist is much smaller than
the horizontal deflection v, and twist of the constraining layer can be neglected.

Antisymmetric Modes

For antisymmetric modes, a net moment is exerted on the principal layer,
which we take to have a torsional rigidity of G,J,,. If, as shown in Fig. 3.5, the
constraining layers are displaced a distance v without rotation relative to the
principal layer, a twisting moment pei unit length of magnitude (4Ghb/t,)v
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Figure 3.4  Coupling of bending and twist in symmetric modes: A horizontal force
applied at the centroid of a constraining layer results in deflection v and rotation 7
relative to the principal layer.

Figure 3.5  Coupling of bending and twist in antisymmetric modes: The constraining
layers are displaced a distance v, and the shear stresses developed in the viscoelastic
layers exert a moment on the principal layer, causing it to take on an angle of twist 7).
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is exerted on the principal layer. Neglecting the torsional rigidity of the con-
straining layers, the angle of twist v in the principal layer will scale with the
displacement v of the constraining layer as

My G (h?L?b)

v G\ td,

v G,

(3.2)

where L is a characteristic length in the longitudinal direction. If the aspect
ratio of the cross-section of the principal layer is near unity, we expect that
Jp ~ h* and b ~ h so that we must have

G L?

el 24 =
&> (3.3)

in order to ignore twist for antisymmetric modes.

3.2.3 Longitudinal Warping of Cross Sections

When a pair of elastic layers rotate relative to each other, the intervening
viscoelastic layer develops shear stresses oriented in the longitudinal direction,
giving rise to some warping of the cross sections of the elastic layers. According
to the Euler-Bernoulli beam model, the longitudinal strain at a distance y from
the neutral axis of a beam bent into the shape v(z) is

Ou 0%

= V32 (3.4)

“= 9
Hence, for the first few modes of an Euler-Bernoulli beam of length L and
height h the maximum longitudinal displacement is of order hv/L. Let us now
compare this displacement to that due to warping of cross sections.

As a worst case, consider the deformation in the principal layer of a sym-
metric laminate undergoing antisymmetric motion. As shown in Fig. 3.6,
rotation dv/0z of a constraining layer causes a relative longitudinal displace-
ment of order h(0v/0z) in a beam of half-width h. The shear stress induced
in the viscoelastic layer is of order Ghv/tL where ¢t is the thickness of the
viscoelastic layer. This stress must be matched by a longitudinal shear stress
in the principal layer, which over the width of the layer causes longitudinal
deflections

Ghub

G,Lt

(3.5)



Figure 3.6  Longitudinal warping stresses: Antisymmetric rotational motion of the
constraining layers of magnitude dv/9z induces a distribution of stress that tends to
warp the principal layer.
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where G, is the shear modulus of the principal layer and b is its thickness. If
we wish to ignore longitudinal warping of sections, we must have

% G (E) <1 (3.6)

3.2.4 Transverse Warping of Cross Sections

Referring again to Fig. 3.5, we see that a shear stress of magnitude Gu/t,
is induced in a viscoelastic layer when the adjoining layers undergo a relative
deflection v. Under antisymmetric motion, the shear stress exerted on opposite
faces of the principal layer tend to warp its cross section in its own plane. If
the principal layer is solid, the shear strains are of order Gv/Gpt, through its
thickness, and we can estimate the magnitude of the resulting deflections v,

by
U, G (b

For a thin-walled box section, the principal mode of deformation is bending of
the walls. If the shear stress in the viscoelastic layer is again Gv/t,, then

vs G [ hb®

—_— NS — -8

v B (tvtﬁ:) 48
where t,, is the wall thickness of the principal layer. Hence, we see that,

as the wall thickness t,, is made small, deformation of the section plays an
increasingly important role in antisymmetric motion.

3.2.5 State of Stress in a Viscoelastic Layer

Assuming steady harmonic motion, we let the displacement of the ith layer be
B = v (3.9)

If plane sections of the elastic layers remain plane and normal to the neutral
axis and the neutral axis does not extend, then the harmonic deflection of a
point in the elastic layer will be

0v;(x)

ui(z,y) = Y and vi(z,y) = vi(z) (3.10)
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'Y:ty(-z', y) = 0 (3'11)
Y |Ovi(z) 6v.-+1(x)
zz\ZL, = = - 1
Yz (2, y) i [‘a\z— o (3.12)
Y; Z) — vy, T
Ne(z,y) = Yin(z) - i 2i(z) (3.13)
We mode) the Viscoelastje Materija] a4 hysteret:ca”y dampeq Withoyt frequency
€pendence. This “idea]” hysteretjc damping mode] jg valid only for Stead
armonije motion €.8., Crandajj 1991), ang can be Tepresented jp the fre
quency domaijn by a complex Stiffness. Hence, We Introdyce the complex shear
modulys G — Gy(1 + J7y) and the harmomcaH_y varyin i
viscoelastjc layer are given by Trz =

3.3 Equations of Motion
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Figure 3.7 Cross-sectional view of a sandwich beam showing the notation used in the
analysis: The elastic layers are numbered sequentially from top to bottom, the width of
the laminated section is 2h, and each of the viscoelastic layers is of thickness t,.

3. The inertia of the viscoelastic layers is negligible. This is usually a safe
assumption because the mass density of most damping materials is low
in comparison with that of structural materials and most designs employ
relatively thin viscoelastic layers.

4. The shear strain is treated as constant through the thickness of a vis-
coelastic layer.

5. The normal stresses in the viscoelastic layers are negligible in comparison
to the normal stresses in the principal and constraining layers. This as-
sumption follows from the viscoelastic layers having comparable normal
strains but much lower moduli than the other layers.

6. The angle of twist is negligible in each layer of the composite beam.

3.3.2 Equations of Motion

We now set forth equations of motion for an N-layer sandwich beam of width
2h and where all of the viscoelastic layers are of thickness t, as shown in
Fig. 3.7. The ith elastic layer is characterized by flexural stiffness F;I; and
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mass per unit length p,A;. Denoting its time-harmonic deflection as vi(z), we

obtain an equation of motion in the form

D, OR;(z

—Ld2p,'A,"U,' + E,‘I,'OT; + Q,‘(I) - 61(: )

where Q;(z) and R;(z) represent, respectively, the distributed force and mo-

ment exerted on the layer by conterminous viscoelastic layers. Integrating

the shear-stress distribution given in Egs. (3.11)-(3.13) over the width of the
laminate, we obtain the net force per unit length
2Gh 2Gh

Qi(z) = - : (vi — vig1) -

v ty

=0 (3.14)

(vi — vi_y) (3.15)

and bending moment per unit length

_ 2Gh3 a‘U,' 6v,—+1 2Gh3 a’U,' Bv.-_l
Ri=) = =5 ( )+ 3t, (

oz oz

B g (3.16)

At each end of the beam, we must specify either the slope dv;/dz or bending
moment E;I; 9*v;/dz? and either the displacement v; or shear force

631),'
‘/.' = Q,‘ - E,'I,‘ F (317)

3.3.3 Nondimensiona! Form

We now designate the pth layer to be the principal layer and introduce the
nondimensional variables

" =z/L w'=wty v =uv/L (3.18)

where L is the length of the beam and ¢, is given by
PrAp
to = L? [-2-F 3.19
o=1L E,I, (3.19)

which is recognized as a characteristic of the period of oscillation of the prin-
cipal layer in the absence of any other layers. We next define for the ith layer
the mass and stiffness ratios

pii '
= and k,‘ = —_=— 3.20
PpAp Eply (3.20)

my
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which are, respectively, the ratio of the mass per unit length to that of the prin-
cipal layer and the ratio of the flexural stiffness to that of the principal layer.
We also find it convenient to introduce the displacement coupling parameter

_ 2GhL?
= WE,I,

(3.21)

which is the nondimensional restoring force per unit length developed in a
viscoelastic layer when the adjoining elastic layers undergo a relative deflection,
and the rotation coupling parameter

_2GRLE R
Im = 3t.E,I, _ 302%

(3.22)

which is the nondimensional restoring moment per unit length developed in a

viscoelastic layer when adjoining elastic layers undergo a relative rotation.
Substituting these quantities into the governing equation (3.14) and the

expressions for the shear force (3.15) and bending moment (3.16), we obtain

—wimv! + O] = (3.23)

61:04
e e ot _ Oy, _ Ol
—Gv (21’.' TS vi—l) + 9m (231.2 - BI.Z' - az-zl)

In terms of the nondimensional quantities, the bending moment in the ith
layer is k; B2v;/6:r2 and the internal shear force is

22 . . .
Ve = g (26 vl 0Py, 8221,_1) —k P

oz*? d9r2  9z°2 ‘9z (3.24)

In the remainder of this work, we will utilize the nondimensional quantities
but drop the asterisks and use (-)’ to denote (-)/dz in oder to obtain a more
compact notation. Thus we write the equation of motion as

—w'mi; + k) = (3.25)
=9y (20i = Vg1 — Vi) + g (21’:/ -v_, - U:’-H)
and the internal shear force as

Vi = gm (20 — 0}y = 0f}y) = kv (3.26)
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3.3.4 Variational Form

When developing approximate solutions to the eigenvalue problem posed by
Eq. (3.25) with appropriate boundary conditions, we will find it convenient
to work from a variational formulation. Multiplying Eq. (3.25) by the virtual
displacement v;, integrating over the length of the beam, and summing over 1,
we obtain

Z/l U (k."U:-V - wzm,-vi) dzr = (327)

Z/ v: [gm 2’U” :I+l ) G (2vl Vi1 — 'Ui—l)] d.’l:
Integration by parts yields the so-called weak form

z/ k o —w m,v,v,) dr = (3.28)
Z/ [gmv 2” |+l i ) — 9vTi (2v; — Vip1 — ‘U,'_l)] dx +

5 (Rl = .t~ g (21— 1 — 1))

If we require that the virtual displacement o; satisfy the geometric boundary
conditions, we see that the boundary terms appearing in the preceding must
vanish for non-energetic boundary conditions.

3.4 Solution Techniques

Our task now is to solve the eigenvalue problem posed by Equation (3.25)
along with appropriate boundary conditions. Exact analytical solutions are
attainable for only the simplest of boundary conditions, and we must in general
resort either to approximate analytical solutions or to numerical methods. In
the following, we describe three of the most useful approaches to eigenvalue
problems of this type: direct numerical solution, modal discretization, and
finite-element discretization.
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3.4.1 Direct Solution

The governing equations (3.25) constitute a set of constant-coefficient, linear,
homogeneous cquations of order 4N, where N is the number of elastic layers.
Therefore, unless an eigenvalue and eigenvalue are repeated, the v; will be of
the form A,e’*, where the A; and A are complex constants. If we substitute
this form of solution into Eq. (3.25) we obtain the set of homogeneous algebraic
equations

(gu - /\2gm) A + (ki/\4 - m:'w2 + 29, — 2Azgm) + (gu = /\2gm) Aij1=0
(3.29)
which can be assembled into a matrix equation of the form

[Di(w? N)] [A} =0 (3.30)

where the coefficient matrix D, (w?, \) yields a determinant of order 4N in the
eigenvalue ), so that for a given value of w we can solve for the 4N values of
A that satisfy Eq. (3.25) and determine the eigenvectors A4; corresponding to
each eigenvalue.

Denoting now the 4N eigenvalues and eigenvectors as A, and Afk) for k =

1,2,...,4N, we can write the displacement v;(z) in the form
4N .
vi(z) = 3 VAP M (3.31)
k=1

where the V, are complex constants. These displacements are required to
satisfy 4N boundary conditions, which usually involve the v;(z) and their
derivatives evaluated at the ends of the beam. If the boundary conditions are
homogeneous, we can assemble them into the form

[D2(Ar1, Ay .., M) Vi) = 0 (3.32)

where the dependence of D, on the ); is usually transcendental. Our task
then is to find the value of w and corresponding A, and Afk) for which the
determinants of the matrices D, and D, are zero.

The most common approach to solving such problems is a search method,
wherein one guesses a value for w and solves for the values of A\, and Ask) which
force determinant of D, to zero. Then the determinant of D, is evaluated to
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check for convergence. If this determinant is not sufficiently close to zero,
a new guess for w is generated (most commonly using a Newton-Raphson
approach), and the process is repeated.

This is the approach most often used in the literature for finding the reso-
nant frequencies and damping ratios of vibration in the plane normal to lam-
ination, and its success depends largely on the quality of the initial guess for
w and the details of the scheme of iteration. Several researchers have reported
difficulties in obtaining convergence for cases with non-symmetric boundary
conditions (e.g., Markus and Valaskova, 1972), but evidently these difficulties
can be overcome with careful programming as reported in a paper by Rao
(1977).

3.4.2 Classical Rayleigh-Ritz Discretization

The eigensolutions for vibration of Euler-Bernoulli beams with pinned, sliding,
clamped, or free ends are well known and tabulated in many texts. Hence,
for a composite beam with such boundary conditions, we find it convenient to
expand the motion of the ith layer in the form

‘l-l,'(.’L') = ‘U,‘(.’B) = Z‘l,b,',-(l‘)ai,- (333)

where the trial function ;. is the rth eigenfunction of the ith layer if it is de-
coupled from the remaining layers and a;, is the associated complex amplitude.
For the boundary conditions of interest, the decoupled eigenvalue problem is
self adjoint, and the eigenfunctions v;, can be orthonormalized so that

('I’ir(m)v"pia(z)) = by, (334)

where (f(z), g(z)) = [} f(z) g(z)dz is the inner product over the length of
the beam.

Noting that the series expansion in Eq. (3.33) satisfies the boundary condi-
tions exactly, we substitute it into the weak variational form given by Eq. (3.28)
and minimize the error by requiring the result to be stationary with respect to
the a,,. This process yields the following set of algebraic equations governing
the a,, forn=1,2,3... Nands=1,23...

W Mmaan, + ke Y (YU U1) ap, = (3.35)
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—Gv [Zans - Z (<¢ns, "/’(n+l)r> A(n+1)r + <'¢'mn w(n—l)r> a(n-—l)r)]

\
+9m E [2 <¢;‘3’ 1‘[)',"') Cnr — <¢:l-'l’ d)zn+l)f> A(n+1)r — <¢1'u’ "/)Zn—l)r} a(n—l)r}

The various inner products involving the ,, and their derivatives can be
evaluated analytically or numerically. In many cases it will prove convenient
to integrate by parts in order to express the inner products in terms of the
boundary values. Some useful results of this type are derived in Appendix 3.7.

3.4.3 Finite-Element Discretization

For general boundary conditions, it is difficult to guess a set of global trial
functions which give rapid convergence, and we therefore find it useful to
discretize locally by the finite-element method. We now treat the sandwich
beam of Eqgs. (3.28) as one element of a longer beam and approximate the
deflection of the 7th layer of this element as a cubic polynomial of the form

vi(2) = pir + PioT + Pis®® + pisz’ (3.36)

We require that the displacement and slope at the end of each layer of the
element match that in the adjoining element, so it is convenient to rewrite the
expansion for v;(z) in terms of the displacements and slopes at the ends of the
element. That is,

vi(z) = ¢1(z)gir + d2(7) iz + d3(x)qis + d4(z)gia (3.37)
where
’U,'(O)
(0
o= zglg (3.38)
v;(1)
and the interpolation functions ¢; are given by
é1(z) = 1- 32+ 223 (3.39)
$2(z) = = -21%+41° (3.40)
¢3(z) = 3z*— 213 (3.41)
¢a(z) = -2*+7° (3.42)
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Substituting this expansion into the weak form (3.28) and requiring that it be
stationary with respect to the g,,, we obtain the set of equations

4 4
—w'm, Z (Drs b5) Gnr + kn Z (¢r,%8) Gnr = (3.43)
r=1 r=1

4
- E (gu (r, Bs) — Gm <¢,’-1 ¢;)) (2¢Inr = 4n+1)r — ‘I(n—l)r)
r=1

which we write in matrix from as
(Kn - w?M, +2G, — 2Gm) @n = (Gy ~ Gm) (nt1 + ¢uer) =0 (3.44)

where the elements of the coraponent matrices are defined as

(Mn)ij = mn($i,¢,) (3.45)
(Kn)ij = kn <¢§',¢;’> (3.46)
(Go)ij = 9u(¢:, ;) (3.47)
Gm)i; = gm (85 0}) (3.48)

The mass matrix M, and the stiffness matrix K, are identical to the mass and
stiffness matrices from the standard cubic beam element:

156 22 54 —13
_m, | 22 4 13 —3
M""'470 54 13 156 —22 | (3.49)

-13 -3 -22 4 ]
12 6 —-12 6

6 4 -6 2
Ka=kl 19 6 12 -6 (3:50)
6 2 -6 4

The force coupling matrix 7, can be obtained from the mass matrix by multi-
plying it by the scalar g,/m, for some particular value of n. We compite the
moment coupling matrix G, irom its definition in Eq. (3.48) to be

36 3 -36 3
q. = 9m 3 4 -3 -1
mT 30| -36 -3 36 —3
3 -1 -3 4/

(3.51)
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3.5 Examples

3.5.1 Simple Supports

In this section, we examine the dynamics of the sandwich beam for the par-
ticular case of a symmetric five-layer laminate where each of the principal and
constraining layers is simply supported. For this set of boundary conditions,
we find it convenient to employ a classical Rayleigh-Ritz discretization.

Designating the second elastic layer to be the principal layer, we have my =
k2 = 1. Because the laminate is symmetric, m; = m3 = m and k, = k; = k.
Moreover, because each of the elastic layers is simply supported, the decoupled
eigenfunctions are

$1r(2) = Yor (2) = Yar () = 6, (z) = V2sinrrz (3.52)

and the corresponding eigenvalues are A, = (rm)%. Hence, the discretized
equations given in Eq. (3.35) can be written in the form

—wimay, + kY (¢, ¢a = —guair + 90 Y (br, Bs)as, (3.53)
’ 0 X [ ) — (6, 0]
—wlay + ) (47, d1)as, = _2gv;2r + 90> (Br, bs)(a1s + azs)  (3.54)
’ —gm )_ (41, ¢’:)a2, = (¢7, #.)(azs + a3;)]
~wlmas, + £ S0 Hass = s+ 50 30 b (3.55)

—gmz ({87, 8,)as, — (¢}, ¢ )azs]

Using the results derived in Appendix 3.7, we reduce the system of ordinary-
differential equations (3.53)~(3.55) to

—wimay, + k(rm)ta;, = -T(ai, — az) (3.56)
—wlay, + (rm)layy = -T(2ay — ay, — as,) (3.57)
—w?may, + k(rm)las, = -T (a3 — azr) (3.58)
where
I = gy + gm(rm)? (3.59)
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from which we see that the rth coordinates are decoupled from the sth coor-
dinates for any s # r. Thus, corresponding to the rth mode of a decoupled
simply supported beam, we have three modes of the composite beam, for which
each layer deflects in the shape of the rth mode of a simply supported uniform
beam.

Hence, for a given wavenumber r, the motion of a composite beam on
simple supports can be modeled using the lumped parameter model shown in
Fig. 3.2. In Egs. (3.56)-(3.58), the effective stiffness of the viscoelastic layers
is measured by the parameter I', which we see from Eq. (3.59) is made up of a
linear combination of the displacement-coupling parameter g, and the slope-
coupling parameter g,. Recalling from Eq. (3.22) that g,, = g,(h%/3L?), we
see that g,, can often be neglected for low-wavenumber modes.

The eigenvalue problem given by Eqs. (3.56)-(3.58) is symmetric and hence
admits two types of solution: antisymmetric modes with a;, = —a3, and
azr = 0 that satisfy

o '+ k(rm)?

w; — (3.60)
and symmetric modes with a,, = a3, that satisfy
mw? — [D(1 + 2m) + (rm)*(k + m)| w? (3.61)

+ [T(rm)* (1 + 2K) + k(rm)®] = 0

and
[F + k(rm)* — mwf] ayr = laz, (3.62)
Modeling the behavior of the viscoelastic material as frequency-independent
hysteretic, we set its complex shear modulus to G = G,(1 + jn,), where n, is
the loss factor of the viscoelastic material. Since I' is proportional to G, we
can write
I'=T-(1+ jm) (3.63)

For nonzero 7,, the resonant frequencies w, are complex, and the loss factor n
of the composite beam is given by the ratio of the imaginary and real parts of
the square of w,:
_ Im(w?)
" Re(w?)
In the fcllowing, we will discuss ihe effects of varying I, and & for composite
beams with lossy viscoelastic (7, = 1) and constraining layers each with one-
tenth the mass of the principal layer (m = 0.1).

(3.64)
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For the case where k/m = 1 (where the natural frequencies of the decoupled
principal and constraining layers are equal), the resonant frequencies are

W2 = {(m)4 , (rm)t + %  (rm) % (1+ 2m)} (3.65)

from which we see that the first resonant frequency of the composite beam is
equal to that of the individual layers and has n = 0. The principal mode in
this case involves synchronous motion of the elastic layers of the beam. The
two higher resonances are well damped for large 7, and T.

Next, we consider the case where k/m > 1 so that the natural frequencies
of the decoupled constraining layers are higher than those of the principal
layer. The resonant frequencies and loss factors are plotted as a function
of I'; in Fig. 3.8. The two higher resonances are well damped for all but
very low values of I';. One of these resonances involves antisymmetric motion
of the constraining layers and no motion of the principal layer, while the
other involves symmetric motion of the constraining layers and relatively little
motion of the principal layer.

Of greater practical interest is the first resonance, which involves large
motion of the principal layer. The damping follows a trend similar to that
observed for the planar shear damping mechanism: For small T, the principal
and constraining layers are weakly coupled and large shear strains but little
strain energy is imparted to the viscoelastic layers. For large I',, the constrain-
ing layers are entrained to the principal layer and little shear strain occurs in
the viscoelastic layers. Between these extremes, there exists a range of I, over
which significant damping (7 as high as 0.09) can be obtained.

When k/m < 1, the natural frequencies of the decoupled constraining
layers are lower than those of the principal layer. Consequently, as T, is
increased from a very low value (assuming m < 0.5), the two resonances given
by Eq. (3.61) cross over as shown in Fig. 3.9. Near this crossover region, the
behavior resembles that of a tuned-mass damper and loss factors greater than
0.2 can be obtained for all three resonances. These results bear some similarity
to those found by Douglas and Yang (1978) who found that significant damping
arises due to relative transverse motion of the face layers of a three-layer
sandwich beam near its transverse compressional frequency. This behavior can
be described as distributed tuned-mass damping, which was recently studied
by Zapfe and Lesieutre (1996).
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Figure 3.8  Resonant frequencies and composite loss factors as a function of the real
part of I for vibration in the plane of lamination of a five-layer symmetric laminate for
r=1,71, =10, m=0.1, and k/m = 4. All layers of the beam are simply supported.
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Figure 3.9  Resonant frequencies and composite losc factors as a function of the real
part of I" for vibration in the plane of lamination of a five-layer symmetric laminate
forr =1, 7 = 1.0, m = 0.1, and k/m = 0.25. All layers of the beam are simply
supported.
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Figure 3.10  Comparison of finite-element results (diamonds) to the exact solution
(line) for the loss factor of the principal mode of vibration in the plane of lamination of
a five-layer symmetric laminate with 7, = 1.0, m = 0.1, and k/m = 4. All layers of the
beam are simply supported.

Validation of Finite-Element Code

Before moving on to laminates with other boundary conditions, it is worth-
while to validate our finite-elcment code against the exact solutions for simply
supported laminates. Following the formulation given in Section 3.4.3, we de-
veloped a program for computation of the complex eigenvalues of laminated
sandwich beams. Because we are interested in only the principal resonance
of a symmetric laminate, we can lump both constraining layers into a single
layer with twice the mass stiffness.

The exact solution was found to depend on the properties of the viscoelastic
layer only through the parameter I, which is defined in Eq. (3.59) to be a linear
combination of the displacement- and slope-coupling parameters g, and Im-
Setting gm = 0 so that I = g,, using the same parameter values as in Fig. 3.8,
and segmenting the composite beam into six elements, we obtain the results
shown in Fig. 3.10. The error in the finite-element approximation to the loss
factor is everywhere less than 0.1 per cent. Nearly identical results (to within
0.02 per cent) are obtained with g, = 0 so that ' = 72g,),.
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3.5.2 Pinned and Free Ends

We row consider vibration in the plane of lamination of a five-layer symmetric
sandwich beam whose principal layer is simply supported but whose constrain-
ing layers are free. Because the decoupled mode shapes of the principal and
constraining layers are different, a classical Rayleigh-Ritz expansion will re-
quire several terms in order to converge, and we choose at present o use the
finite-element formulation given in Section 3.4.3.

As in Section 3.5.1, we consider a beam whose two constraining layers are
each one-tenth the mass of the principal layer and whose viscoelastic layers
have loss factor 7, = 1. We are concerned with only the lowest few modes of
the beam and hence we neglect the slope ceupling g,, and plot the resonant
frequencies and loss factors as functions of the real part of the displacement
coupling parameter g,. Moreover, because the antisymmetric modes of the
laminate involve no motion of the principal layer, we solve for only its sym-
metric modes.

Let us first consider the case where the constraining layers have a higher
stiffness per unit mass than the principal layer. The resonant frequency and
loss factor of the first six symmetric modes of the laminate vary with Re(g,) as
shown in Fig. 3.11. For very small g, the principal and constraining layers of
the beam behave as if they are decoupled: the resonant frequencies correspond
to those of the individual layers, and the loss factors approach zero. The solu-
tions along the branches labeled a and b in Fig. 3.11 correspond, respectively,
to rigid-body translation and rotation of the constraining layers. Branches c,
d, and f correspond to the first three modes of the simply supported principal
layer. Branch e represents the first flexural mode of the constraining layers.

For very large g,, the principal and constraining layers behave as if they
are rigidly coupled. The resonant frequencies are those of a simply supported
beam with normalized flexural stiffness 142k and mass per unit length 1+4-2m.
Thus, branches g through ¢ correspond to the first six flexural modes of a
simply supported beam.

Consider the principal mode, which at low g, corresponds to branch c.
As g, is increased from roughly 1 to 7, the resonant frequency increases very
slowly but the loss factor goes from less than 1073 to greater than 0.3. At
gv = 7, this eigenvalue coalesces with that of the rigid-body mode of branch
a and the branches g and m are born. On the plot of log |w| versus logg,,
the branch m lies approximately on a straight line along which the frequency
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Figure 3.11

Resonant frequency and loss factor of the first six symmetric modes of

vibration in the plane of lamination of a symmetric five-layer laminate: The principal
layer is simply supported and the constraining layers are free, m = 0.1, k/m = 4,

7 =1, and g, = 0.
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increases rapidly with g, and the loss factor approaches unity. At g, ~ 700
branch m ends and gives rise to branch :.

The response to a low-frequency disturbance is determined primarily by the
resonant frequency and loss factor along the branches c and g. The highest
damping is obtained at their intersection (at Re(g,) = 7) where n = 0.3 and
|w| =~ 10. However, the damping near this intersection is very sensitive to
changes in g, and the damping along branch d is very light. It may therefore
be advantageous to choose designs with Re(g,) between 50 and 200, where the
loss factor along both branches g and d are both greater than 0.1.

Next, consider the case where the constraining layers have lower stiffness
per unit mass than the principal layer. The resonant frequencies and loss
factors obtained from the finite-element model for the case k/m = 0.25 are
plotted in Fig. 3.12. The maximum damping of the principal mode in this
case is comparable to that shown in Fig. 3.11 for the case k/m = 4, but it
is attainable over a very narrow range of g,. Moreover, whereas for k/m = 4
loss factors greater than 0.1 can be obtained along the branch ¢ for values
of Re(g,) between 7 and 200, the loss factor in this case falls to below 0.1 at
Re(g,) = 11.

We have seen in Section 3.5.1 that, when each elastic layer of the beam
is simply supported, significant damping of the principal modes can be ob-
tained only if the principal and constraining layers are detuned. But if the
boundary conditions differ, then the principal modes are well damped (for
appropriately chosen g,) even for perfectly tuned principal and constraining
layers. In Fig. 3.13, we plot the first six resonant frequencies and loss factors
of a “perfectly tuned” (k/m = 1) laminate whose principal layer is simply
supported but whose constraining layers are free. The damping behavior in
this case is comparable to that found for the case k/m = 0.25.

3.5.3 Free Ends

Let us now consider free-free vibration in the plane of lamination of the
ceramic-viscoelastic beam with the cross section shown in Fig. 3.14. The
principal layer is a box beam composed of 96 per cent alumina ceramic with
Young’s modulus E; = 311 GPa and the constraining layers are 99.5 per cent
aluminum oxide with E, = 372 GPa. The viscoelastic layers are each 0.25 mm
thick and composed of EAR-C1002, which at 2000 Hz and room temperature
has complex modulus G, = 13.9(1 + j0.95) MPa. The endpoint receptance
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Figure 3.12  Resonant frequency and loss factor of the first six symmetric modes of
vibration in the plane of lamination of a symmetric five-layer laminate: The principal
layer is simply supported and the constraining layers are free, m = 0.1, k/m == 0.25,
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Figure 3.14  Cross section of a ceramic box beam with constrained viscoelastic layers:
The beam is 0.914 m long and is composed of a principal layer with E;, = 311 GPa,
constraining layers with £, = 372 GPa, and viscoelastic layers with G, = 13.9(1 +
70.95) MPa and thickness 0.25 mm. Dimensions are in cm.
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Figure 3.15 Measured endpoint receptance in the plane of lamination of the ceramic

beam of Fig. 3.14: A free-free condition was approximated by suspending the beam with
light surgical tubing.

measured in the y direction of the composite beam is plotted in Fig. 3.15.

In terms of our nondimenstonal parameters, the ceramic laminate has m =
0.25, k = 0.055, n, = 0.95, and g, = 2160(1 + j0.95). The slope coupling
gm in this case is equal to ¢,/2000 and can be safely ignored for the lowest
several medes of the beam. The results of a finite-element calculation for these
parameter values compare to the measured data as follows:

frequency (Hz) loss factor
measured | predicted | measured | predicted
808 795 0.007 0.004
2065 2103 0.036 0.034
3730 3800 0.103 0.141

The considerable error in the prediction of the loss factor of the first and third
modes is probably due to the variation of the viscoelastic material properties
with frequency. We use the material properties corresponding for 2000 Hz in
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our calculations although the shear modulus of the viscoelastic material (EAR
C-1002) more than doubles as the frequency increases from 1000 to 3000 Hz.
Moreover, according to Eq. (3.1), the displacement-normalized twist between
elastic layers under symmetric motion is of order o/h, where a is half the
thickness of the constraining layer and h is half its width. For the beam uuder
consideration a/h = 0.36 so we can’t expect the model to predict the damping
very accurately with such thick constraining layers.

It is perhaps interesting to see what damping (according to the model)
would be achievable by adjusting g,. In Fig. 3.16, we plot the resonant fre-
quencies and loss factors of the beam as a function of the real part of gy. From
the plot, it is apparent that loss factors of better than 0.3 for any one mode
could be achieved with proper selection of ¢,, and that the current design
with g, = 2160(1 + j0.95) is probably most effective for damping the third and
fourth modes. A more compliant viscoelastic layer would yield better damping
of the first two modes.

3.5.4 Free Ends with Segmented Layers

Let us now consider a free-free beam with the cross section shown in Fig. 3.17,
where the principal and constraining layers are solid aluminum bars. The
stiffness per unit mass in the principal and constraining layers are equal so
that k/m = 1 and we expect to obtain very little damping of the principal
modes. The measured receptance is shown using a dotted line in Fig. 3.18;
a least-squares curve fit to the resonant peaks indicates that 7 is less than
0.001 for the first two modes. Next, we segmented the constraining layers
by making a transverse cut at the midpoint of the beam and repeated the
measurement. The result is plotted with a solid line in Fig. 3.18, from which
we see that segmenting the constraining layers has caused a dramatic increase
in the damping. In addition, we see that whereas the resonant frequency of
the first mode has dropped, that of the second mode has increased.

Using a finite-element model with ten elements, we obtain the plot of
resonant frequency and loss factor as a function of g,, shown in Fig. 3.19.
'The viscoelastic layer in the sample is composed of EARC - 3102 damping
foam, which at room temperature and 500 Hz, has G, = 0.1(1 + j1.0) MPa.
Each viscoelastic layer is 0.25 inches thick; hence for our sample we have
gy = 60(1 + j1.0). The results of the computation compare to curve-fitted
experimental data as follows:
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Figure 3.16  Resonant frequency and loss factor of the first six symmetric modes of
vibration in the plane of lamination of the ceramic laminate of Fig. 3.14: The principal
layer constraining layers have free ends, m = 0.25, k/m = 0.22, 7, = 0.95, and g,, = 0.
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Figure 3.17  Cross-section of an aluminum sandwich beam: The beam is 0.914 m
long, and made up of solid aluminum bars bonded with a thin layer of epoxy to the
intervening layers of EAR C-3102 damping foam. Dimensions are in cm.
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Figure 3.18  Comparison of measured receptances for the sandwich beam of Fig. 3.17
with contiguous (dashed line) and segmented (solid line) constraining layers.
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Figure 3.19

Resonant frequency and loss factor for the first several symmetric modes

of vibration in the plane of lamination of a symmetric five-layer laminate: The con-
straining layers are segmented at the midpoint of the beam, all ends are free, m = 0.1,
k/m=1,1n,=1, and g,, = 0.
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frequency (Hz)

loss factor

measured | predicted | measured | predicted
170 175 0.092 0.103
547 550 0.040 0.035

The agreement between the predicted and measured values is about as good
as can be expected without taking into account the variation of the properties
of the viscoelastic material with frequency.

3.6 Discussion

In this chapter, we have developed a model for vibration in the plane of lamina-
tion of elastic-viscoelastic beams. The model is based on the assumption that
the angle of twist in each of the elastic layers is negligible, and hence is most
accurate for beams with thin constraining layers mounted on opposing faces of
a principal layer. According to the model, the damping in the composite beam
depends on the mass ratio m, the stiffness ratio k, the coupling parameters
9» and g, and the boundary conditions on the various layers. For the lowest
several modes of a slender beam, the slope coupling g,, can be neglected in
comparison to g,.

If the boundary conditions on the elastic layers are identical, the system
behavior can be adequately modeled using a lumped parameter model such as
shown in Fig. 3.2, and the behavior can be divided into three cases according
to the tuning between the elastic layers: If the principal and constraining lay-
ers have the same stiffness per unit length, the principal mode is essentially
undamped for any value of g,. If the constraining layers have a higher stiffness
per unit length than the principal layer, their inertia plays only a small role
in the dynamics, and the behavior as g, is varied follows the pattern of the
parallel-stack damper of Fig. 2.1(c). On the other hand, if the constraining
layers have a lower stiffness per unit length than the principal layer, the con-
straining layers can act as distributed tuned-mass dampers for some range of
9u.

If the boundary conditions on the principal and constraining layers differ,
the variation of the resonant frequencies and damping ratios with changes
in g, are somewhat more complicated than can be captured with a lumped-
parameter model. Because the mode shapes of the decoupled principal and
constraining layers differ, the coupling forces are not distributed over the length
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of a layer in proportion to its decoupled mode shape, and the constraining
layers can present to the principal layer a distributed impedance far higher
than its lumped stiffness. Hence the potential exists for damping significantly
higher than in beams where the boundary conditions on the principal and
constraining layers are identical.

3.7 Appendix: Evaluation of Various Inner Products

We wish to evaluate the inner products (gL, ¢,) and (¢”, #") where ¢, and A,
satisfy the self-adjoint eigenproblem given by

¢"(z) = M(z) z€0,1] (3.66)

with suitable boundary conditions. The eigenfunctions ¢, are normalized so

that (¢r’ ¢s) = Ors.
Using Eq. (3.66) we write the identity

1 1
M [ oiddz= [ 416,ds (3.67)
and integrate twice by parts to obtain
! (U _ iv 1/ m ! ! " g

M [0z = [0, - ara). + [ oo da (3.68)

Interchanging the indices and subtracting, we obtain

1

(’\r - /\3)-/0 ¢:'¢; dI = [)‘r¢r¢,lg - ’\3¢:-¢s - ¢:‘I¢.I; + ¢{s’¢:'"](§ (369)

where we have again made use of Eq. (3.66). For a simply supported beam,
each of the terms on the right-hand side of this equation vanishes and we
conclude that (¢;,¢,) = 0 when r # s. For a free-free beam, the terms
involving ¢ and ¢’ are not zero at the ends, but their total contribution is
zero due to the symmetry of the problem; therefore, (¢!, ¢.) = 0 when 7 # s.
This inspectional approach can be used with some success for other simple and
symmetric boundary conditions, but more difficult problems are often more
easily handled numerically.
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We follow a similar approach to evaluate (¢}, 7} in terms of the boundary
values. In this case we begin with the identity

Abry = A, /0 0, dz = /0 ' 6o, dr (3.70)

and integrate twice by parts to obtain
1
Moy = (0100~ g1l + [ o1gds (3.71)

from which we conclude that (¢}, ¢}) = A,6,, for simply supported, free-free,
and cantilever beams.
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CHAPTER 4
Torsion of Elastic-Viscoelastic Beams

In this chapter, we take up the problem of damping torsional vibration in slen-
der beams. Assuming that the deformation obeys the Saint-Venant hypothe-
ses, we develop a model suitable for predicting the complex stiffness per unit
length in closed, thin-walled, elastic-viscoelastic tubes. We begin by studying
the deformation of a closed tube formed from elastic shells joined by one or
more viscoelastic seams running the length of the tube, derive an expression
for the complex stiffness, and find that the damping behavior depends on a
single dimensionless parameter. We then consider tubes whose walls consist
of laminated elastic and viscoelastic layers, and formulate a boundary value
problem for the warping deformations arising under Saint-Venant torsion. For
some basic cross-sectional shapes, we solve the warping problem and thence
obtain closed-form expressions for the complex stiffness per unit length. Fi-
nally, we provide some guidelines for the design of tubes with high damping
in torsion.

4.1 Background

Consider the response of an elastic-viscoelastic beam to a harmonically varying
twisting moment applied at its end. If the frequency of motion is low enough
that the rotary inertia of the beam can be neglected, the internal twisting
moment does not vary from section to section, and hence the strains devel-
oped in the beam are independent of the lengthwise coordinate. A slender

77



beam therefore takes on a constant angle of twist per unit length, and cross
sections distant from either end of the beam rotate about the longitudinal axis
without distortion in their own plane. But such rotation gives rise to shear
stresses which, unless the cross section is axially symmetric, cause it to warp
in the longitudinal direction. This model for the torsion of slender beams was
first proposed by Saint-Venant in 1855 and is referred to in the literature as
“uniform” or “Saint-Venant” torsion.

Near the ends of the beam, the deformation may violate the premises of
the Saint-Venant theory of torsion in two important ways:

1. Restraint Against Warping: If an end is restrained against warping—
for example, by welding it to a solid block—the deformation will not be
uniform near that end. This effect is well documented in the elasticity
literature and is known in homogeneous beams to be most significant for
sections with large flanges (e.g., Timoshenko and Goodier, 1970; Koll-
brunner and Basler, 1969). It may also cause significant nonuniformity
for elastic-viscoelastic beams because, as we will see subsequently, warp-
ing displacements play an essential role in damping torsional vibration.

2. In-Plane Distortion: Depending on the distribution of stresses on the
end of a beam, cross sections near that end may deform in their own
plane. For homogeneous beams, this deformaticn can almost always be
neglected, but for elastic-viscoelastic beams we can envision cases where
it is of primary importance. Consider for example a beam made up
of a circular elastic core and concentric viscoelastic and elastic layers.
Suppose we exert a moment at one end of this beam on only the outer
elastic layer. Near this end, the outer layer will undergo a larger rota-
tion than the circular core, and this difference in rotation induces large
strains in the viscoelastic layer. This mechanism of damping was studied
by Chandrasekharan and Ghosh (1974) for straight beams and Nanda
Kishore and Ghosh (1975) for coil springs. To the best of the author’s
knowledge, these are the only published works on nonuniform torsion of
elastic-viscoelastic beams.

It is difficult to form a general measure of the importance of warping restraints
and in-plane distortion; their effects must be evaluated on a case-by-case basis
taking detailed account of the boundary conditions. In the present study, we
will work under the assumptions of Saint-Venant torsion.
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Upon review of the literature we find only two studies of Saint-Venant tor-
sion of elastic-viscoelastic beams: Johnson and Woolf (1976) examine torsion
of a two-layer beam made up of a thick elastic bar and a thin viscoelastic
layer. Starting from the classical formulation given by Sokolnikoff (1956) for
the stress distribution in a compound beam, they derive a perturbation solu-
tion valid when the viscoelastic layer is much more compliant than the elastic
layer. From a similar formulation, Dewa (1989) generates numerical solutions
for three-layer elastic-viscoelastic beams made up of solid rectangular lami-
nae. These results do not readily generalize to beams with other cross sections
and hence are of little use for structural design, where beams with solid cross
sections are rarely employed.

Closed, thin-walled tubes have high flexural and torsional stiffness for a
given mass, and therefore find wide application in machine structures. In the
present work, we develop a model for torsion of closed, thin-walled, elastic-
viscoelastic tubes. Assuming that the deformation obeys the Saint-Venant
assumptions, and neglecting the rotary inertia of the compound tube, we de-
rive expressions giving the complex torsional stiffness for two types of tube:
(1) those made up of one or more elastic shells joined by viscoelastic seams to
form a closed tube, and (2) those with constrained viscoelastic layers laminated
to the thin elastic wall of a closed tube.

Because we neglect rotary inertia in our analysis, harmonic motion is gov-
erned in the frequency domain by equations of the same form as those gov-
erning static deformation. The reader should keep in mind, however, that the
following derivations are carried out in the frequency domain and that the
deformations, stresses, and strains are harmonically varying quantities whose
magnitude and phase are represented by complex variables.

4.2 Thin-Walled Tube with Viscoelastic Seams

We consider in this section torsion of a member made up of one or more thin
elastic shells joined into a closed tube by viscoelastic seams running the length
of the tube. Such a tube, made up of a single elastic shell of modulus G, and
a viscoelastic seam of modulus G, is sketched in cross section in Fig. 4.1.
The shape of the tube is given by the vector R(s) whose dependence on the
tangential coordinate s is normalized so that the unit vector &, in the tangential
direction is given by dR/ds For simplicity, we restrict our attention to cases
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Figure 4.1  Cross section of a thin-walled tube consisting of elastic material with shear
modulus G and viscoelastic material with complex shear modulus G5. The thickness
of the tube wall is (s).

80



where ﬁ(s) divides the yz plane into a singly connected exterior and a simply
connected interior; that is, the tube wall forms a single closed loop in the yz
plane.

The stiffness of such a compound tube can be obtained by a straightfor-
ward generalization of the results for a homogeneous thin-walled tube (e.g.,
Kollbrunner and Basler, 1969). Here, we carry out the derivation in brief as a
prelude to the discussion of tubes with laminated walls.

4.2.1 Modeling Assumptions

As stated previously, we assume that the tube deforms in accordance with the
Saint-Venant assumptions. The analysis of thin-walled tubes is made tractable
by the introduction of two further assumptions:

1. Because the tube wall is thin compared to the perimeter of the section
and the inner and outer walls are traction free, the shear stress 7., in
the direction normal to the perimeter is negligible.

2. The variation of the tangential shear stress 7,, across the wall thickness
can be neglected so that the the deformation and strain are functions of
s only.

It should be noted that the second assumption is justified only for closed
tubes. If the tube is open, the tangential shear stress must change sign across
the thickness of the wall in order to sustain a net moment.

4.2.2 Stress Analysis

For Saint-Venant torsion, all points on the section rotate together and the
warping deformation u is the same at any station along the length of the beam.
Thus, if the beam takes on an angle of twist per unit length of magnitude 0
we can write the deflection AR of a point on the tube wall in the form

AR = u(s)é, + 0zé, x R(s) (4.1)

where € is the unit vector in the z direction. In terms of the deformation, we
can write the shear strain in the tangential direction as
_du d

+-—(AR-&,) (4.2)

Yzs = IS‘- dl'
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Now combmmg Eqs (4 1) and (4.2), and making use of the vector identity
Ax B-C =B-C x 4, we obtain

_ du
=t OR - €, (4.3)

A simple expression of the kinematics of twist can be obtained by integrating
this expression for the shear strain around the closed section:

240 = }{ Yrs ds (4.4)

where A is the area enclosed by the wall.

Since the inner and outer surfaces of the tube are traction free, and the
shear stress in the direction normal to the tube wall is negligible, we obtain
the equation of equilibrium

71 ]

‘% (trzs) =0 (4.5)

where t is the thickness of the tube wall, from which we see that the shear
flow t7,, is constant over the perimeter of the section. The resultant moment
M, exerted on the cross section is computed by integrating the moment of the
shear flow around the perimeter of the section. That is,

M, = f (t724) R - €, ds = 2Atr,, (4.6)

Combining this result with the kinematic relation in Eq. (4.4), and introducing
the complex shear modulus 7., = G(5)7,,, we obtain the torsional stiffness

Ag‘ 14?2 (f g) (4.7)

In the present work, we are concerned with tubes whose walls are made up of
piecewise uniform segments, so if the ith segment has length ¢;, shear modulus
G,, and thickness ¢;, we can write
2 2

M, _ 4A _ 4A (4.8)

o E(b/Giti) Lo
where the quantity o; = ¢,/G,t; can be interpreted as the shear compliance per
unit length of the ith panel of the tube wall. From the form of Eq. (4.8), we
see that segments of the tube wall work in serial to resist a twisting moment;
hence introduction of a viscoelastic seam into an elastic tube wall forms a
serial damper of the type discussed in Section 2.2.
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4.2.3 Discussion

Now consider the particular case of a tube whose cross section has total perime-
ter L, + L, made up of (possibly non-contiguous) lengths L, and L, of elastic
and viscoelastic material with shea~ moduli G, and G, respectively. If the
wall thickness ¢ is constant, we obtain from Eq. (4.7) the normalized complex

torsional stiffness
M, P GILZ)‘I
k(l+m) =3 (4A2G1t) (1 t G.L, (49)

We note that the factor 44%G,t/P is the torsional stiffness of a homogeneous
tube of cross-sectional perimeter P ~ L, and shear modulus G,. Hence 7, is
the loss factor of the composite tube and k, is the ratio of its static stiffness to
that of the homogeneous tube. Now introducing for the viscoelastic material
a storage modulus G, and loss factor 7, and setting G> = G,(1 + jn,), we can
write

. M, P 149+ 1)2 . gt
. _M AR v 4.1
t(l+gm) = - (4A2Glt) +g)r+m A ra)2+n (410)

where the coupling parameter g, is given by
Gl / G'u

gt =
L] / L2

and we can write the composite loss factor in the form

Tt

"TE1F g + n? (412)
Equations (4.10) and (4.12) indicate that for small g, the normalized stiff-
ness approaches unity and the composite loss factor goes to zero. This is the
“rigidly coupled” limit where the behavior of the tube approaches that of the
homogeneous tube. For large g, the normalized stiffness goes to zero and
the loss factor approaches that of the viscoelastic material. This behavior is

illustrated in Fig. 4.2 for the case where 7, = 1.

(4.11)

4.3 Thin-Walled Tube with Constrained-Layer Dampers

Consider, as shown in Fig. 4.3, a closed elastic tube of modulus G, to which is
attached a thin viscoelastic layer of modulus G, backed by an elastic layer of
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Figure 4.2 Dependence of the loss factor and normalized static stiffness on the cou-
pling parameter g, = (G1/Gy)/(L1/L2) for a thin-walled tube with viscoelastic seg-
ments with 0, = 1.
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t,(s)

Figure 43  Cross section of a thin-walled tube consisting of an closed elastic tube of
modulus G and thickness ¢,(s), a viscoelastic layer of modulus G and thickness t5(s),
and a constraining layer of modulus G3 and thickness #3(s).

modulus G3. The thin-walled tube forms a single closed loop in the yz plane,
and its shape is given by the vector B(s) normalized so that dfi/a’s = é,. By
mounting a constrained viscoelastic layer to one segment of an elastic tube
wall, we form a parallel damper on that segment. But as we have seen, the
individual segments of a tube wall act in series to resist a twisting moment,
and hence this parallel damper acts in series with the remaining segments of
the tube wall to sustain a dynamic twisting moment.

4.3.1 Modeling Assumptions

According to the Saint-Venant model, imposition of a twisting moment de-
velops shear stresses in the yz plane. As we have seen in the previous sec-
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Figure 4.4  Sketch of the shear flow near the end of a constraining layer: The curveJ
lines with arrows indicate the direction of the shear stress in the plane of the cross
section.

tion, in the absence of laminated viscoelastic layers these stresses run par-
allel to the tube wall, and the shear flow ¢r,, is constant. In the present
case, the shear flow t,(7;,); is constant only on that portion of the tube
wall without lamination. On the laminated region, some stress is transmitted
through the viscoelastic layer to the constraining layer, and the total shear
flow t1(724)1 + t2(72s)2 + ta(7zs)3 must be constant.

To get a clearer picture of the state of stress in the tube, consider the
situation near the end of a constraining layer. The shear stress (Tzs)3 in the
tangential direction in the constraining layer must vanish at the end of the
layer, but may be nonzerc a short distance from its end. The shear flow
must then appear as sketched in Fig. 4.4, where a component of the stress is
transmitted in the normal direction across the viscoelastic layer.

It follows immediately from the Saint-Venant assumptions that the only
nonzero stresses are the shear stresses 7., in the tangential direction and 7.,
in the normal direction. So the differential equation of equilibrium in the ith
layer is given by

0 (Tzn); + 0 (Tzs); _

2
= =0 (4.13)
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Rather than attack this equation cirectly, we introduce the following modeling
assumptions:

1.

The viscoelastic layer is far more compliant than either of the elastic
elastic layers, but is subject to the similar shear strains in the tangential
direction. We can therefore neglect the shear stress (7.,), in the tangen-
tial direction in the viscoelastic layer in comparison to (7.,), and (74,)s
in the elastic layers.

The shear stress (7;5,)2 in the normal direction in the viscoelastic layer
is of the same order as (7;,); and (7;,)3 in the elastic layers, but the
viscoelastic layer is far more compliant. Hence the shear strains (v.,),
and (7:n)3 in the elastic layers can be be neglected in comparison to
(7Yzn)2 in the viscoelastic layer.

The shear stresses in the normal direction must vanish at the inner and
outer walls of the tube, so it follows from Eq. (4.13) that, in the first
elastic layer, (7zn)1 ~ (7z5)121/Ro where Ry is a characteristic length in
the tangential direction and ¢, is the thickness of the inner elastic layer.
Thus, for a thin-walled tube, we have (7;,); < (745)1. Likewise, in the
constraining layer vre have (7;5)3 < (7z4)3.

In the viscoelastic layer, the shear stress (7.,); in the normal direction
is of the same order as (7;,); and (7;,)3 in the elastic layers and hence
(from item 3 above) is much smaller than (7.,), or (74,)s.

The variation of (7y;,)2 through the thickness of the viscoelastic layer
and the variation of (7,,), and (7,)s through the thickness of the elastic
layers can be neglected.

In summary: The shear stress in the direction tangent to the tube wall can be
neglected in the viscoelastic layer but not in the elastic layers. Conversely, the
shear strain in the direction normal to the tube wall can be neglected in the
elastic layers but not in the viscoelastic layer. The shear stress in the tangential
direction in the elastic layers and the shear strain in the normal direction in
the viscoelastic layer can be treated as constants across the thickness of each
layer. Moreover, the shear stresses are much larger in the tangential than in
the normal direction.
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4.3.2 Formulation

Consider a tube subject to an angle of twist per unit length of magnitude
6. Because the shear strains in the normal direction are negligible in the
elastic layers, the warping displacements, u; in the tube wall and w3 in the
constraining layer, are functions of only the tangential coordinate s. Therefore,
making use of the Saint-Venant assumptions, the displacement of a point on
the tube wall can be written as

(AR); = ui(s)&, + 0z¢, x R(s) (4.14)

where z is the lengthwise coordinate and &, is the unit vector pointing along
the axis of the tube.

As was argued in the foregoing, a twisting moment is resisted primarily
by shear stresses in the tangential direction in the elastic layers. Making use
of the deformation given in Eq. (4.14), we can write the corresponding shear
strain in the tube wall as

du,

d o] ~1 _ du, )
(Vas), = 25 dr [(AR)I 'ea] = T R - €, (4.15)
and, likewise, in the constraining layer
_ dU3 d — -1 _ du3 ~
(Vzs)3 = s + Iz [(AR)a 6,] =t 0R - é, (4.16)

In the viscoelastic layer, we are concerned with the shear strain in the normal
direction; assuming it is constant through the thickness of the viscoelastic
layer, we write it in terms of the warping displacements as

Uz — U
to

(’an)z = (4-17)

where t; is the thickness of the viscoelastic layer.

In formulating the conditions for equilibrium, we examine first those por-
tions of the tube wall not covered by a constrained viscoelastic layer. Consider
a slice ds of this homogeneous wall. We have already argued that the only
significant stress acting upon it is the shear stress in the direction tangent to
the wall, and that this stress can be taken to be uniform through the thickness
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of the wall. Denoting this stress (7x,);, and summing forces in the z direction,
we write the equation of equilibrium

d . .
It ()] =0 (4.18)

from which we see that the shear flow t;(7,;,); is constant on homogeneous
segments of the tube wall.

On portions of the tube wall covered by a constrained viscoelastic layer,
we must also consider the resultant of the normal stress transmitted through
the viscoelastic layer. Hence, the force balance of the tube wall is of the form

d
d—s [tl (T;,)l] + (Tzn)z =0 (419)

Similarly, for the constraining layer we have

d
% [t3 (‘Tx,):,] - (Tzn)z =0 (420)

If we combine Eqgs. (4.19) and (4.20), we see that the total shear flow t,(7,); +
t3(7zs)3 is constant on laminated segments of the tube wall. (Recall that
t2(7z,)2 is negligible.)

Now introducing the shear moduli G,, G4, and G3 for the tube wall, vis-
coelastic, and elastic layers respectively, we can use the shear strains given
in Eqgs. (4.15)-(4.17) to write the equations of equilibrium (4.18)-(4.20) in
terms of the warping displacements. On homogeneous segments of the wall,

we obtain p i
U) S _
a [Gltl (z‘ +0R- e,,)] =0 (421)

where we have introduced the notation 4, for the warping displacement on
a homogeneous segment of the wall. On laminated segments of the wall, we
obtain

d [ dul = ] G2 _

ds .Gltl (E +60R- en)J + t2 (U3 U]) =0 (422)
for the tube wall and

d [ dU3 = ] G2 _

ds -G3t3 (ES— +6R- en)J — E ('U,3 — ul) =0 (423)
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for the constraining layer.

The warping displacements are governed by Equation (4.21) on homoge-
neous regions of the tube wall and by Egs. (4.22) and (4.23) on laminated
regions of the tube wall. Our task is to solve these equations subject to the
following conditions:

1. The shear stress {(7;,); must vanish at the ends of a constraining layer.
In terms of the warping displacement, this condition takes the form

dU3 =
— 4+ 0R. En = .
- tOR- & =0 (4.24)

2. At junctions between laminated and homogeneous segments of the wall,
the stresses in the tangential direction as well as the warping displace-
ments must match; that is, u; = 4, and (r.,); = (:,): at the ends of a
constraining layer.

3. The resultant of the shear stress on a cross section must equal the applied
moment. The total moment is obtained by integrating the shear flow over
the periphery of the section, and since the total shear flow is constant,
we can evaluate it on a homogeneous segment of the wall where it is
given by ¢,(7.,)1. Integrating around the perimeter of the section, we

obtain
M, = f (t1 (Fes) ) R - Ends = 24 [t, (71),] (4.25)
which combines with Eq. (4.15) to yield
dii 5 .
M, =2A [Gltl (E +6R- en)} (4.26)

where A is the area enclosed by the tube wall. The quantity in brackets
can be evaluated anywhere on the homogeneous segments of the wall.

In the following sections, we use this formulation to derive expressions for the
complex stiffness for some specific cross sections. We begin by considering a
round tube with a single laminated viscoelastic segment, and then generalize
the results to round tubes with multiple symmetric laminated regions. Finally,
we obtain solutions for rectangular tubes with all four faces laminated.
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G,

Figure 4.5  Cross section of a circular tube with a single constrained viscoelastic layer:
The tube wall has shear modulus G, thickness t;, and perimeter 2b. The constrained
viscoelastic layer extends over a length 2a of the tube wall and consists of a viscoelastic
layer with complex modulus G2 and thickness t; backed by an elastic layer with modulus
G3 and thickness t3.

4.3.3 Circular Tube with a Constrained Viscoelastic Layer

Consider the tube shown in Fig. 4.5, which consists of a circular tube of radius
r and constant wall thickness ¢, to which is laminated a viscoelastic layer of
thickness t; backed by a constraining layer of thickness t3. We set the origin of
the tangential coordinate system at the center of the constraining layer so that
the ends of the constraining layer are at s = +a. We also find it convenient to
develop solutions in terms of the parameter b, which at present we set equal
to 77 so that s = +b is the location on the tube wall directly opposite the
midpoint of the constrained viscoelastic layer.

Before proceeding to solve for the warping displacements, it is useful to see
how this tube fits into the framework discussed in Chapter 2. If the viscoelastic
layer is infinitely compliant, the constraining layers contribute nothing to the
torsional stiffness of the tube, and the torsional stiffness, from Eq. (4.8), is
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simply

_ 4A%Gyt,
2
where A is the area enclosed by the tube wall. At the other extreme, if the
viscoelastic layer is rigid, Eq. (4.8) yields

442G (G, t) + Gst3)

ko (4.27)

ko = 4.2
2b(Glt1 + G3t3) - 20631!3 ( 8)
From these results, we can form the stiffness ratio
K — koo - ko _ G.G3t3 (429)

ko - b(Gltl + G3t3) - (J.th:;

which we expect to play an important role in determining the damping in the
tube. We may also form a coupling parameter which measures the stiffness of
the viscoelastic layer, but the form of such a parameter is difficult to descry
without knowledge of the deformation.

Warping Displacements

For a circular tube with constant wall thickness, Eqs. (4.22) and (4.23) gov-
erning the warping displacements u; and u3 on laminated regions of the tube

reduce to P C
U 2 _
Gltld—82+g(u3—u1) =0 (430)
d2U3 Gg
GstaF - _tz— (‘U3 - ul) =0 (431)

The general solution of this system of homogeneous equations can be written
in the form

up | _ 1 . GiS ge$ 1
[Us ] = (1 + ¢29) [ 1 J + (cssmh . + ¢4 cosh . ) [ J (4.32)

K
where k = —Gt,/Gjt3, the ¢; are constants to be determined from the match-
ing conditions, and the eigenvalue g,/a is given by

G, (Gt t 1
o ) () o
a ty G[th3t3 b ty Gﬂ:y b
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where

G3t3 a
Y = (—) 4.34
Gty + Gst; \b ( )
Examining the form of g,/a given above, we see that it is a measure of the
stiffness of the viscoelastic layer relative to that of the elastic layers. The
parameter Y is related to the stiffness ratio K defined in Eq. (4.29) by
K ko
Y=—>=1-— 4.35
1-K koo (4.35)
As we shall see, the dimensionless parameters g, and Y fully determine the
complex stiffness of the composite tube.
On regions of the tube without lamination, the warping displacement 7, is
governed by Eq. (4.21), which for a circular tube with constant wall thickness
reduces to

Gltl— =0 (436)
whose general solution we write in the form
ft] = ¢58 + C¢ (437)

where cs and cs are constants. Whereas an axially symmetric tube does not
warp, we see from the warping displacements given by Eqs. (4.37) and (4.32)
that the addition of the constrained viscoelastic layer causes the tube wall to
warp to take on a constant slope on regions without lamination and to take
on some curvature on regions with lamination.

The relative magnitudes of the warping displacements are determined upon
enforcement of the matching conditions. We can argue that the warping dis-
placements go to zero on the axis of symmetry; thus, at s = 0 we have

1(0) = u3(0) = 0 (4.38)

and at s = b = 7r we have
(b)) =0 (4.39)

At s = a, the shear stress in the constraining layer must vanish. This condition,
set forth Eq. (4.24), reduces to

duj(a)

0 = 4.4
I +r 0 (4.40)
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for a circular tube. In the tube wall, the displacements must match:
uy(a) = 1,(a) (4.41)
The shear stresses must also match. Using Eq. (4.15), we write

duy(a) _ di(a)
ds = ds

(4.42)

The six matching conditions given in Eqs. (4.38)-(4.42) determine the con-
stants ¢, through cg in terms of the angle of twist per unit length 6.

Substituting the warping displacements (4.37) and (4.32) into the match-
ing conditions (4.38)-(4.42), and solving for the the ¢;, we write the warping
displacements in the form

_ broY A (s )

=y e !

(4.43)

and
u | _ br8Y ([sinhgs/a [ 1 é (f) 1
[us]_l—?’){gmoshg, e A a/\b/ |1 (4.44)
where g, is defined in Eq. (4.33), Y is defined in Eq. (4.29), and

tanh g,
e

A=1

(4.45)

We can now plot the warping displacements as shown in Fig. 4.6, where we
illustrate the effect of increasing g, for fixed Y and a/b. For small g,, the tube
wall and the constraining layer are nearly decoupled: the tube wall warps
only slightly and the constraining layer suffers little shear deformation as it
undergoes a large rigid-body rotation. As g, is increased, the coupling becomes
stronger, and we see that for large g, the tube wall is strongly warped. We
expect that the damping will be highest at intermediate values of ¢, whcre
the coupling is strong enough to induce significant stress into the constraining
layer, but weak enough to allow significant strain.
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Figure 4.6  Static normalized warping displacements u, /br@ and u3/brf in a circular
tube with a single constrained viscoelastic layer; a/b = 0.5, Y = 0.2, x = 1.5, and
various g;
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Complex Stiffness

Substituting the expression for @, given by Eq. (4.43) into the integral condi-
tion for the total moment on the tube set forth in Eq. (4.26), we obtain

: M, P 1

kil +gm) = (4.-120,t,) TI-ay (4.46)
where &, is the normalized static stiffness of the tube and 7, is its loss factor.
The parameter Y, as we have seen, depends only on the material properties
and dimensions of the tube wall and constraining layer, whereas ) is a function
of g, which is a measure of the stiffness of the viscoelastic layer. Modeling the
viscoelastic material as frequency-independent hysteretic, we write its complex
shear modulus as G, = G,(1 + j7,) and rewrite Eq. (4.33) as

o RPry )

The dependence of A on g, is given in Eq. (4.45), from which we see that
A approaches zero for small |g,| and unity for large |g,|. At intermediate
magnitudes of complex g, A takes on complex values, yielding non-zero 7,.

In Fig. 4.7, we have fixed 7, = 1 and plotted the stiffness and loss factor
as a function of the real part of g;. As expected, the damping is maximized at
intermediate magnitudes of g,. The data shown are for ¥ = 0.2 which implies
a stiffness factor K of 0.25. Since Y and A appear as products in Eq. (4.46) for
the torsional stiffness, the damping potential can be improved by increasing
Y.

4.3.4 Circular Tube with Multiple Constrained Viscoelastic Layers

In this section, we consider torsion of a thin-walled tube with muitiple con-
strained viscoelastic layers arrayed symmetrically on the tube wall. As shown
in Fig. 4.8, each of the NV identical constrained viscoelastic layers extends over
a length 2a of the tube wall of total perimeter 2Nb.

The equations of equilibrium take on exactly the same form as they did
for a tube with a single constraining layer of length 2a on a tube of perimeter
2b, so Eqs. (4.30), (4.31), and (4.36) governing the warping displacements are
still valid for this case. The boundary conditions matching displacements and
stresses at the ends of the constraining layers are unchanged, and we can again
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Figure 4.7  Static stiffness and loss factor plotted against the real part of g, for a
circular tube with a single constrained viscoelastic layer with 7, = 1 and Y = 0.25,
0.50, and 0.67.
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Figure 48  Cross section of a circular tube with three constrained viscoelastic layers
arranged symmetrically on its perimeter: The tube wall has modulus G}, thickness ¢;,
and perimeter 6b. Each of the constrained viscoelastic iayers extends over a length 2a of
the tube wall, and consists of a viscoelastic layer of complex modulus G and thickness
t2 and elastic layer of modulus G3 and thickness t3.
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Figure 4.9  Static normalized warping displacements u; /br8 and u3/brf in a circular
tube with three constrained viscoelastic layers arranged symmetrically on the tube wall;
a/b=05Y =02 =15, and g, = 3.

argue from symmetry that the warping displacements must vanish at s = 0
and integer multiples of b. So we can also reuse the boundary conditions given
in Eqgs. (4.38)-(4.42). Thus the solutions for the warping displacements on
—b < s < b are independent of the number of constrained viscoelastic layers
arrayed around the section, and the warping displacements on —Nb < s < Nb
can be constructed simply by stringing the displacements on —b < s < b
together as shown in Fig. 4.9.

The torsional stiffness of a composite tube with multiple constrained vis-
coelastic layers can be derived by the same method used for a tube with a single
constrained viscoelastic layer, and we find that the result given in Eq. (4.46) is
unchanged. Thus, for identical values of Y and ), the same complex torsional
stiffness is obtained for any number of symmetrically arrayed constrained vis-
coelastic layers.

This leads to some simple laws for scaling design parameters. Suppose for
example that we have found a design using a single constrained viscoelastic
layer which yields a favorable complex stiffness but requires the use of an
unreasonably thick viscoelastic layer. If we split the constraining layer into
four segments and hold a/b, t,, t3, and the material properties constant, Y
does not change. Then from Eq. (4.33), we see that to obtain the same value
of g (and therefore the same value of A\) we must scale the thickness t, of the
viscoelastic layer with a®. Thus, in our example, by cutting the constraining
layer into four segments, we can reduce the thickness of the viscoelastic layer
by a factor of sixteen without changing the complex stiffness.
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Figure 4.10  Cross-section of a rectangular tube: The tube is symmetric about both
the y and z axes.

4.3.5 Rectangular Tubes

Consider the rectangular tube with constrained viscoelastic layers shown in
Fig. 4.10. The faces of the tube that extend in the y direction have thickness
t1, shear modulus G,, and length 2h. These faces are covered completely by
visceolastic layers of thickness ¢, and shear modulus G, which in turn are
covered by elastic layers of thickness t; and modulus G5. The faces of the
tube that extend in the z direction have a similar layup, but possibly different
dimensions and material properties. These are denoted in the like manner,
but with the addition of a hat (e.g., i, G,).

Warping Displacements

Examining Eqgs. (4.22) and (4.23), we note that the quantity R - €, is simply
the normal distance from the origin to the face of the tube, and hence i‘s
derivative vanishes along any face of the tube. In the corners of the tube,
the normal distance changes rapidly with s, but even large strains on such a
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localized region cannot lead to large warping deflections, and we can safely
ignore the corner effects when solving for the overall warping deflections in the
tube.

On the segement of the tube from y = —h to h, Egs. (4.22) and (4.23)
governing the warping displacements u,(y) and u3(y) become

d2U1 G2

Gltld‘—yQ + t—2‘ (’U3 - Ul) =0 (448)
and P c
us 2

Gstgd—y,z‘- - —t; ('LL3 - ul) =0 (449)

whose general solution we denote

[ “ } = (¢ + c2y) [ i ] + (c;; sinh g—;lg + ¢4 cosh gtTy) [ ! ] (4.50)

us K
where k = —G,t,/Gst3 and, in agreement with the results for a round tube
with a = b given in Eqs. (4.33) and (4.34),
G, h?
=.,.|== 4.51
0 \, ’ (Gmy) (451)
and
G3t3
= — 4.52
Gt + Gatz ( )
On the segment from z = —A to A, the warping displacements 4,(z) and

ii3(z) are governed by

. - d¥, G

G tlgu; + =2 (i — ) = 0 (4.53)

. - a3 G .

Gs 3?; - ?3 (i3 — @) =0 (4.54)
2

whose solution we write
[ Z; J = (5 + c62) [ i ] + (c7 sinh g;z_z + cg cosh g—’fli) l 1 ] (4.55)
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where i = —Gt,/Gst3, and §, and ¥ are defined as in Eqgs. (4.51) and (4.52)
but with the addition of hats on all quantities. The constants ¢, through cg
are determined by the imposition of eight matching conditions.

The cross section of the tube has two axes of symmetry, so the warping
displacements must vanish at the midpoints of the walls:

u1(0) = u3(0) =0 (4.56)

i,(0) = 3(0) = 0 (4.57)

Because of the symmetry, we can restrict our attention to the upper left quad-
rant of the cross section in Fig. 4.10, and we need to establish matching con-
ditions at only one corner. The displacement and shear flow in the tube walls
must match at a corner. Hence, at y = h and z = h, we write

ui(h) = @ (h) (4.58)

and

Git: (d"‘(h) + ah) = G, (— din(h) | 9h) (4.50)
dy dz

where we have made use of the expression for shear strain given in Eq. (4.15).
At the ends of the constraining layers, the shear stresses must go to zero; in
terms of the displacements, this condition takes the form

d’lL3(h) i
d—y +6h=0 (4.60)
diz(h) _
Iz +6h=0 (4.61)

Now using the eight matching conditions (4.56)-(4.61) to solve for the ¢;,
we can write the warping displacements u;(y) and u;3(y) in the form

uy | _ 2hh6oY (sinhgy/h [ 1 AN[1]/y
[“;]_ A {gtcoshg, [n]_(ﬂ"'m)[l](ﬁ)} (4.62)

where

A=a(1=)XY)+6(1-AY) (4.63)
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and, as in the case of circular tubes,

tanh . tanh g
-2 and A= - 200

A=1 —
(] gt

(4.64)

The quantities o and & represent the shear compliances per unit length of the
tube wall

o= Ak and &= i (4.65)
Gt Gt

which are defined so that the torsional stiffness of the tube without constrain-
ing layers is A?/(o + &). The warping displacements i, (z) and ii3(z) take the
same form as given in Eq. (4.62), but with y replaced by —z and the hatted
and unhatted quantities interchanged.

Torsional Stiffness

The resultant moment is given by integrating the shear flow around the pe-
riphery. The total shear flow is constant and most easily evaluated near a
corner, where the stress in the constraining layer is zero and the shear flow is
concentrated in the tube wall. Therefore, we rewrite Eq. (4.26) for this case
as

dul (h)

M, = 2AG, [W + 0’.2] (466)

which, upon substitution for u; from Eq. (4.62) above yields

ke (1+ jm) = =t = =~
(14 gm) t9(A2 o(1 - AY) +6(1 — AY)

where 7, is the loss factor of the compound tube and k, is the ratio of its static
stiffness to that of the tube in the absence of constrained viscoelastic layers.
Comparing the form of the complex stiffness given in Eq. (4.67) above to
that in Eq. (4.46) for a circular tube, we see that damping treatments on round
and rectangular tubes have essentially the same character, the only difference
being a lower degree of symmetry in rectangular tubes. Suppose the tube is a
square with constant wall thickness, so that o = &. If we restrict our attention
to damping treatments where the constrained viscoelastic layers mounted to
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each of the four faces of the tube are identical, we also have Y = ¥ and A = )
and the normalized torsional stiffness given in Eq. (4.67) becomes

1
1+YA

ke(1+jne) = (4.68)
in full agreement with Eq. (4.46) for a fully covered circular tube. If instead
we wish to mount dampers to only two faces of the tube, then we can set A to

zero and obtain )

1+Y)\/2
which is in agreement with Eq. (4.46) for a circular tube with viscoelastic
layers on half of its circumference.

ke(1+gm) = (4.69)

4.4 Design Notes

We have considered two methods of damping torsional motion in thin-walled
tubes. In the first approach, a viscoelastic seam is introduced into an elastic
tube wall to form a series damper. Such a configuration can yield a great
deal of damping but somewhat lower stiffness than a closed elastic tube (see
Fig. 4.2). The complex stiffness of such a tube, when normalized against that
f a closed elastic tube of the same geometry, depends only upon a coupling
parameter which takes the generic form

, = Gi/C
Ly/L,

(4.70)

where G, and L, are, respectively, the shear modulus and total length of
the elastic segments of the tube wall; and G5 and L, are, respectively, tie
complex shear modulus and total length of the viscoelastic segments of the
tube wall. The propensity of such a tube to creep makes it unsuitable for
many applications: Under a static torsional load M, it will eventually take up
the same angle of twist per unit length as would an open tube, which is given
by

M

- IBLG

and is usually a few orders of magnitude larger than would be obtained for a
closed tube.

0 (4.71)
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In the second approach, we laminate constrained viscoelastic layers to the
surface of a closed elastic tube to form a series of parallel dampers. We have
seen that the complex stiffness of such a tube in torsion depends on two quan-
tities for each constrained viscoelastic layer: one parameter of the generic form

(4.72)

which is a measure of the increase in stiffness that could be obtained by rigidly
bonding the constraining layer to the tube wall, and a second parameter g o
(Ga2/t2)"/? which is a measure how strongly the viscoelastic layer couples the
constraining layer to the tube wall. Asin the case cf most parallel dampers, the
highest damping is obtained by maximizing Y and holding g at an intermediate
magnitude.

So how does one achieve maximum damping with constrained viscoelastic
layers? First, maximize Y by placing constraining layers where the tube wall
is most compliant as measured by o = ¢/Gt, where ¢ is the length of the
segment of the tube wall, G is its shear modulus, and ¢ is its thickness. If the
tube wall is uniform, then complete coverage maximizes Y. For a given Y, the
best value for g for a circular or square tube can be determined from Fig. 4.7.
(For other geometries, use the theory given in Section 4.3.2.) An element of
freedom in specifying the viscoelastic layer can be introduced by segmenting
the constraining layer.

4.5 Conclusions and Future Work

In this chapter, we have developed models for the torsional vibration of closed,
thin-walled, elastic-viscoelastic tubes, and provided a framework for determi-
nation of the complex stiffness per unit length of such tubes. Elastic and
viscoelastic materials may be combined in many ways to form a thin-walled
tube; the two most basic are by alternating either along the perimeter of the
wall or through its thickness. We have found that the stress distribution in
either case can be modeled with some fidelity in closed form.

In our analysis, we have ignored the inertia effects and concentrated on
the determination of the complex stiffness under uniform torsion. If one is
faced with a problem with distributed loading or significant rotary inertia,
the complex stiffness derived here can be used in formulation of a distributed-
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parameter model, provided that the characteristic length in the longitudinal
direction is much larger than the cross section.

We have restricted our attention to cross sections where the wall forms
a single closed loop in the zy plane. But the modeling assumptions—and
indeed, the equations governing the warping deflections—can be applied with-
out modification to multi-cell tubes, though satisfying the matching conditions
becomes somewhat more tedious algebraically.

In keeping with the classical Saint-Venant model of torsion, we have ignored
all end effects, but because the structures we are concerned with in machine
design are not always slender, it would be useful to develop some estimates of
their importance. As we have seen, the warping deflections play a key role in
damping the torsional vibration of elastic-viscoelastic beams, so restraining the
ends of such beams from warping can have a major impact on their damping
properties. It is also possible for an uneven stress distribution at the point
of loading of an elastic-viscoelastic beam to cause its cross section to deform
within its own plane. To date, this effect has been studied only in beams with
axially symmetric sections (Chandrasekharan and Ghosh, 1974).
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CHAPTER 5
Damping Azial Motion in Leadscrew Drives

5.1 Leadscrew End Damper

A linear-motion system incorporating a leadscrew drive is shown schematically
in Fig. 5.1. The leadscrew (1) is mounted to the machine base by means of
rotary bearings (2) and (3) and driven by a motor (4) via a flexible coupling
(5). The nut (6) is mounted to the carriage (7) which is constrained to move
axially on linear bearings (not shown).

In modern machine applications, such a system is usually operated under
closed-loop control where the position of the carriage, the rotation of the mo-
tor, or both are measured and used as feedback. If the feedback signal involves
only rotation of the motor, axial disturbances are rejected in proportion to the
mechanical impedance of the leadscrew mechanism. If the feedback signal in-
cludes the position of the carriage, the achievable bandwidth of the mechanism
is limited by its impedance. In either case, high mechanical impedance is a
prerequisite for rapid, accurate motion of the system.

5.1.1 Prior Art

In designing a mechanism for high mechanical impedance, one usually seeks to
raise its rigidity and damping while minimizing its inertia. For most configu-
rations, the nut, support bearings, and coupling can be sized for high rigidity
without significantly increasing inertia. But the leadscrew has longitudinal
stiffness proportional to the square of its radius and rotary inertia propor-
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Figure 5.1  Schematic of a typical leadscrew drive system.

tional to the fourth power of its radius. Thus the tradeoff between stiffness
and inertia drives the design toward relatively compliant screws.

During operation of the mechanism, friction between the screw and nut
generates significant heat, leading to a temperature rise and thermal expansion
in the screw. To accommodate this expansion, the screw is usually allowed
to slide freely in the axial direction at the support bearing (3) furthest from
the motor. Thus, the entire thrust load is transmitted to the base through
the serial combination of the thrust bearing (2) and that portion of the screw
between the nut (6) and thrust bearing (2).

The rigidity of the loaded portion of the screw is inversely proportional
to its length, so that the overall rigidity of the mechanism decreases as the
carriage moves away from the thrust bearing (2). For the representative system
described in Table 5.1, we plot in Fig. 5.2 the response of carriage position to
motor torque as a function of frequency for various carriage positions. As the
carriage moves away from the thrust bearing, the resonant frequency drops
and its peak amplitude rises.

The maximum bandwidth achievable with feedback proportional to car-
riage position can be determined graphically from Fig. 5.2 by drawing a line
horizontally through the resonant peak, finding its intersection with the por-
tion of the curve to its left, and reading off the frequency. A somewhat higher
bandwidth can be obtained with proportional-derivative or more sophisticated
feedback, but the resonant behavior of the leadscrew mechanism remains a lim-
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Table 5.1  Description of the system used in numerical examples.

leadscrew length 1m
leadscrew average diameter | 25 mm
leadscrew pitch 8 mim
leadscrew material steel
thrust-bearing stiffness 500 N/pm
nut stiffness 600 N/pm
coupling torsional stiffness | 150 kN-m
carriage damping factor 0.015
carriage mass 1000 kg
motor inertia 0.23 g-m*
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Figure 5.2  Frequency response of the example system witk: the leadscrew end unre-
strained and the carriage positioned at (a)5 %, (b)50 %, and (c) 95% of its travel.
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Figure 5.3  Frequency response of the example system with the leadscrew stretched
rigidly against thrust bearings; the carriage is positioned at at (a) 5%, (b) 50%, and (c)
95% of its travel.

iting factor. It is therefore desirable to increase the resonant frequency and
decrease the peak amplitude as much as possible.

An approach sometimes employed to increase rigidity is to use thrust bear-
ings at both (2) and (3) and pre-stretch the screw in order to accommodate
thermal expansion. Using this approach, the overall rigidity of the system can
be increased, and the response of the system with the carriage near thrust
bearing (3) is almost identical to that with the carriage near thrust bearing
(2) as shown in Fig. 5.3. The disadvantage of this approach is that it requires
that a prohibitively high preload be applied in stretching the screw. For our
example system, a preload of approximately 25000 N is required to accom-
modate a temperature rise of 20°C. Such a high prelcad increases the starting
torque and heat generation in the rotary support bearings and can appreciably
warp the bed of the machine.

To obtain a lower preload, a relatively compliant medium such as a stack
of Belville washers can be inserted into the preload path at (3). The preload
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Figure 5.4  Frequency response of the example system with the leadscrew stretched
against a damping element and thrust bearings; the carriage is positioned at (a) 5%,
(b) 50%. and (c) 95% of its travel.

required to accommodate a given temperature rise drops directly with the
stiffness of the preload medium, but so does the rigidity of the mechanism.

5.1.2 Damped Supports

In the present work, it is proposed that a damping element be placed in the
preload path at (3). For a relatively compliant but lossy preload medium,
significant attenuation of the resonant peak amplitude can be obtained as
shown in Fig. 5.4. In this case a damping washer with 10 N/um stiffness and
a loss factor of 1.0 is employed, and the preload necessary to accommodate a
20°C temperature rise is approximately 2500 N.

By use of a compliant prelead medium, we only marginally increase the
rigidity of the mechanism, and therefore obtain resonant frequencies only
slightly higher than those obtained with the leadscrew end unrestrained. But
we have greatly increased the damping, especially when the carriage is posi-
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Figure 5.5  Measured receptances of the test slide with the shaft end free, preloaded
rigidly against a pillow block, and preloaded via a viscoelastic washer against a pillow
block.

tioned near the damped support bearing. The result is that the bandwidth
achievable with proportional feedback is nearly independent of carriage posi-
tion.

5.1.3 Test-Bed Results

A carriage weighing roughly 190 kg and mounted on Thomson Accuglide size
35 linear guides was clamped to a shaft with a free length of 20 inches and a
diameter of 0.625 inches. One end of the shaft was rigidly loaded against a
pillow block and the carriage was positioned near the opposite end of the shaft.
An accelerometer was mounted to the carriage to measure axial vibration, and
the carriage was struck with an instrumented hammer.

Measured receptances are shown in Fig. 5.5 for the cases where the second
end of the shaft is free, preloaded rigidly against a pillow bluck, and preloaded
via a viscoelastic washer against a pillow block. The resonant frequency and
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frequency (Hz) | loss factor
free 85.3 0.034
rigid preload 109.5 0.036
visco preload 90.5 0.078

Table 5.2  Resonant frequencies and damping ratios of the test slide.
loss factor for each case is shown in Table 5.2.

5.1.4 Design Notes

A leadscrew with a damped support is yet another example of the parallel-
stack system of F'ig. 2.1(c) where, with reference to Fig. 5.1, we identify the
spring k, with the stiffness between the carriage and the motor through the
thrust bearing (2) and the spring k; with that between the carriage and the
motor through thrust bearing (3).

Examining Table 5.1, we see that although there are a number of contrib-
utors to the compliance of a leadscrew drive, by far most compliant element
is the screw itself. Moreover, if the lead is small compared to the diameter,
torsional wind up of the screw can be neglected in comparison with its axial
deformation. Then, for a carriage positioned at location z along a leadscrew
of length L, we have the stiffness ratio

L
Y= — (5.1)
If the leadscrew has modulus F and average cross-sectional area A, the cou-
pling parameter takes the form

_ky(L -1x)

9= "Ea
where the viscoelastic preload medium has complex stiffness k,(1+j7,). Using
these parameters, all of the results derived in Section 2.2 can be used for design

of a leadscrew system to have maximum damping at a given carriage location
z.

(5.2)

But we are usually concerned with the performace of the drive over its entire
range of travel, and we have seen that the damping is most important when the
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carriage is at the end most distant from the drive motor. In that configuration
(if we continue to treat the lcadscrew as the only compliance in the system),
we have the parallel system of Fig. 2.1(a) and both the damping and stiffness
increase monotonically with the stiffness of the viscoelastic preload medium.

Defining the stiffness ratio

k,L
Y = 22— 5.
A (5.3)

and using the expression for the complex stiffness of a parallel system given in
Eq. (2.10), we write the system loss factor as

)/

n= 1—_}_—},711» (5.4)

But the preload force P necessary to accomodate a given temperature rise AT
also increases monotonically with the stiffness of the preload medium according

to
P Y g
EAacAT 14Y 1,
where « is the coefficient of thermal expansion of the leadscrew. We in general

choose the preload medium to have as high a stiffness as possible without
requiring an unacceptably large preload force.

(5.5)
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CHAPTER 6
Sensitivity Analysis in Structural Modeling
and Optimization

6.1 Background

Sensitivity analysis is an invaluable tool in any design activity because it allows
the designer to determine the most profitable areas for improvement of perfor-
mance. In an automated setting, it forms the basis for almost all parametric
optimization methods. We can also use sensitivity analysis to gauge the effects
of uncertainties such as manufacturing tolerances on the final performance of
a product.

In this chapter, we begin with a detailed review of the various methods
for computing the sensitivities of structural response to changes in design.
Then we present a detailed discussion of the application of these methods
in conjunction with the finite-element method and present some numerical
examples. Finally, we give examples of how sensitivity analysis can be used to
reconcile analytical models with experimental data and tc redesign structures
for improved performance.

6.2 Theory of Design Sensitivity Analysis

In this section, we provide a detailed review of the theory of design sensitivity
analysis. We begin with the general finite-difference calculation, then move on
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to analytical methods for the determination of static-response and eigenvalue
sensitivities. The development here closely follows that of Haug et al. (1986).

6.2.1 Overall Finite Differences

A straightforward way to estimate the derivative with respect to a parameter
p of any function %(p) is to use finite differences. In its simplest incarnation,
the finite-difference approximation to the derivative of a function 1 (p) is

dy(p) _ ¥(p+ dp) — ¥ (p)
dp dp (6.1)

The main advantage of this method is simplicity. The only requirement is that
we be able to determine 1(p) in the neighborhood of the values of p that we are
interested in. There are, however, no guarantees of the accuracy of the results
and the cost of such computations for a large number of design variables is
prohibitive.

6.2.2 Static Response Sensitivity

In this section, we discuss several methods for computation of the derivatives
of the static response of a structure with respect to design parameters. All but
one of the methods is completely analytical (i.e., exact) and, in the context of
finite-element analysis for linear systems, they are all more computationally
efficient than overall finite differences.

Direct Differentiation

Consider the problem of deterrmining the static response z of a discrete system
which depends on a vector p of parameters

K (p)z = F(p) (6.2)

where K(p) is the stiffness matrix and F(p) is the load vector. If K(p) is
positive definite and the elements of K(p) and F(p) are differentiable with
respect to p, then the implicit-function theorem guarantees that the response
z is also differentiable with respect to p.

In most practical problems, we are concerned with an objective function

¥ = ¥(p, z(p)) (6.3)
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that depends on the design parameters both directly and via the response.
The total derivative of this equation is given by

d 0 oyd
d _ oY Oydz (6.4)
dp Op Ozdp

The first term on the right-hand side, dv¥//0p, is usually easy to compute
explicitly. To develop an expression for the remaining term, we introduce the
derivative of the governing equation (6.2)

dz 0K oF
E; + 6—p-z = 0_1) (6.5)

Recalling that K is positive definite and hence invertible, we can write

dz __ [oF 0K
by 08K, 60

and substitute into Eq. (6.4)

@y _ ., [6F BK]

dp  Op Oz o op”

5~ (6.7)

This equation is usually impractical to implement because it requires inversion
of K, which is often a matrix of very large order. Therefore, a more common
approach is to solve Eq. (6.5) for dz/dp and substitute the result into Eq. (6.4).

This procedure for computation of the derivatives involves solving the orig-
inal problem for each load of interest, then solving Eq. (6.5) for each load and
design variable of interest, and assembling the results into Eq. (6.4) for each
element of the objective function 1.

Adjoint Method

It is often useful to introduce an adjoint equation given by

_oyT
Y

This equation is of the same form as the governing equation (6.2), and can
be interpreted as solving the original problem with an adjoint load 947 /9z.

K(p)A (6.8)
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Because we have already solved the original problem, a factored form of K (p)
is available, and it costs us little to solve for A\. We can now use the adjoint
equation to write Eq. (6.7) as

dy Oy r|OF OK

= N\ 2 6.9

dp Op 1 [Bp Op z (6.9)
and use this equation to compute the sensitivity of the objective 1 to changes

in design.

The procedure for computation of the derivatives via the adjoint method
is to solve the original problem for each loading condition of interest, solve the
adjoint problem for each element of the objective 1, and then asseinble the
results into the above equation for each design variable of interest. Therefcre,
unless the dimension of objective 1 is larger than the product of the number
of design variables and the number of loading conditions, the adjoint method
is more efficient than the direct method.

Semi-Analytical Methods

The main difficulty in applying either the adjoint or direct methods is the need
to compute 0K /3p and 8F/dp. Usually, F and K are obtained from a finite-
element model and analytical expressions in terms of the design variables are
unavailable. If the finite-element code is accessible and the element matrices
are implicitly generated, the derivatives of the individual elements can be as-
sembled in the same manner as the element matrices were assembled, yielding
exact expressions for the derivatives. This approach is usually difficult to im-
plement in conjunction with a commercial finite-element program, and is very
difficult to implement if the element matrices are determined by numerical
integration rather than implicit methods.

A simple alternative is to use finite-differences to determine the elements
of the derivative matrices. Using simple forward differencing, we can write

0K(p) _ K(p+dp) - K(p)
op op

This calculation must be repeated for every element of p at considerable cost,
especially if the variation of p requires re-meshing of the finite-element model.
In addition, the accuracy of the results are suspect (Haftka et al., 1990), even
when the step size dp is chosen carefully.

(6.10)
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Variational Method

In this method, we avoid the computation of the derivatives of the element
matrices by computing the derivatives of the distributed-parameter system
before discretization into finite elements. The resulting formulae can then be
discretized for convenient computation. Yang and Botkin (1986) discuss the
relationship between the variational and direct methods.

We begin with the variational formulation for the governing equations of
linear elastic problems (i.e., the principle of virtual work)

ap(2,2) = 1, (2) (6.11)

where a,(z, Z) is the energy bilinear form representing the strain energy of the
system, {,(Z) represents the loading, and Z is a virtual displacement that satis-
fies the kinematic boundary conditions of the system. Parametric dependence
on p is indicated by the subscript p. (An example is given in the section on
eigenvalue sensitivities.)

The response z depends on position r, and the parameters p(z). The
variation of z in the direction dp can be written as

2(237,68) = <& [2(zip + e, (6.12)

and the variation of a can be written as

Cip(2:2) = 3 (apatp (2(2.7), Do (6.13)

Recalling the well-known property from calculus of variations that the order
of partial differentiation and variation can be interchanged, we can write

die [@p+ep (2(z; 2 + €6p), 2)]._p = as,(2(7; ), 2) + ap(2', Z) (6.14)

We can now take the variation of both sides of Eq. (6.11) and write the result
as

ap(2', 2) = U, (2) — ag,(z, 2) (6.15)

which is of the same form as the original system in Eq. (6.11). Thus, we can
solve for 2’ by solving the original problem with a loading obtained from the
variations of the load and energy forms.

119



We now introduce an objective functional that can be expressed as an
integral of a function the displacement, its gradient, and design,

¢=/‘;g(z, Vz,p)dQ (6.16)

where 2 denotes the volume of the structure. This form allows us to accom-
modate objectives involving displacements, stresses, and strains. Point values
can be obtained by introducing the Dirac §. The variation of the objective
functional is given by

a dg
V= / ( I+ )Vz +0—6p) df) (6.17)
To deal with the first two terms in the integrand, we find it convenient to
introduce an adjoint equation

3 99, Oy
AN = [ (S25 Vi) do 6.18
aP( ) Q (az + oo a(v ) ) ( )
whose right-hand side consists simply of the terms of interest with 2’ replaced
by the virtual displacement .
Now, if we set the virtual displacement in Eq. (6.15) equal to A and use
the symmetry of a, we have

ap(02) = L, (A) = (2, ) (6.19)

whose left-hand side is equal to that of the previous equation with X replaced
by z’. Thus, we have

/‘; (%zr B(anZ) z') d$l = l"sp(/\) — af,p(z, A) (6.20)

Substituting into the expression for 1)/, we obtain the desired result

' ag ! 1
" =/n$(5de+IJP(A) — aj,(2,2) (6.21)

which allows us to determine the variation of a response functional in terms of
the variations of the system operators evaluated at the solution of an adjoint
problem. We will delay presentation of an example of variational sensitivity
analysis until the section on eigenvalue sensitivity.
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6.2.3 Eigenvalue Sensitivity

In this section, we discuss methods for computation of the sensitivities of the
eigenvalues of structures. These methods are in rough correspondence to the
methods presented for static analysis. The principal differences are that the
load is now replaced by a D’Alembert force representing the inertia and that
it is unnecessary to introduce an adjoint equation.

Direct Method

A discrete eigenvalue problem for natural frequency can be written in the form

K(p)y = (M(p)y (6.22)

where K is the stiffness matrix, M is the inertia matrix, ¢ is an eigenvalue,
and y is the associated eigenvector. It is shown by Haug et al. (1986) that
simple eigenvalues are differentiable with respect to design if K and M are
symmetric, positive definite, and differentiable.
We begin by differentiating with respect to p to yield
oK dy d( oM dy

—y+ K— My+Ca—py+CME

5 =0 (6.23)

Next, we premultiply by y” and take advantage of the symmetry of M and K

to write d¢ oK oM d
T _ T _ Yk —
Y My—dp Y (Bp = ) y+ dp (K-CM)y (6.24)

Noting that the second term on the right-hand side is zero for a solution of
the original eigenproblem, we have the desired result

ac _ v (5 - <5)v
dp y"My

(6.25)

Thus, if we car evaluate the derivatives of K and M with respect to p, it is an
extremely simple matter to compute the derivatives. Because the eigenvalue
problem is self adjoint, it turns out to be much simpler to calculate derivatives
of the eigenvalues than the derivatives of static response.

We are, however, still faced with the difficulty of determining the deriva-
tives of the element matrices K and M. As in the case of static response, we
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can introduce a semi-analytical method which uses finite differences, or we can
compute the derivatives of the elements in our finite element code. The same
difficulties that were mentioned in the case of static response arise in either
case. A better approach is to use variational techniques.

Variational Method

As in the case of static response sensitivity, we avoid differentiating the element
matrices by differentiating the governing equations before discretization. We
represent the eigenvalue problem as

ap(y,9) = (dp(y, 9) (6.26)

where, as in the static analysis, a,{y, §) is a bilinear form for the strain energy
and j is a virtual displacement. The bilinear form d,(v, ) represents the
kinetic energy in the system.

Again, we introduce the prime notation for variations in the dp direction

, d
¢'(p,6p) = 5 [C(p + €6p)]=y (6.27)
Taking the variation of both sides of Eq. (6.26), we write

ap(y', §) + a5, (y, §) = ('dp(y, 9) + Cdp(y', §) + (d5, (v, 7) (6.28)

This equation is an identity for any admissible function g, so we can evaluate
it at y = y to get

C'dp(y, y) = ai, (¥, ) — (s (v, 9) — [a(y,¥) — Cdp(y, )] (6.29)

where we have taken advantage of the symmetry of a, and d;. The second
term on the right-hand side must be zero for an eigensolution of Eq. (6.26), so

that we can write , :
_ a&p(y' y) - Cdép(y) y)

¢ = dp(y,y)

which gives the intuitive result that, for a given design change (p), the change
in an eigenvalue (natural frequency) is proportional to the difference between
the gain in strain energy and the gain in kinetic energy evaluated on the
unperturbed eigenfunction (mode shape).

(6.30)
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Figure 6.1  Clamped-clamped beam with varying thickness.

As an example, consider the clamped—clamped beam with rectangular
cross-section of variable height p(z) shown in Fig. 6.1. The well-known differ-
ential form of the equation for natural vibration of an Euler-Bernoulli beam
is

7 (B9 3%) = coat o (6:31)

where p is the mass density of the beam, E is its Young’s modulus, A(p;z) =
bp(z) is the cross-sectional area, and /(h; ) = bp*(x)/12. If we multiply by
the virtual displacement § and integrate the left-hand side by parts twice, we
obtain the variational equation

Ry La N
/;EI(P,-‘E @@dﬂi—C/o PA(p; 2)yydz (6.32)

Alternatively, this equation could have been derived directly from the principle
of virtual work.
We note that in the notation of Eq. (6.26) we have

[t 0%y 9%y
(,9) = [ Elpiz) o2 L dr (6.33)
and L
bi.9) = [ pA(po)ypde (6.34)

Taking the variations of these expression with respect to p, and substituting
into Eq. (6.26), we obtain
oI

r [F 0 (O L 0A ,
(= A Egp- (B_x?_) dez—C/(; pb—p;-y dpdz (6.35)
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where we have assumed that the eigenvectors have been mass normalized so
that dy(y,y) = 1. The partial derivatives of / and A can be evaluated to yield

c’=/0"

For a given eigenvalue { and its eigenfunction y, this formula can be used to
compute the rate of change of ¢ in any direction ép(z). It shows that in order
to raise the natural frequency of the beam, material should be added where
the curvature is large and removed where the amplitude of motion is large.

Ebp? (0%y
or?

2
1 —) - CpbyQ] dpdzx (6.36)

6.3 Eigenvalue Sensitivities and the Finite Element Method

In this section, we illustrate the application of the various sensitivity methods
in conjunction with the finite-element method. We consider planar vibration
of the machine shown in Fig. 6.2. The machine structure consists of two box-
section beams with wall thicknesses of 1 cm, height h and depth b. The beams
are joined by a linear bearing with rotational compliance k, and the machine is
mounted to a rigid base by a joint with rotational compliance k,. We assume
that the vertical actuation of the horizontal arm is effectively rigid for the first
few modes.

6.3.1 Finite-Element Model

We construct a finite-element model of the structure from cubic beam elements
by segmenting the column and bridge respectively into four and three elements.
The stiffness relation of the beam element is given by

Fl 12 67 —-12 6¢ Y1
My | _EI| 6 42 —e0 202 || o, )
F (o | -12 -6 12 —6¢ |\ 1 (6.37)
M, 6¢ 200 —6¢ a2 | | g,

The deflection of the element is given by a cubic polynomial of the form
yY(z) = p1 + p2f + pa€? + pa€’ (6.38)
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Figure 6.2  Layout of the example machine (dimensions given in meters).
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where £ = z/¢. The coefficients p; can be obtained from the coordinates of
the element via the transformation

D 1 0 0 O Y1
pz: - —03 —12 g —O 1 z; (6.39)
D4 2 1 -2 1 0,
and therefore the consistent mass matrix is given by
156 22¢ 54 -13¢
pAL | 22¢ 42 130 -3¢2 (6.40)

420 54 13¢ 156 —-22¢
—13¢ -3 -220 4¢

The finite-element program assembles these matrices by adding up the forces
associated with each degree of freedom to form the system mass and stiffness
matrices.

We consider a nominal design with section depth b; = 20 cm for all seven
elements, section heights h; = 20 cm for the column, and section heights
hi = 10 cm for the arm. The compliance of the base is k; = 20 x 10 N-m
and the compliance of the bearing is k; = 5 x 10® N-m. The wall thickness
is fixed at 10 mm. The first four natural frequencies and mode shapes are
shown in Fig. 6.3. Next, we give detailed descriptions of the computation of
the sensitivities of the eigenvalues to changes in h;, k;, and k,.

6.3.2 Direct Differentiation

We wish to implement the method described in Section 6.2.3 for the model
developed in the previous section. As discussed in Section 6.2.3, it is easy to
compute tke sensitivity via Eq. (6.25) if we have evaluated K /8p and dM/dp.

Since we have generated the elements explicitly and we have written the
finite element code, it is a simple matter to assemble the derivatives of the
individual elements to form 8K /8p. For example, if we want the sensitivity
to changes in the height of the cross-section of the kth element, the derivative
of its stiffness matrix is

12 60 -12 6¢

ol E| 6¢ 42 —¢¢ 222]

oh B | —12 —60 12 —ﬁeJ
60 202 —60 422

(6.41)
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Figure 6.3  First four natural frequencies and mode shapes for the nominal design.
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and the derivative of its mass matrix is

156 220 54 —13¢
A pt. [ 220 42 13¢ -3¢ (6.42)
Ohe 420 | 54 13¢ 156 —22¢ '
| 136 -3¢ 220 4

If any other elemerts of the system mat-ices depend on hy, their derivatives
can likewise be computed and assembled with the above expressions to form
OK/0hy and OM/Ohy. The assembly procedure here is precisely the same as
it was for assembling the matrices K and M.

Application of this procedure for each of the h; and substitution into
Eq. (6.25) yields the results shown in Fig. 6.4.

6.3.3 Variational Method

If we are using a commercial software package or numerically generated ele-
ments, calculation of the derivatives of the system matrices as demonstrated
in the foregoing is impractical. In this case, we find it considerably simpler to
apply the variational method for determination of the sensitivities. As shown
in Section 6.2.3, the eigenvalue sensitivity can be determined from the partial
derivatives of the strain and kinetic energies with respect to design parameters.

The strain energy of our machine is the sum of the strain energy in each
of the seven elements of our model. Using the expression for strain energy of
a beam derived in Section 6.2.3, we write

o) = 3 El(hy) [/ (59) dx] PR+ ka0 -0 (643

where the last two terms account for the strain energy in the joint and bearing.
Similarly, the inertia form can be written as

h.5) = 3 pA(h) [ [ +vyas] (6.44)
=1 k

where I is the axial displacement, which is nonzero along the horizontal arm.
The integrals of the functions Z, y, and 8%y/8z? are usually readily available
from commercial software packages so that these expressions can be easily
evaluated.
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In the case of our finite-element program, we use the transformation given
by Eq. (6.39) along with Eq. (6.38) to evaluate y(z) in terms of the y; and
0; and integrate in closed form to evaluate the necessary expressions. The
derivative with respect to h; can be written as

a¢ oI | t{a%y\? A [t .o

k

This formula can be applied directly to our example problem yielding results
identical to those obtained from the direct method, which is as expected be-
cause both methods are exact.

6.3.4 Overall Finite Differences

The simplest method for computation of the sensitivities is overall finite dif-
ferences. Here, we simply vary the parameters of interest, recompute the
eigenvalues, and estimate the derivatives. Our example problem is well suited
to this approach because we do not have a large number of design variables
and we do not need to re-mesh. Nonetheless, we find that significant errors
can occur when finite differences are used.

In Fig. 6.5, we show the errors obtained for the derivatives of the natural
frequencies with respect to h;. Of course, the errors obtained are functions of
the step size. We illustrate this in Fig. 6.6, where we show the finite-difference
approximations for dw;/0k, for the first four modes as a function of ék.

6.4 Applications

In this section, we apply the methods discussed in the foregoing to two prob-
lems that commonly arise in the machine-design process. First, the finite-
element model of a machine seldom predicts the machine dynamics in satis-
factory agreement with the measured response and hence methods are required
for updating the model to give reasonable agreement. Second, once a satis-
factory model is obtained, we wish to to improve performance by some design
change, and we need some guidance in finding the “best” change for our par-
ticular objectives.
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6.4.1 Model Update

In modeling the dynamics of a machine such as that shown in Fig. 6.2, it is
not uncommon to have grossly mis-estimated the stiffnesses of the bearings
and joints. These elements of a machine are inherently difficult to model, and
empirical data is usually unreliable.

In a typical scenario, we will have a finite-element model with thousands
of elements for the structure and a few uncertain parameters for the joint
and bearing stiffnesses; and we need to reconcile the model with experimental
data. Of the experimental results, the most reliable measurements are the
natural frequencies, and so it is desirable to use the errors in predicted natural
frequencies for identification of the uncertain parameters.

In this context, mode-shape measurements serve an important purpose:
they allow us to match the natural frequencies of corresponding modes from the
analytical and experimental models. If a machine possesses modes with closely-
spaced frequencies, then moderate errors in the uncertain parameters may
cause the ordering of modes to be reversed, so that we cannot simply match
the nth mode of the analytical model to the nth mode of the experimental
model. In our example, we will not have any problems of this nature. For a
discussion of correlation methods, see Imregun and Visser (1989).

To illustrate the sensitivity approach to model update, we again consider
the example machine of Fig. 6.2. Suppose that we have measured the first
four natural frequencies from an experiment and found them to be equal to
those shown in Fig. 6.3. Now further suppose that we have overestimated k,
by a factor of two and underestimated k; by a factor of two, but have correctly
characterized the remaining components of the structure.

Using the “incorrect” parameter values, we find that the percentage errors
in the first four modes are 4.6, -8.5, -2.3, and 1.5. The sensitivities of the
natural frequencies to changes in k, and k; can be used to write

AJ = SAk (6.46)
where & = [wy,ws, ws,ws]T, k = [ky, k2|7, and the elements of S are
aw.-
e 8 4
8ij %, (6.47)

Given an error (—Ad&) that we wish to eliminate, a least-squares correction
Ak is given by
Ak = (STS)'STAG (6.48)
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This forms the basis of an iterative procedure where the errors and sensitivities
are evaluated, a small correction is made in the direction Ak, and the process
is repeated.

If we compute the sensitivity matrix via the direct method, and carry
out this procedure for the example problem, and find that the parameter
values quickly converged to their “true” values. Plots of the errors against
iteration number are shown in Fig. 6.7. An important feature of this problem
is that we have measured four independent values but only need to update two
parameters. This gives us an important advantage when there are unexpcected
errors in the system.

To illustrate this point, we again consider our example machine with the
same errors in k; and k;, but now also introduce an “incorrect” element height
vector h =(0.3,0.2,0.2,0.1,0.1,0.1,0.1]" m. (The “true” height vector is still
h =[0.2,0.2,0.2,0.2,0.1,0.1,0.1)" m.) If we do not recognize that we have
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Figure 6.8  Convergence of k; and k to incorrect values.

modeling errors in h and simply run our model-update program on k; and k,,
they converge to “incorrect” values as shown in Fig. 6.8. The final errors in
the natural frequencies are found to be 17.6, 2.9, -0.32, and -0.2 percent.

If we had used only two measurements to correct our two unknown param-
eters, then the natural frequencies cculd still converge to the “true” values
as k) and k; converge to incorrect values, and we would not realize that the
update failed. However, when we use more measurements (e.g., four natural
frequencies as opposed to two) the natural frequencies cannot converge to their
true values unless k, and k, converge to correct values, which gives us a check
on the validity of the model update.
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6.4.2 Redesign

Having obtained a model of acceptable accuracy, we may wish to improve
the performance by changing the design. In this exercise, we will consider
the bearing and joint stiffnesses to be fixed and consider variations in the
h; to improve the first natural frequency. Any realistic design optimization
must include constraints in order to obtain reasonable results. However, in
cases where the designer is monitoring the progress of the iteration, manual
intervention can guide the design towards reasonable results.

We can use the eigenvalue sensitivities to write an expression for the change
in w; for a small design change AR

Aw, = [a—“i‘] Ah (6.49)
oh

If we constrain the magnitude of the design change so that [AR]T[AR] = o2,
then the largest Aw; will result when wh is in the same direction as 6w,/65.
This forms an iterative procedure to increase w;.

We use the direct method to compute the sensitivities and perform ten
iterations of this procedure with a = 0.02. The initial and final height vectors
are shown in Fig. 6.9. The value of w, increases steadily during the first ten
iterations, as shown in Fig. 6.10. If the iteration is allowed to continue without
constraints, it will eventually lead to negative values for h;.

6.5 Application Notes

In this chapter, we have provided a review of powerful techniques for structural
design sensitivity. These techniques form the basis for structural optimization
or redesign as well as model-update methods.

We have attempted to present both a sound exposition of the theory be-
hind the techniques and a tutorial enabling the reader to apply the methods in
conjunction with the finite-element method for structural analysis. If the an-
alyst has access to the inner workings of the finite-element code, the so-cailed
direct methods are advantageous, otherwise it is most practical to apply vari-
ational methods. Of course, it is always possible but inefficient (and possibly
inaccurate) to use finite differences.
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CHAPTER 7
Orthogonal Bases for Figenvalue Sensitivies

7.1 Introduction

In this chapter, we investigate the possibility of finding a set of shape changes
such that each member of the set modifies only a particular natural frequency
of the structure. Such a set of shape changes can be treated as a basis for the
design space. Such basis functions, if they exist, form an orthogonal set in
the design space, and decompose it into subspaces corresponding to individual
natural frequencies.

The analysis of the sensitivity of system response to parameter variations
finds wide application in design optimization (Haftka et al., 1990) as well as
in the analysis of systems with parameter uncertainties (Ibrahim, 1987). In
the field of structural optimization, the sensitivities of objective functions to
changes in design parameters play an integral role in iterative schemes as well
as in the application of optimality criteria. In manual design, sensitivities can
guide the designer in making decisions.

In the design of structures, buckling and vibration are often important
considerations, and the eigenvalues generally appear in the constraints, the
objectives, or both. In such cases, the sensitivities of the eigenvalues to design
changes play a central role in the design process. Various approaches in-
cluding perturbation methods (Courant and Hilbert, 1953) and differentiation
schemes (e.g., Haug et al., 1986) have been used to compute the sensitivities of
eigenvalues to changes in design for both lumped- and distributed-parameter
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models, and a reasonably complete theory has been developed (see Chapter 6).
Although a great deal of research has been devoted to the development and
application of expressions for the eigenvalue sensitivities, very little discussion
of the properties of these sensitivities has appeared in the literature.

In this chapter, we examine the sensitivity of the natural frequencies of of
an initially uniform beam to nonuniform changes in its cross-sectional dimen-
sions. We use perturbation results to obtain an expression for the change of
an eigenvalue when a nonuniform small change is made to the shape of the
bar. For some specific examples, we show that the eigenvalues can be changed
independently, and that a simple relation exists between the corresponding
eigenfunction and shape change. Next, we attempt to generalize these find-
ings to torsional vibration problems with general boundary conditions and
determine the conditions under which such a set of orthogonal shape changes
exist.

7.2 Eigenvalue Perturbation

Perturbation methods for eigenvalue problems produce asymptotic approxima-
tions to the eigensolutions of a perturbed problem in terms of the eigensolution
to the unperturbed problem. The first terms in these expansions are, in effect,
the sensitivity of the eigensolution to the perturbation. A great number of
researchers have treated this problem over the years. Rellich (1969) presents
a detailed exposition of the theory of eigenvalue perturbation. Pierre (1987)
treats the case where the boundary conditions are perturbed.

Here, we summarize the well known results for the case where the boundary
conditions are not perturbed. Consider the unperturbed eigenvalue problem

Log(z) + Mp(z) =0 =z €[9,1] (7.1)
Biop(z) =0 z=0,1 (7.2)

where Ly and By, are linear, homogeneous, self-adjoint operators and the B
do not depend explicitly on the eigenvalues. We assume that this problem has
distinct eigenvalues ), and eigenfunctions ¢,(x) orthonormalized so that

n nyYm i'3
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Figure 7.1  shaft with varying cross-sectional radius

Now, consider a small change €L, to the operator L, so that Eq. (7.1)
becomes
(Lo + eLy)p(z) + Ap(z) = 0 (7.4)

where € is a small dimensionless parameter. To first order, the change in the
nth natural frequency is

1
Sy = —¢ /o dnLrity dz (7.5)
and the change in the nth eigenfunction is
' dm Lo dz
5¢n =€ Z fo i qu\ ¢m (7'6)
m#n m — “\n

7.3 Examples

7.3.1 Torsional Vibration of a Shaft With Fixed Ends

We consider a shaft with circular cross section and nonuniform radius as shown
in Fig. 7.1. Torsional vibration of a shaft with fixed ends is governed by an
equation of the form

[GI(z)8 (z,t)] = I(z)f(z, 1) (7.7)
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Figure 7.2 mode shapes and corresponding shape changes for a shaft with fixed ends

with boundary conditions
6(0,t) =60(1,t) =0 (7.8)

where (-)' = 9(-)/0z and G is the shear modulus. For a shaft with solid circular
cross section, J(z) = nr4(z)/2 and I(z) = pnr?(z)/2 where p is the density of
the material. We now consider perturbations to an initially uniform shaft so
that 7(z) = ro + ery(z). In terms of the notation used in the previous section,
we have

62 4 61', d
0= @ Ll = Ea_ra_x (79)

and A = w?p/G where w is the natural frequency.
The eigensolution of the unperturbed (¢ = 0) problem is

Ao = (nm)? ¢n(z) = V2sinnrz (7.10)
According to Eq. (7.5), a small change er,(z) perturbs the nth eigenvalue by

denm

1 1
O = -—E/ Par1 @y, dT = — / 7y sin2n7z dz (7.11)
To /0 0

To
from which it is clear that (to first order) choosing r,(z) = acos2inz (as
illustrated in Fig. 7.2) will result in a change in only the ith eigenvalue:

e\ 2
X = 4‘“:’”) 5\ =0 (7.12)
0
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Mz)

Figure 7.3  beam with varying thickness

Thus, corresponding to each eigenvalue, there is a shape change r;(z) that will
result in a change to only that eigenvalue. These shape changes are mutually
orthogonal, so that the eigenvalues can be changed independently. We also
note that the shape change for the ith mode can be obtained from the ith
mode shape according to the simple formula r}(z) = —a(¢?(z))'/2ir.

7.3.2  Flexural Vibration of a Beam on Simple Supports
The free vibration of an Euler-Bernoulli beam is governed by
pA(z)w + (EI(z)w")" =0 (7.13)

where, for vibration in the y—direction of the nonuniform beam shown in
Fig. 7.3, the cross-sectional area and moment of inertia are given by A(z) =
bh{z) and I(z) = 5bh%(z), respectively. For a simply supported beam, we
have the boundary conditions

w(0) = w(l) =w"(0) =w"(1) =0 (7.14)

We consider perturbations to an initially uniform beam so that h(z) = ho +
€hi(z) and in the notation of Section 7.2 we have

L, 7 and L = — (3h”ﬁ + 6k, > +2h, A ) (7.15)

T 0zt ho \" ' 922 9z’ ozt
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and A = w?pA/EI where w is the natural frequency.
The eigensolution for the unperturbed (uniform) beam is given by

Ai = (im)?} ¢i(z) = V2sininz (7.16)

Substituting this expression along with Eq. (7.15) into the expression for the
eigenvalue sensitivity, Eq. (7.5), we obtain

l -
6hn =~ [ Gu(3010% + Ghi 4 + 2hohigy)d (7.17)

_2
ho

1
/0 {[2h1(z'7r)‘1 — 3h{(n)?] sin? nwz — 3k (n7)?sin 2n7rx} dz

So, to change only w;, choose h,(z) = acos2irz. Then

ST |
5 = —6“"(:”) 5X; =0 (7.18)
0

Thus, we find again a set of simple shape changes h,(z) that changes a partic-
ular eigenvalue without changing any others. In the next section, we attempt
to carry out the same procedure for torsional vibration with general boundary
conditions.

7.4 Torsional Vibration with General Boundary Conditions

We now consider torsional vibration of an initially uniform shaft governed by
Eq. (7.7) and the general boundary conditions Eq. (7.2). We assume that the
unperturbed problem Ly@+A¢ = 0 has been solved and that the eigenfunctions
¢n have been normalized according to Eq. (7.3).

7.4.1 Properties of the Sensitivity

To first order, the change in the nth eigenvalue is

de ! 2¢ 1 2¢ !
=~ [ ridndndzr == [[ri(gl) dr == ["rigndz (729)
from which we see that the nth eigenvalue is perturbed in proportion to the
projection of the derivative of the shape change onto the derivative of the
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square of the nth mode shape. We denote the latter quantity g,(z) and refer to
it as the sensitivity distribution. If we wish to change only the ith eigenvalue,
we must find a shape change r (z) whose slope projects onto g;(z) but is
orthogonal to all g;(z) for j # i. Guided by the results from the fixed—fixed
shaft, we choose :
ri(z) = —agi(z) = —a (¢}(z)) (7.20)

where a is a constant and evaluate the changes in the eigenvalues. If this shape
change, which is proportional to g;(z), has a nonzero projection onto g;(z),
then we can construct an orthogonal set from a linear combination of such
functions as discussed in Section 7.4.3.

Substituting Eq. (7.20) into Eq. (7.19) we find that the changes in the
eigenvalues are given by

_ 8ea / #2672 dx (7.21)

and

_ Bea / bib; i, di (7.22)

for j # 7. In the following, we evaluate these expressions for the eigenvalue
perturbations.

Evaluation of §);

Noting that ¢; must satisfy Lo¢; = @] = — X9, we write

—,\-/1¢4 dz = /1 #3¢" dz (7.23)
1 0 1 0 17 .
and integrate by parts to obtain
1 1 1
-\ 4 dr = |30 — 2472

AI/O ¢l dl’ [¢'¢']0 3/0 ¢|¢1 dz (724)

Next, we observe that an integral of ¢! + \;¢; = 0 is given by
o7 + Nig} = 2E; (7.25)

where E; is a constant. Taking the inner product with ¢?, we obtain
1 1
[ 6262 da+ 5 [ 4t dz=2E, (7.26)
0
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which combines with Eq. (7.24) to give

4 [ 4167 do =25+ [¢39). (7.27)
Next, to evaluate E;, we introduce the identity
(¢i¢)' = 67 + ¢id} = &7 — Nigp? (7.28)
which, along with Eq. (7.25), yields
2E; = [$idily + 2\ (7.29)

Combining this equation with Eq. (7.27) and substituting into the expression
for ; given in Eq. (7.21), we obtain

o= == {ox+ 1+ i8], ) (7.30)

which gives the change in the ith eigenvalue in terms of the value and slope of
its eigenfunction evaluated at the boundaries.

Evaluation of d);

Noting again that the ith mode must satisfy ¢! + \;¢; = 0, and taking the
inner product with ¢;¢;¢}, we obtain

1 , 1
M [ 00,6165 do = - [ 61610,6} d (7.31)
Next, we interchange i and j and subtract to get
1 ! U ! ] 41 " 1
(N =2 [ otiaseda = [ 616(8i00 - 60z
1
= [ 65616, - 6.6} ds (7.32)
Integrating by parts, we have
1
2%~ X) [ 60iy6; do = (7.33)
! ! 4?7 I / 1
| 8267 - Xg2o?) do+ (416 (4,6, - 6:9})]
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But the second term on the right-hand side must vanish for a self-adjoint
system with separable boundary conditions. The inner product of ,\J-de with
the expression for E; given by Eq. (7.25) is

A /0 l G307 dz + \i); /0 ' ¢4} dx = 2),E; (7.34)
Interchanging ¢ and j and subtracting, we have
/ (2 — Ng?6?) dz = 2),E; — 2NE, (7.35)
This equation in conjunction with Eqgs. (7.33), (7.29), and (7.22) gives
8% = 2 {1660 — Masolle) (7.36)

which gives the change in the jth eigenvalue in terms of the value and slope
of the ith and jth eigenfunctions evaluated at the boundaries.

7.4.2 Discussion

Equations (7.30) and (7.36) give the changes in the eigenvalues when the shape
change is chosen to project cnto the ith sensitivity distribution. Examining
Eq. (7.36), we see that the terms on the right-hand side do not vanish in
general. Also, we see that these terms take on a different value for each value
of the index j. We conclude that the sensitivity distributions are in general
not orthogonal, and therefore that shape changes chosen proportional to the
sensitivity distributions will not form an orthogonal set. It is clear, however,
that for the particular cases of free-free, fixed-free, and fixed-fixed shafts, the
sensitivity distributions are orthogonal.

7.4.3 Orthogonalization

We have shown that it in general shape changes chosen proportional to the
sensitivity function will not result in an orthogonal set. In this section, we
construct an orthogonal set of shape changes from a linear combination of
sensitivity distributions. Consider a shape change with slope h(z) composed
of a linear combination of sensitivity distributions:

N
ri(z) = h(z) = - ga,-g,-(:z:) (7.37)
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where the distributions g¢;(z) are given by

gi(z) = (¢}(z)) (7.38)

and the constants a; are to be determined. Then, using Eq. (7.19) we can
write the change in the first NV eigenvalues in the form

2¢

oA (g, q1) -+ (91,9~) a,
: : : (7.39)

—_ ro . :
(91, yN) ce (!JN.QN) ay

SN
where (p(z),q(z)) denotes the inner product [} p(z)q(z) dr. We have seen in
the last section that the functions g;(z) and g;(z) are not generally orthogonal
and that therefore the matrix above will not be diagonal. But if it is of full
rank, then we can always choose constants a; to yield a desired vector é;.

Consider a shaft clamped rigidly at one end and supported by a torsional
spring at the other, so that the boundary conditions are given by

$(0) = 0 and ¢(1) = —kg'(1) (7.40)

We solve for the first twenty eigenvectors and eigenfunctions, and then use
Eqs. (7.30) and (7.36) to evaluate the coefficients (g;, g;) in Eq. (7.39). Next,
we solve for the values of the a; that modify only the eigenvalue of interest
and construct the corresponding shape change h(z).

The result is shown Fig. 7.4.3 for the first mode. The plotted function h(z)
represents the slope of the shape change that modifies the first eigenvalue while
holding the second through the twentieth eigenvalues constant. Similar plots
are shown in Figs. 7.4.3 and 7.4.3 for modification of the second and third
eigenvalues.  Such a calculation could in principle be carried out for any
number cf modes, and an analytical solution could possibly be obtained for
an infinite number of modes. But in practice, we are seldom concerned with
more than the first few modes of a structure, and the series solutions for h(z)
are sufficient.

7.5 Discussion

In this chapter, we studied the sensitivity of the eigenvalues of torsional vibra-
tion of a uniform shaft to small nonuniform changes in its radius. In particular,
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Figure 7.4  mode shape ¢(z), sensitivity distribution g(z), and shape change h(z) for
the first mode of a shaft with a compliantly restrained end
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Figure 7.5  mode shape ¢(z), sensitivity distribution g(z), and shape change h(z) for
the second mode of a shaft with a compliantly restrained end
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Figure 7.6  mode shape ¢(z), sensitivity distribution g(z), and shape change h(z) for
the third mode of a shaft with a compliantly restrained end
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we investigated the possibility of finding changes in the radius that modify only
one eigenvalue. We showed that this is possible as long as the matrix whose
elements are formed from the inner product ((¢7)’, (¢?)'), where the ¢; are the
eigenfunctions of the uniform shaft, is of full rank.

Such findings may be useful in structural optimization problems where the
eigenvalues appear in the constraints or objectives. Olhoff (1989) observed that
when a constant volume beam is designed to maximize a particular eigenvalae
of transverse vibration, all other eigenvalues are affected. Moreover, he found
that if the objective eigenvalue is not the first eigenvalue then all lower-order
eigenvalues decrease as the objective eigenvalue increases. Results of the type
developed in this paper may be of some use in the development of efficient
techniques for handling problems involving several eigenvalues.

The results presented here are restricted to initially uniform shafts whose
boundary conditions do not depend explicitly on the eigenvalues. We hope to
extend this work to deal with these cases in the near future.
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CHAPTER 8

Design Example

8.1 Introduction

In this chapter, we consider design of the wafer-handling robot sketched in
Fig. 1.3. The robot is designed to carry a 20 kg carriage over a 2.0 by 1.4 m
workspace in the zz plane, and packaging constraints require that the base
and column cross sections be no larger than 356 mm and 260 mm squares
respectively. We choose to construct the base of steel and the column of
aluminum with the cross sections shown in Fig. 8.1.

We are concerned with the first resonant frequency in each of the z and y
directions. In the z direction, the lowest resonance corresponds to the “pitch”
mode shown Fig. 1.4(b). This mode of vibration involves flexure of the column,
transverse deformation of the linear bearings, longitudinal deformation of the
leadscrew, and some bending of the base. The associated resonant frequency
takes on its lowest value f, when the column is positioned at the end of its
travel furthest from the drive motor.

In the y direction, the resonant frequency associated with the “roll” mode
shown in Fig. 1.4(b) reaches its minimum value f, when the column is at the
midpoint of its travel. This mode involves flexure of the column, transverse
deformation of the linear bearings, and torsion and flexure of the base. In this
chapter, we wish to maximize the “worst case” frequencies f; and f, and the
associated loss factors.
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Figure 8.1  Cross section of the base (a) and column (b) of the machine of Fig. 1.3:
A pair of size 25 linear guides is mounted to each of these members.

8.2 Design for Maximum Resonant Frequency

The overall dimensions of the machine are fixed by packaging constraints and
there is little space to accommodate larger than size 25 linear guides. The
rails can be set d, = 275 mm apart, and each linear bearing has stiffness
ky = 300 N/um. The parameters that we can adjust to maximize the resonant
frequencies of the machine are the radius r, of the ballscrew and the wall
thicknesses t;, and t. of the base and column.

Nominal Design

If the only compliance in the machine is that of the linear bearings, the stiffness
at the endpoint is kyd2/¢2. The column is the major contributor to the effective
reass of the principal modes so we set the wall thickness so that its bending
deflection under an endpoint load matches that due to the linear bearings.
That is,

3E1,  kyd?
s = 22 (8.1)
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Table 8.1  Lowest resonant frequencies in the z and y directions for various (un-
damped) designs: 75 is radius of the leadscrew, ¢, is the wall thickness of the base, and
tc is the wall thickness of the column.

tb tc Ts fy f::
(mm) | (mm) | (mm) | (Hz) | (Hz)
nominal | 189 | 14.5 | 11.8 | 61.7 | 61.3
redesigned | 25.9 | 12.1 | 13.7 | 63.0 | 63.0
inch plate | 25.4 | 12.5 | 13.3 | 62.9 | 62.8
tube base | 12.5 | 12.5 | 13.3 | 60.2 | 61.2

Because the base is stationary and mounted on rigid supports, there is little
cost in choosing a large wall thickness; therefore, we set its torsional stiffness
equal to four times that of the linear bearings:

_4w;,h,,thb

—_— = 2 -
(wn + w)ls kyd; (8.2)

We set the leadscrew radius so that the frequency of the “dumbbell” mode
involving the column and drive motor is roughly equal to that of the roll mode.
If the effective motor inertia matches that of the payload, the frequencies match
(very roughly) when

E,nmr? 2k¢,d‘f
e e

c

(8.3)

These equations yicld the nominal values of t,, ¢, and r, given in the first row
of Table 8.1.

Optimization

Starting with the nominal design, we use the approach of Section 6.4.2 to
adjust the wall thicknesses t, and t. and the screw radius r, to raise the lowest
natural frequency of the structure. In ten iterations, this process converges
to the design listed in the second row of Table 8.1. The redesign process
raises the lowest resonant frequency by less than two per cent, so evidently
the nominal design is quite good. Because the dimensions of the “redesigned”
machine given in the Table 8.1 do not correspond to readily available stock
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in the United States, we would actually build to the dimensions of the “inch
plate” design listed in the third row of Table 8.1. If we wish to lower the
cost of fabrication (and the weight of the machine), we could use a standard
14 x 14 x 0.5 inch steel tube as listed under “tube base” for the base without
lowering the resonant frequencies by more than five per cent.

8.3 Damping Augmentation

In this section, we begin with the “tube base” design listed in Table 8.1 and
design dampers in turn for the linear bearings, base, leadscrew, and column.
We design each of these elements to have a loss factor of at least seven per
cent and then use the finite-element model to compute the damping in the
machine with the various dampers applied separately and in combination.

Linear Bearings

As discussed in Section 2.2, we add an extra linear bearing on each rail and
couple the additional bearings to the linear guides by means of a viscoelastic
layer. If the only compliant elements in the machine are the linear bearings
and the loss factor of the viscoelastic material is unity, then we can obtain the
maximum loss factor of 0.084 by sizing the viscoelastic layer to have 0.58 of
the stiffness of a linear bearing. Following this guideline, we set the coupling
parameter g, initially to 0.58.

Addition of this damper to the machine produces the resonant frequencies
and loss factors listed in Column B of Table 8.2. The resonant frequency of
the roll mode increases from 60.2 to 62.5 Hz and the associated loss factor
is 2.9 per cent. Because the additional linear bearings are installed midway
between the original linear bearings that support the column, such a damper
has no appreciable effect on tke pitch mode.

Base

We are concerned primarily with torsion of the base, so we attach identical
constrained viscoelastic layers to each face as shown in Fig. 8.2. If the con-
straining layers are steel with thickness 12.5 mm, we find from Eq. (4.52)
that Y = 0.5. From Fig. 4.7, we see that the loss factor of the tube in torsion
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Table 8.2  Resonant frequencies (Hz) and loss factors (per cent) of the wafer handling
robot with various dampers installed: A dash in place of a parameter value indicates
that the associated damper is not present in the listed design.

| A | B C D[] E ]| F |
bearings [ g, | - |0.58 | - - - 10.58
base | g, - - (200 - - | 2.00
screw | Y [ - - - 1007 - (0.07
column | g. | - - - - [10.0]10.0 -
pitch | f; [ 61.2 | 61.2 [ 63.7 | 61.5 | 63.5 | 66.8
n.| 00| 00| 21| 14| 23| 89 -
roll | f, | 60.2 | 62.5 | 62.4 | 60.2 | 61.8 | 66.9 .
n| 00| 29| 40| 00 27| 7.1

— -

5

Figure 8.2  Cross section of the base with constrained viscoelastic layers mounted to
its interior.
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reaches a peak of about 10 per cent for Re(g,) = 2.0 if the viscoelastic material
loss factor is unity.

Of secondary concern is flexure of the base. For the configuration in
Fig. 8.2, the stiffness parameter Y for constrained-layer damping defined in
Eq. (2 49) is 0.58. Treating the base as simply supported, we determine the
coupling parameter g from Eq. (2.50) with the beam length L replaced by the
effective length L/7. Combining this expression with the the definition of the
torsional coupling parameter g, given in Eq. (4.51), we find that Re(g) = 2.3
when Re(g,) = 2.0. Referring to Fig. 2.2, we see that for this value of g the
loss factor of the base in bending is approximately 0.035 and that the stiffness
approaches that of the rigidly coupled beam.

Adding such a damper to the machine yields the resonant frequencies and
loss factors shown in Column C of Table 8.2. The resonant frequency of the
roll mode is in this case raised to 62.4 Hz, and the associated loss factor is 4.0
per cent. Because the constrained viscoelastic layers stiffen and damp flexural
motion of the base, they produce a loss factor of 2.1 per cent for the pitch
mode.

Leadscrew

The axial stiffness of the leadscrew is approximately 58 N/um. For a lead-
screw of this diameter, we can readily specify a ballnut and rotary bearings
with stiffness on the order of 1000 N/um and hence can safely ignore their
compliance during our initial calculations. The lead per revolution is 6 mm,
so for a screw of radius 13.3 mm, torsional wind up of the screw decreases the
effective axial stiffness by less than one part in thirty and can be neglected.

Let us design for an average temperature rise of 15°C in the screw. For a
viscoelastic material with a loss factor of one, we see from Eq. (5.5) that to
obtain a loss factor of 0.07 when the carriage is at the far end of its travel,
we must have Y = 0.075 and a preload force of 1500 N. If the ballscrew is
supported 0.22 m from the neutral axis of the base, we expect the preload to
cause a deflection on the order of 10 um in the base.

The base itself weighs approximately 2.8 kN (620 Ib) without constrained
layer dampers. It therefore deflects under its own weight by an amount compa-
rable to that caused by the preload. If such deflections are unacceptable, then
one possibility is to mount the leadscrew below the base so that the preload
force and the gravity sag partially cancel. Of course, the preload force will
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Figure 8.3  Cross section of the column with constrained viscoelastic layers:

drop as the leadscrew temperature rises and some of the cancellation will be
lost.

Addition of a damped leadscrew support with Y = 0.075 to the undamped
machine produces the resonant frequencies and loss factors shown in Column D
of Table 8.2. The leadscrew damper has no effect on the roll mode, but it
produces a loss factor of 1.4 per cent in the pitch mode.

Column

In order to minimize the mass added to the column, we add constrained vis-
coelastic layers along only the quarter of its length closest to the base. To
further reduce the weight of the column, we laminate constrained viscoelastic
layers only to the portions of the wall facing in the z direction and rely on
damping due to relative vibration in the plane of lamination to damp vibra-
tion in the y direction. For the purposes of the nominal design, we model the
column as a cantilever beam.

A first attempt at such a design is sketched in Fig. 8.3(a), where the con-
straining layers are aluminum plate with thickness of 12.5 mm. In Fig. 8.4, the
loss factor of the first mode in each of the z and y directions is plotted as a
function of the real part of the shear parameter g, associated with constrained
layer damping of the column as defined in Eq. (2.50). We see that while loss
factors as high as 0.05 can be obtained in the z direction, the highest loss
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Figure 8.4  Loss factor of the first mode in the z and y directions of the partially
covered cantilever with cross section shown in Fig. 8.3(a) as a function of the real part
of the coupling parameter g..
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Figure 8.5 Loss factor of the first imode in the = and y directions of the partially
covered cantilever with cross section shown in Fig. 8.3(b) as a function of the real part
of the coupling parameter g..

factor in the y direction is 0.02. Moieover, these maximum loss factors occur
at different values of g., so we can’t simultaneously damp vibration in both
directions. This damper performs so poorly because the constraining layers
stiffen the beam only slightly in the y direction.

Let us consider as an alternative the use of standard steel channels (C9 x
13.4) for the constraining layers as shown in Fig. 8.3(b). We obtain in this case
the the damping behavior shown in Fig. 8.5 with loss factors in both directions
of about 0.07 for Re(g.) = 10. Addition of constrained viscoelastic layers of
the type shown in Fig. 8.3(b) with g. = 10 to the undamped machine produces
loss factors of 2.3 and 2.7 per cent, respectively, in the pitch and roll modes
as tabulated in Column E of Table 8.2.
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Combined Damping

So far we have computed the loss factors and resonant frequencies for each
of the dampers alone. If we run the finite-element calculation for a machine

with all of thes: dampers installed, we obtain the results given in Column F
of Table 8.2.

8.4 Discussion

In this chapter, we have seen how many of the results obtained in Chapters 2-
6 can be used to quickly design a damping treatment for a built-up machine
structure. For the wafer-handling robot discussed here, we obtained loss fac-
tors of better than seven per cent for the principal modes while raising their
resonant frequencies by nearly ten per cent while increasing the mass of the
column (without the carriage) by roughly 17 per cent.
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CHAPTER 9
Conclusion

9.1 Findings

We set out in this work to develop tools for damping vibration in machines
such as the one sketched in Fig. 1.3. In so doing, we have discovered some
new methods for damping vibration and developed improved models for others
as listed in the “Summary of Contributions” given in Section 1.3. We have
also touched on the topic of design sensitivities as a tool for manipulating the
eigenvalues of a structure during iterative design.

Though we have sought throughcut this work to develop the simplest math-
ematical models capable of describing the phenomena of interest, we have often
found it necessary to solve an eigenvalue problem in the form of a set of cou-
pled ordinary-differential equations with boundary and matching conditions.
Whenever possible, we have provided closed-form solutions for important re-
sults. In cases where we have had to resort to numerical methods, we have
given results in terms of the minimum number of non-dimensional parameters.

We have also seen that almost any damper that we can implement in
hardware can be modeled (at least approximately) as the parallel-stack damper
shown in Fig. 2.1(c). If we are able to set forth approximations for the effective
spring constants in this model, we can readily size components to maximize
the loss factor of a given damper. The maximum loss factor attainable using a
parallel-stack damper is a function of the fractional stiffening of a structure as
the viscoelastic material is varied from perfectly compliant to perfectly rigid.
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The fractional stiffening is characterized by the stiffness ratio Y, which is
defined as

koo — ko

ko

where ko, and kq are, respectively, the stiffness of the system at the perfectly
rigid and perfectly compliant limits. Fror the plot of the maximum loss factor
as a function of Y in Fig. 2.3, we see that to obtain a loss factor of, say, five
per cent, we need to have a stiffness ratio of at least three tenths.

A notable exception to this rule occurs when the inertia of the damping
treatment leads to something of a tuned-mass effect as can occur in the vi-
bration of elastic-viscoelastic beams in the plane of lamination. When the
damping treatment is itself resonant, we can no longer simply write an equiv-
alent stiffness for the system but must actually solve the complex eigenvalue
problem.

Y = (9.1)

9.2 Future Work

Though we have performed a number of experiments to guide in the devel-
opment and verification of the models presented in this thesis, We have not
yet fabricated “from the ground up” a machine which uses the new methods
developed in this thesis. This work is underway at present.

For the damping techniques developed in this thesis to find wide appli-
cation in the equipment industry, the important results must be reduced to
simple formulaede or (at worst) software. We have succeeded in obtaining
simple design formulae for important cases of torsion of thin-walled beams
and longitudinal vibration of leadscrew drives. But so far we have (for most
boundary conditions) required numerical methods to obtain solutions for beam
flexure. Approximate solutions for flexure of damped beams would be of great
utility.

In the course of this work, we have developed a finite-element code for
analysis of threc-dimensional motion of framed structures incorporating vis-
coelastic laminae. Over the coming months, we hope to build a user interface
for this software and make it available to the design community.
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