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We study experimentally the miscible radial displacement of a more viscous fluid by a less viscous one in a
horizontal Hele-Shaw cell. For the range of tested injection rates and viscosity ratios we observe two regimes for
the evolution of the fluid-fluid interface. At early times the interface length increases linearly with time, which is
typical of the Saffman-Taylor instability for this radial configuration. However, as time increases, the interface
growth slows down and scales as ∼t

1
2 , as one expects in a stable displacement, indicating that the overall flow

instability has shut down. Surprisingly, the crossover time between these two regimes decreases with increasing
injection rate. We propose a theoretical model that is consistent with our experimental results, explains the origin
of this second regime, and predicts the scaling of the crossover time with injection rate and the mobility ratio.
The key determinant of the observed scalings is the competition between advection and diffusion time scales at
the displacement front, suggesting that our analysis can be applied to other interfacial-evolution problems such
as the Rayleigh-Bénard-Darcy instability.

DOI: 10.1103/PhysRevE.92.041003 PACS number(s): 47.20.Gv, 47.15.gp, 47.51.+a, 47.54.−r

A large number of natural and industrial flow processes
depend on both the degree and the rate of mixing between
fluids, such as chemical reactions [1–4], combustion [5],
microbial activity [6], and enhanced oil recovery [7]. In
such mixing-driven systems, the flow responsible for fluid
displacement reflects the heterogeneity of the host medium
structure [8–11] or the physical properties of the fluids, such
as density [3,12,13] or viscosity [14,15]. Mixing takes place at
the fluid-fluid interface and is determined by the combined
action of molecular diffusion, which acts to reduce the
local concentration gradients, and advection, which controls
the interface dynamics [16–21]. Understanding the interface
dynamics between two miscible fluids is therefore crucial to
explaining and predicting the rate of mixing.

When a less viscous fluid displaces a more viscous one,
their interface is deformed and stretched by a hydrodynamical
instability known as viscous fingering [15,22,23], and this
results in complex interface dynamics [16,17,24]. Much work
has focused on characterizing miscible viscous fingering,
including laboratory experiments [25–27], numerical simula-
tions [28–32], and linear stability analyses to model the onset
and growth of instabilities for rectilinear [33] and radial [34,35]
geometries. Other studies have also focused on the effects
of anisotropic dispersion [31,33,36], medium heterogeneity
[32,37–40], gravity [41–46], chemical reactions [3,47–49],
absorption [50], and flow configuration [51–55] on the viscous
fingering instability. Despite the extensive work done, the
effect of viscous fingering on mixing has only recently been
investigated numerically for a rectilinear geometry [14,56].
While the dynamics of the interface between two miscible
fluids is crucial to explain and predict the rate of mixing [1,16],
a solid understanding of the temporal evolution of the viscously
unstable fluid-fluid interface is still missing.

In this Rapid Communication we study experimentally the
dynamics of the mixing front for point injection into a circular
Hele-Shaw cell initially saturated with a more viscous fluid
that is miscible with the injected one (Fig. 1). Recent work has

*juanes@mit.edu

FIG. 1. (Color online) (a)–(c) Concentration fields of the injected
fluid displacing a more viscous one (viscosity contrast M = 10) at the
center of a Hele-Shaw cell at three different flow rates (Q = 0.004,
0.008, and 0.02 mL/min, at t = 5508, 2416, and 1214 s after the start
of injection, respectively). (d), (e) Magnifications of the concentration
field and its gradient, respectively. The black line represents the
location of the fluid-fluid interface, defined as the locus of the local
maxima of the concentration gradient.

reported the experimental observation that pattern evolution
for miscible viscous fingering is characterized by rapid growth
at early times, followed by slower growth at late times [57].
While diffusion is disregarded in their analysis, here we
identify molecular diffusion as the mechanism responsible for
the shutdown of the instability at late times. In our experiments,
the long-enough times (or small-enough strain rates) imply that
diffusion plays a major role in the evolution of the interface,
and that Korteweg stresses and nonequilibrium surface tension
effects do not [56,58–66]. As the unstable front grows in
fingerlike structures [Figs. 1(a)–1(c)], molecular diffusion
smears the local concentration gradients at the interface by
mixing the two fluids.

The system is divided into three regions that evolve in time:
the inner region occupied only by the displacing fluid, the
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outer region occupied only by the displaced fluid (that initially
was saturating the Hele-Shaw cell), and the region where both
fluids coexist, the mixing zone �. Given the large aspect ratio
of the Hele-Shaw geometry, we adopt an approximation of the
fluid-fluid interface—which in reality is a three-dimensional
(3D) surface—as a two-dimensional (2D) curve. We define �

as the region where, locally, the fraction χ of invading fluid is
0 < χ < 1. Incompressible advection conserves volume fluid
elements without changing their concentration; the physical
mechanism responsible for the local variation of χ is molecular
diffusion.

Since the fluids used in our experiments are miscible, the
transition between the two fluids is diffuse. We define the
fluid-fluid interface γ as the set of points where ∇χ is locally
maximum, which corresponds to where the mixing rate is also
locally maximum [14,19]. Here, we focus on understanding the
mechanisms controlling the temporal evolution of the length
� of the interface γ , and we propose an effective model able
to describe and predict its dynamics.

To quantify the topology of γ and the dynamics of �

in this radial configuration, we developed an experimental
technique to directly measure the temporal evolution of the
concentration field c of a tracer dissolved in the injected
fluid. The experimental setup is a Hele-Shaw cell composed
of two horizontal transparent glass disks of radius R = 111
mm separated by a thin gap b = 0.1 mm. A hole of radius
Ri = 0.8 mm at the center of each glass plate is used to inject
fluid at a constant flow rate Q, which we impose with a syringe
pump. The cell has separate injection ports for the defending
(more viscous) and invading (less viscous) fluids to ensure that
no mixing occurs prior to entering the Hele-Shaw cell. The cell
is initially saturated with a transparent water-glycerol mixture
of viscosity μ2, and through the inlet on the top plate we inject
a solution of water and a fluorescent tracer (fluorescein sodium
salt of concentration c0 = 800 mg/L) of viscosity μ1 = 0.9 cP.
We performed experiments by varying systematically the flow
rate Q in the range 0.004 mL/min � Q � 0.02 mL/min and
the mobility ratio M = μ2/μ1 (by changing μ2) in the range
1 � M � 25. The fluid-fluid displacement patterns are imaged
from the top of the cell with a scientific complementary
metal-oxide semiconductor (CMOS) camera at a frame rate
of 5 Hz, at a resolution of 90 μm per pixel.

We use standard fluorescent microscopy to measure the
local concentration field of the transported tracer [20,67]: The
local concentration of the fluorescent tracer is related to the
amount of photons emitted by the tracer via a calibration
procedure, which resulted in a linear relation between light
intensity and tracer concentration over three decades.

We measure γ and its length � from the concentration gra-
dient. The interface γ is defined as the ridges (local maxima)
of the concentration gradient ∇c, which are computed with
a Hessian-based Voronoi tesselation algorithm applied to the
concentration field [Figs. 1(d) and 1(e)].

In Fig. 2 we show the temporal evolution of the interface
length � for five different injection rates and a mobility
ratio M = 10. We make two main observations. First, for all
injection rates Q we distinguish two regimes for the temporal
scaling of �. At early times, the interface length increases
almost linearly with time, as perhaps can be expected from the
Saffman-Taylor instability in this radial configuration [33]. In
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FIG. 2. (Color online) Time evolution of the interface (M = 10).
There exist two regimes, the first of rapid growth due to active
viscous fingering, and the second of slower growth that corresponds
to radial expansion of a frozen finger pattern. The crossover into
the second regime occurs at earlier times for faster injection rates.
Inset: Crossover time τ× between regimes (blue triangles) and total
experimental time T (red circles) for the M = 10 experiments. The
estimate of τ× is obtained from the theoretical model developed
below. T decreases with increasing injection rates faster than τ×—an
indication of the decreasing duration (and eventual absence) of the
second regime for increasing injection rates.

all cases, at a given time, the interface growth slows down and
begins to evolve as � ∼ t1/2. This means that the overall flow
instability is no longer active and the fluid-fluid displacement
is merely expanding radially with a frozen fingering pattern.
The transition between the two regimes is prolonged in time.
However, we define the crossover time τ× as the time after
which no instability should be observed—that is, as the “end”
of the transition between the two regimes. The second key
observation is that the crossover time τ× between these two
regimes decreases with increasing injection rate Q (Fig. 2
inset). This result is counterintuitive, since a stronger flow
injection leads to a more vigorous instability [14].

Understanding the underlying mechanisms that control
interface growth is paramount for the study of mixing and
chemical reactions in this configuration [3,49,68]. Here, we
propose a theoretical model to explain these two observations
and predict both the crossover time τ× between the two
regimes, and the scaling of the length of the interface �×
at this time with Q and M . We then use the results of our
analysis to rescale the data in Fig. 2 and collapse them onto a
single curve.

Crossover time τ×. The observed change in scaling for
the temporal evolution of interface length � suggests the
existence of conditional stability. We hypothesize that this
conditional stability occurs as a consequence of molecular
diffusion mixing the two fluids along the diffuse interfacial
region. To test this hypothesis, we define the characteristic
diffusion time over the length l as τdiff = l2/Dm, and the
characteristic advection time of the average front displacement
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FIG. 3. (Color online) Determination of finger-tip positions and number of fingers. (a) At each time step, the Cartesian coordinates (x,y)
of the interface γ are converted into a radial-curvilinear coordinate system (r,s), where r is the radial distance from the injection point (center
of the image) and s is the distance along the interface γ . For each value of s, a single value of r is defined, and thus the pattern is “unravelled.”
(b) We define the finger tips as the local maxima (brown diamonds) of the curve r(s), which allows for a robust determination of the number
of fingers. (c) The finger-tip positions can be mapped onto the (x,y)-coordinate system, and tracked as a function of time. The orange circle in
(a)–(c) indicates the same finger through the steps of image processing used to determine the number of fingers.

over the same length as τadv = l/vf , where vf is the average
front velocity and Dm is the diffusion coefficient. For a
constant injection rate Q, the volume of fluid injected after
a time t is Qt = πr2

f b, where rf is the effective radius of
fluid displacement. Therefore, we propose the straightforward
scaling of the average front velocity to be vf = drf /dt =√

[Q/(4πbt)].
For a given length scale l along the interface, as long as the

advective time is smaller than the diffusive time, the fluids
across that length l at the front remain unmixed, and the
instability is sustained. Thus, we estimate the characteristic
time τ (l) for mixing over a distance l along the interface by
imposing τadv = τdiff, which gives τ (l) = (Ql2)/(4πbD2

m).
We define the critical length scale lc as the size of the

dominant perturbation produced by the front instability, for a
given initial viscosity contrast M and injection rate Q. Once
the two fluids across this length lc are mixed by diffusion, we
expect the transition to take place. We define lc = 2πRi/(2nf ),
where Ri is the radius of the injection port, and nf is
the observed number of fingers (see Fig. 3 for a detailed
description of the determination of the number of fingers).
Experimentally, we find that nf ∼ Q2/3M1/2 (Fig. 4). Thus,
lc ∼ Q−2/3M−1/2, and inserting this result into the expression
for τ (l), the crossover time scales as

τ× ∼ Q−1/3M−1. (1)

This result is in agreement with our observations: The
crossover to the regime of radial expansion happens earlier
for higher injection rates (Fig. 4 inset).

We now compare our scalings for lc derived experimentally
with the results of linear stability analysis for this flow
configuration [33]: The state of the system is represented by
the sum of a stable solution (corresponding to M = 1) and
small perturbations that are decomposed into Fourier modes
with wave number n. It has been shown that the instability
amplifies those perturbations and the growth rate σ of their

modes scales as

σ = log M
√

Pe√
π

(
1 −

√
Pe

n

)
− n2

Pe
, (2)

where the Péclet number is defined as Pe = Q/(bDm) [33], so
for constant gap thickness b, Pe ∼ Q. The perturbation growth
rate σ is negative for low and high values of the wave number
n, which means that perturbations (fingers) that are too wide or
too narrow are not amplified. The most unstable wave number
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FIG. 4. (Color online) Experimental measurements of number of
fingers nf as a function of injection rate Q for all mobility ratios M

tested. The number of fingers scales as Q2/3M1/2 (the dashed line
denotes a Q2/3 scaling). Inset: Evolution of nf with time for M = 10
and five different values of Q. For all injection rates, nf first increases
as a result of tip splitting, but then stabilizes around the crossover time
(marked with a red cross for each experiment).
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FIG. 5. (Color online) Rescaled interface length vs rescaled time,
for M = 10. By rescaling each data set with the crossover time
[Eq. (1)] and the interface length expected at this crossover time
[Eq. (3)], the data sets collapse onto a single curve, and the crossover
into the second regime occurs at t/τ× ≈ 1. Inset: The same rescaling
applied to all the experimental data: M = 5,10,15,20,25 (different
colors) for the five different injection rates (different symbols).

nmax [the maximum of Eq. (2); Fig. 4 inset] corresponds
to the fastest growing, and therefore dominant, perturbation
wavelength of the system. From Eq. (2), the scaling of the most
unstable wave number nmax with Q is found to be Q2/3 and
with M to be (log M)1/3. The scaling with injection rate (and
therefore with Péclet number) from experimental observations
is in agreement with the linear stability analysis. This is not the
case, however, for the scaling with viscosity ratio—something
that can be attributed to the fact that the experiments are
conducted well into the nonlinear regime.

The interface length � at τ×. We estimate the total interface
length � as the product of the number of fingers nf and the
average finger length lf , � ∼ nf lf . As discussed above, the
number of fingers nf scales as Q2/3M1/2.

The average finger length at the crossover time is obtained
by integrating the average tip velocity uf in time. We estimate
uf as the growth rate σ of the most unstable wave number,
n = nmax, from Eq. (2). Substituting in the observed scalings
nf ∼ nmax, and assuming that the average tip velocity is

constant in time, uf (t) ∼ log M Pe1/2, the length of the fingers
at the crossover time scales as lf (t = τ×) ∼ log M Pe1/2 τ×.
Substituting this into the expression for interface length at
the crossover time, we get an overall scaling of �(t = τ×) ∼
M1/2 log M Qα , where α is the sum of the exponents for
the number and average length of fingers: α = 2/3 + 1/2 −
1/3 = 5/6. Thus, at the crossover time τ×, the interface length
scales as

�× ∼ nf lf ∼ M1/2 log M Q5/6. (3)

These findings provide a general picture of the dynamics
of the interface length � across the range of experimental
conditions investigated. By rescaling time with the crossover
time τ× [Eq. (1)] and the interface length by �× [Eq. (3)], we
find that the different curves of � vs t collapse onto a single
curve (Fig. 5). For t/τ× < 1, the interface length grows linearly
in the absence of fluid mixing at such early time, in analogy
with the Saffman-Taylor instability. For t/τ× > 1, the interface
length grows as t1/2, characteristic of proportional growth
(radial expansion with a frozen finger pattern), indicating that
the viscous fingering instability has shut down. The transition
from ∼t to ∼t1/2 scaling of interface length is apparent once
the appropriate length and time scales have been found—an
indication that the proposed behavior emerges more clearly
from the entire data set than from individual experiments. The
same results hold for all the other mobility ratios investigated
(Fig. 5 inset).

Our experimental observations and scaling analysis eluci-
date the underlying mechanisms responsible for the evolution
of interface length in miscible viscous fingering. These results
are crucial to understanding, describing, and predicting the
mixing dynamics [69]. The universality of our arguments—
balance between advection and diffusion at the displacement
front—suggests that our proposed framework can be applied
to other front geometries or other types of hydrodynamic
instability in miscible flows, such as Rayleigh-Bénard, and
density-driven convection in porous media [4,12,70,71].

Beyond their intrinsic interest for the understanding of a
fundamental hydrodynamic instability [14,15,51,56,57], our
results suggest that the shutdown of the viscous fingering
instability in a radial configuration could be important for
predicting the effectiveness of enhanced oil recovery by mis-
cible flooding [7,72], where well-to-well flows are dominated
by radial displacements during the early stages of the flood
[52,53,73].
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