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Abstract
Is visual cortex made up of general-purpose information processing machinery, or does it

consist of a collection of specialized modules? If prior knowledge, acquired from learning a

set of objects is only transferable to new objects that share properties with the old, then the

recognition system’s optimal organization must be one containing specialized modules for

different object classes. Our analysis starts from a premise we call the invariance hypothe-

sis: that the computational goal of the ventral stream is to compute an invariant-to-transfor-

mations and discriminative signature for recognition. The key condition enabling

approximate transfer of invariance without sacrificing discriminability turns out to be that the

learned and novel objects transform similarly. This implies that the optimal recognition sys-

tem must contain subsystems trained only with data from similarly-transforming objects and

suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA).

Furthermore, we can define an index of transformation-compatibility, computable from vid-

eos, that can be combined with information about the statistics of natural vision to yield pre-

dictions for which object categories ought to have domain-specific regions in agreement

with the available data. The result is a unifying account linking the large literature on view-

based recognition with the wealth of experimental evidence concerning domain-specific

regions.

Author Summary

Domain-specific regions, like the fusiform face area, are a prominent feature of ventral
visual cortex organization. Despite decades of interest from a large number of investigators
employing diverse methods, there has been surprisingly little theoretical work on “why”
the ventral stream may adopt this modular organization. In this study we propose a
computational account of the role played by domain-specific regions in ventral stream
function. It follows from a new theoretical analysis of the recognition problem which high-
lights the importance of building representations that are robust to class-specific transfor-
mations. These results provide a unifying account linking neuroimaging and
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neuropsychology-based ideas of domain-specific regions to the psychophysics and electro-
physiology-oriented literature on view-based object recognition and invariance.

Introduction
The discovery of category-selective patches in the ventral stream—e.g., the fusiform face area
(FFA)—is one of the most robust experimental findings in visual neuroscience [1–6]. It has
also generated significant controversy. From a computational perspective, much of the debate
hinges on the question of whether the algorithm implemented by the ventral stream requires
subsystems or modules dedicated to the processing of a single class of stimuli [7, 8]. The alter-
native account holds that visual representations are distributed over many regions [9, 10], and
the clustering of category selectivity is not, in itself, functional. Instead, it arises from the inter-
action of biological constraints like anatomically fixed inter-region connectivity and competi-
tive plasticity mechanisms [11, 12] or the center-periphery organization of visual cortex
[13–17].

The interaction of three factors is thought to give rise to properties of the ventral visual
pathway: (1) The computational task; (2) constraints of anatomy and physiology; and (3) the
statistics of the visual environment [18–22]. Differing presuppositions concerning their relative
weighting lead to quite different models of the origin of category-selective regions. If the main
driver is thought to be the visual environment (factor 3), then perceptual expertise-based
accounts of category selective regions are attractive [23–25]. Alternatively, mechanistic models
show how constraints of the neural “hardware” (factor 2) could explain category selectivity [12,
26, 27]. Contrasting with both of these, the perspective of the present paper is one in which
computational factors are the main reason for the clustering of category-selective neurons.

The lion’s share of computational modeling in this area has been based on factors 2 and 3.
These models seek to explain category selective regions as the inevitable outcome of the inter-
action between functional processes; typically competitive plasticity, wiring constraints, e.g.,
local connectivity, and assumptions about the system’s inputs [12, 26–28]. Mechanistic models
of category selectivity may even be able to account for the neuropsychology [29, 30] and behav-
ioral [31, 32] results long believed to support modularity.

Another line of evidence seems to explain away the category selective regions. The large-
scale topography of object representation is reproducible across subjects [33]. For instance, the
scene-selective parahippocampal place area (PPA) is consistently medial to the FFA. To explain
this remarkable reproducibility, it has been proposed that the center-periphery organization of
early visual areas extends to the later object-selective regions of the ventral stream [13–15, 17].
In particular, the FFA and other face-selective region are associated with an extension of the
central representation, and PPA with the peripheral representation. Consistent with these find-
ings, it has also been argued that real-world size is the organizing principle [16]. Larger objects,
e.g., furniture, evoke more medial activation while smaller objects, e.g., a coffee mug, elicit
more lateral activity.

Could category selective regions be explained as a consequence of the topography of visual
cortex? Both the eccentricity [15] and real-world size [16] hypotheses correctly predict that
houses and faces will be represented at opposite ends of the medial-lateral organizing axis.
Since eccentricity of presentation is linked with acuity demands, the differing eccentricity pro-
files across object categories may be able to explain the clustering. However, such accounts
offer no way of interpreting macaque results indicating multi-stage processing hierarchies [17,
34]. If clustering was a secondary effect driven by acuity demands, then it would be difficult to
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explain why, for instance, the macaque face-processing system consists of a hierarchy of
patches that are preferentially connected with one another [35].

In macaques, there are 6 discrete face-selective regions in the ventral visual pathway, one
posterior lateral face patch (PL), two middle face patches (lateral- ML and fundus- MF), and
three anterior face patches, the anterior fundus (AF), anterior lateral (AL), and anterior medial
(AM) patches [2, 36]. At least some of these patches are organized into a feedforward hierar-
chy. Visual stimulation evokes a change in the local field potential* 20 ms earlier in ML/MF
than in patch AM [34]. Consistent with a hierarchical organization involving information pass-
ing fromML/MF to AM via AL, electrical stimulation of ML elicits a response in AL and stimu-
lation in AL elicits a response in AM [35]. In addition, spatial position invariance increases
fromML/MF to AL, and increases further to AM [34] as expected for a feedforward processing
hierarchy. The firing rates of neurons in ML/MF are most strongly modulated by face view-
point. Further along the hierarchy, in patch AM, cells are highly selective for individual faces
and collectively provide a representation of face identity that tolerates substantial changes in
viewpoint [34].

Freiwald and Tsao argued that the network of face patches is functional. Response patterns
of face patch neurons are consequences of the role they play in the algorithm implemented by
the ventral stream. Their results suggest that the face network computes a representation of
faces that is—as much as possible—invariant to 3D rotation-in-depth (viewpoint), and that
this representation may underlie face identification behavior [34].

We carry out our investigation within the framework provided by a recent theory of invari-
ant object recognition in hierarchical feedforward architectures [37]. It is broadly in accord
with other recent perspectives on the ventral stream and the problem of object recognition [22,
38]. The full theory has implications for many outstanding questions that are not directly
related to the question of domain specificity we consider here. In other work, it has been
shown to yield predictions concerning the cortical magnification factor and visual crowding
[39]. It has also been used to motivate novel algorithms in computer vision and speech recogni-
tion that perform competitively with the state-of-the-art on difficult benchmark tasks [40–44].
The same theory, with the additional assumption of a particular Hebbian learning rule, can be
used to derive qualitative receptive field properties. The predictions include Gabor-like tuning
in early stages of the visual hierarchy [45, 46] and mirror-symmetric orientation tuning curves
in the penultimate stage of a face-specific hierarchy computing a view-tolerant representation
(as in [34]) [46]. A full account of the new theory is outside the scope of the present work; we
refer the interested reader to the references—especially [37] for details.

Note that the theory only applies to the first feedforward pass of information, from the
onset of the image to the arrival of its representation in IT cortex approximately 100 ms later.
For a recent review of evidence that the feedforward pass computes invariant representations,
see [22]. For an alternative perspective, see [11]. Though note also, contrary to a claim in that
review, position dependence is fully compatible with the class of models we consider here
(including HMAX). [39, 47] explicitly model eccentricity dependence in this framework.

Our account of domain specificity is motivated by the following questions: How can past
visual experience be leveraged to improve future recognition of novel individuals? Is any past
experience useful for improving at-a-glance recognition of any new object? Or perhaps past
experience only transfers to similar objects? Could it even be possible that past experience with
certain objects actually impedes the recognition of others?

The invariance hypothesis holds that the computational goal of the ventral stream is to com-
pute a representation that is unique to each object and invariant to identity-preserving trans-
formations. If we accept this premise, the key question becomes: Can transformations learned
on one set of objects be reliably transferred to another set of objects? For many visual tasks, the
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variability due to transformations in a single individual’s appearance is considerably larger
than the variability between individuals. These tasks have been called “subordinate level identi-
fication” tasks, to distinguish them from between-category (basic-level) tasks. Without prior
knowledge of transformations, the subordinate-level task of recognizing a novel individual
from a single example image is hopelessly under-constrained.

The main thrust of our argument—to be developed below—is this: The ventral stream com-
putes object representations that are invariant to transformations. Some transformations are
generic; the ventral stream could learn to discount these from experience with any objects.
Translation and scaling are both generic (all 2D affine transformations are). However, it is also
necessary to discount many transformations that do not have this property. Many common
transformations are not generic; 3D-rotation-in-depth is the primary example we consider
here (see S1 Text for more examples). It is not possible to achieve a perfectly view-invariant
representation from one 2D example. Out-of-plane rotation depends on information that is
not available in a single image, e.g. the object’s 3D structure. Despite this, approximate invari-
ance can still be achieved using prior knowledge of how similar objects transform. In this way,
approximate invariance learned on some members of a visual category can facilitate the identi-
fication of unfamiliar category members. But, this transferability only goes so far.

Under this account, the key factor determining which objects could be productively grouped
together in a domain-specific subsystem is their transformation compatibility. We propose an
operational definition that can be computed from videos of transforming objects. Then we use
it to explore the question of why certain object classes get dedicated brain regions, e.g., faces
and bodies, while others (apparently) do not.

We used 3D graphics to generate a library of videos of objects from various categories
undergoing rotations in depth. The model of visual development (or evolution) we consider is
highly stylized and non-mechanistic. It is just a clustering algorithm based on our operational
definition of transformation compatibility. Despite its simplicity, using the library of depth-
rotation videos as inputs, the model predicts large clusters consisting entirely of faces and
bodies.

The other objects we tested—vehicles, chairs, and animals—ended up in a large number of
small clusters, each consisting of just a few objects. This suggests a novel interpretation of the
lateral occipital complex (LOC). Rather than being a “generalist” subsystem, responsible for
recognizing objects from diverse categories, our results are consistent with LOC actually being
a heterogeneous region that consists of a large number of domain-specific regions too small to
be detected with fMRI.

These considerations lead to a view of the ventral visual pathway in which category-selective
regions implement a modularity of content rather than process [48, 49]. Our argument is con-
sistent with process-based accounts, but does not require us to claim that faces are automati-
cally processed in ways that are inapplicable to objects (e.g., gaze detection or gender detection)
as claimed by [11]. Nor does it commit us to claiming there is a region that is specialized for
the process of subordinate-level identification—an underlying assumption of some expertise-
based models [50]. Rather, we show here that the invariance hypothesis implies an algorithmic
role that could be fulfilled by the mere clustering of selectivity. Consistent with the idea of a
canonical cortical microcircuit [51, 52], the computations performed in each subsystem may
be quite similar to the computations performed in the others. To a first approximation, the
only difference between ventral stream modules could be the object category for which they are
responsible.
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Results

Theory sketch
To make the invariance hypothesis precise, let gθ denote a transformation with parameter θ.
Two images I, I0 depict the same object whenever 9θ, such that I0 = gθ I. For a small positive
constant ε, the invariance hypothesis is the claim that the computational goal of the ventral
stream is to compute a function μ, called a signature, such that

jmðgyIÞ � mðIÞj � �: ð1Þ

We say that a signature for which Eq (1) is satisfied (for all θ) is �-invariant to the family of
transformations {gθ}. An �-invariant signature that is unique to an object can be used to dis-
criminate images of that object from images of other objects. In the context of a hierarchical
model of the ventral stream, the “top level” representation of an image is its signature.

One approach to modeling the ventral stream, first taken by Fukushima’s Neocognitron
[53], and followed by many other models [54–58], is based on iterating a basic module inspired
by Hubel and Wiesel’s proposal for the connectivity of V1 simple (AND-like) and complex
(OR-like) cells. In the case of HMAX [55], each “HW”-module consists of one C-unit (corre-
sponding to a complex cell) and all its afferent S-units (corresponding to simple cells); see

Fig 1. Orbits and HW-modules. (A) Illustration that the orbit with respect to in-plane rotation is invariant and unique. (B) Three HW-modules are shown. In
this example, each HW-module pools over a 9 × 3 region of the image. Each S-unit stores a 3 × 3 template and there are three S-units per HW-module.

doi:10.1371/journal.pcbi.1004390.g001
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Fig 1B. The response of an S-unit to an image I is typically modeled by a dot product with a
stored template t, indicated here by hI, ti. Since hI, ti is maximal when I = t (assuming that I
and t have unit norm), we can think of an S-unit’s response as a measure of I’s similarity to t.
The module corresponding to Hubel and Wiesel’s original proposal had several S-units, each
detecting their stored template at a different position. Let g~x be the translation operator: when
applied to an image, g~x returns its translation by~x . This lets us write the response of the specific
S-unit which signals the presence of template t at position~x as hI; g~x ti. Then, introducing a
nonlinear pooling function, which for HMAX would be the max function, the response C(I) of
the C-unit (equivalently: the output of the HW-module, one element of the signature) is given
by

CðIÞ ¼ maxiðhI; g~xi tiÞ ð2Þ

where the max is taken over all the S-units in the module. The region of space covered by a
module’s S-units is called its pooling domain and the C-unit is said to pool the responses of its
afferent S-units. HMAX, as well as more recent models based on this approach typically also
pool over a range of scales [56–58]. In most cases, the first layer pooling domains are small
intervals of translation and scaling. In the highest layers the pooling domains are usually global,
i.e. over the entire range of translation and scaling that is visible during a single fixation. Notice
also that this formulation is more general than HMAX. It applies to a wide class of hierarchical
models of cortical computation, e.g., [53, 58–60]. For instance, t need not be directly interpret-
able as a template depicting an image of a certain object. A convolutional neural network in the
sense of [61, 62] is obtained by choosing t to be a “prototype” obtained as the outcome of a gra-
dient descent-based optimization procedure. In what follows we use the HW-module language
since it is convenient for stating the domain-specificity argument.

HW-modules can compute approximately invariant representations for a broad class of
transformations [37]. However, and this is a key fact: the conditions that must be met are dif-
ferent for different transformations. Following Anselmi et al. [37], we can distinguish two
“regimes”. The first regime applies to the important special case of transformations with a
group structure, e.g., 2D affine transformations. The second regime applies more broadly to
any locally-affine transformation.

For a family of transformations {gθ}, define the orbit of an image I to be the set OI = {gθ I, θ
2R}. Anselmi et al. [37] proved that HW-modules can pool over other transformations besides
translation and scaling. It is possible to pool over any transformation for which orbits of tem-
plate objects are available. A biologically-plausible way to learn the pooling connections within
an HW-module could be to associate temporally adjacent frames of the video of visual experi-
ence (as in e.g., [63–68]). In both regimes, the following condition is required for the invariance
obtained from the orbits of a set of template objects to generalize to new objects. For all gθ I 2
OI there is a corresponding gθ0 t 2 Ot such that

hgyI; ti ¼ hI; gy0 ti ð3Þ

In the first regime, Eq (3) holds regardless of the level of similarity between the templates and
test objects. Almost any templates can be used to recognize any other images invariantly to
group transformations (see S1 Text). Note also that this is consistent with reports in the litera-
ture of strong performance achieved using random filters in convolutional neural networks
[69–71]. Fig 1A illustrates that the orbit with respect to in-plane rotation is invariant.

In the second regime, corresponding to non-group transformations, it is not possible to
achieve a perfect invariance. These transformations often depend on information that is not
available in a single image. For example, rotation in depth depends on an object’s 3D structure
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and illumination changes depend on its material properties (see S1 Text). Despite this, approxi-
mate invariance to smooth non-group transformations can still be achieved using prior knowl-
edge of how similar objects transform. Second-regime transformations are class-specific, e.g.,
the transformation of object appearance caused by a rotation in depth is not the same 2D trans-
formation for two objects with different 3D structures. However, by restricting to a class where
all the objects have similar 3D structure, all objects do rotate (approximately) the same way.
Moreover, this commonality can be exploited to transfer the invariance learned from experi-
ence with (orbits of) template objects to novel objects seen only from a single example view.

Simulations: Core predictions
The theory makes two core predictions:

1. Learned invariance to group transformations should be transferable from any set of stimuli
to any other.

2. For non-group transformations, approximate invariance will transfer within certain object
classes. In the case of 3D depth-rotation, it will transfer within classes for which all members
share a common 3D structure.

Both core predictions were addressed with tests of transformation-tolerant recognition
based on a single example view. Two image sets were created to test the first core prediction:
(A) 100 faces derived from the Max-Planck institute face dataset [72]. Each face was oval-
cropped to remove external features and normalized so that all images had the same mean and
variance over pixels (as in [73]). (B) 100 random greyscale noise patterns. 29 images of each
face and random noise pattern were created by placing the object over the horizontal interval
from 40 pixels to the left of the image’s center up to 40 pixels to the right of the image’s center
in increments of 5 pixels. All images were 256 × 256 pixels.

Three image sets were created to test the second core prediction: (A) 40 untextured face
models were rendered at each orientation in 5° increments from −95° to 95°. (B) 20 objects
sharing a common gross structure (a conical shape) and differing from one another by the
exact placement and size of smaller bumps. (C) 20 objects sharing gross structure consisting of
a central pyramid on a flat plane and two walls on either side. Individuals differed from one
another by the location and slant of several additional bumps. The face models were generated
using Facegen [74]. Class B and C models were generated with Blender [75]. All rendering was
also done with Blender and used perspective projection at a resolution of 256 × 256 pixels.

The tests of transformation-tolerant recognition from a single example were performed as
follows. In each “block”, the model was shown a reference image and a set of query images. The
reference image always depicted an object under the transformation with the median parame-
ter value. That is, for rotation in depth of faces, it was a frontal face (0°) and for translation, the
object was located in the center of the visual field. Each query image either depicted the same
object as the reference image (target case) or a different object (distractor case). In each block,
each query image was shown at each position or angle in the block’s testing interval. All testing
intervals were symmetric about 0. Using a sequence of testing intervals ordered by inclusion, it
was possible to investigate how tolerance declines with increasingly demanding transforma-
tions. The radius of the testing interval is the abscissa of the plots in Figs 2 and 3.

For each repetition of the translation experiments, 30 objects were randomly sampled from
the template class and 30 objects from the testing class. For each repetition of the depth-rota-
tion experiments, 10 objects were sampled from template and testing classes that were always
disjoint from one another.

Invariance and Domain Specificity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004390 October 23, 2015 7 / 29



Fig 2. Translation invariance. Bottom panel (II): Example images from the two classes. The faces were obtained from the Max-Planck Institute dataset [72]
and then contrast normalized and translated over a black background. Top panel (I): The left column shows the results of a test of translation invariance for
faces and the right column shows the same test for random noise patterns. The view-based model (blue curve) was built using templates from class A in the
top row and class B in the bottom row. The abscissa of each plot shows the maximum invariance range (a distance in pixels) over which target and distractor
images were presented. The view-based model was never tested on any of the images that were used as templates. Error bars (±1 standard deviation) were
computed over 5 repetitions of the experiment using different (always disjoint) sets of template and testing images.

doi:10.1371/journal.pcbi.1004390.g002
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Fig 3. Class-specific transfer of depth-rotation invariance. Bottom panel (II): Example images from the three classes. Top panel (I): The left column
shows the results of a test of 3D rotation invariance on faces (class A), the middle column shows results for class B and the right column shows the results for
class C. The view-based model (blue curve) was built using images from class A in the top row, class B in the middle row, and class C in the bottom row. The
abscissa of each plot shows the maximum invariance range (degrees of rotation away from the frontal face) over which target and distractor images were
presented. The view-based model was never tested on any of the images that were used as templates. Error bars (±1 standard deviation) were computed
over 20 cross validation runs using different choices of template and test images. Only the plots on the diagonal (train A—test A, train B—test B, train C- test
C) show an improvement of the view-based model over the pixel representation. That is, only when the test images transform similarly to the templates is
there any benefit from pooling.

doi:10.1371/journal.pcbi.1004390.g003
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Networks consisting of KHW-modules were constructed where K was the number of sam-
pled template objects. The construction followed the procedure described in the method sec-
tion below. Signatures computed by these networks are vectors with K elements. In each block,
the signature of the reference image was compared to the signature of each query image by its
Pearson correlation and ranked accordingly. This ranked representation provides a convenient
way to compute the ROC curve since it admits acceptance thresholds in terms of ranks (as
opposed to real numbers). Thus, the final measure of transformation tolerance reported on the
ordinate of the plots in Figs 2 and 3 is the mean area under the ROC curve (AUC) over all
choices of reference object and repetitions of the experiment with different training / test set
splits. Since AUC is computed by integrating over acceptance thresholds, it is a bias free statis-
tic. In this case it is analogous to d0 for the corresponding 2AFC same-different task. When per-
formance is invariant, AUC as a function of testing interval radius will be a flat line.

If there is imperfect invariance (�-invariance), then performance will decline as the radius of
the testing interval is increased. To assess imperfect invariance, it is necessary to compare with
an appropriate baseline at whatever performance level would be achieved by similarity in the
input. Since any choice of input encoding induces its own similarity metric, the most straight-
forward way to obtain interpretable results is to use the raw pixel representation as the baseline
(red curves in Figs 2 and 3). Thus, a one layer architecture was used for these simulations: each
HW-module directly receives the pixel representation of the input.

The first core prediction was addressed by testing translation-tolerant recognition with
models trained using random noise templates to identify faces and vice versa (Fig 2). The
results in the plots on the diagonal for the view-based model (blue curve) indicate that face
templates can indeed be used to identify other faces invariantly to translation; and random
noise templates can be used to identify random noise invariantly to translation. The key predic-
tion of the theory concerns the off-diagonal plots. In those cases, templates from faces were
used to recognize noise patterns and noise was used to recognize faces. Performance was
invariant in both cases; the blue curves in Fig 2 were flat. This result was in accord with the the-
ory’s prediction for the group transformation case: the templates need not resemble the test
images.

The second core prediction concerning class-specific transfer of learned �-invariance for
non-group transformations was addressed by analogous experiments with 3D depth-rotation.
Transfer of invariance both within and between classes was assessed using 3 different object
classes: faces and two synthetic classes. The level of rotation tolerance achieved on this difficult
task was the amount by which performance of the view-based model (blue curve) exceeded the
raw pixel representation’s performance for the plots on the diagonal of Fig 3. The off-diagonal
plots show the deleterious effect of using templates from the wrong class.

There are many other non-group transformations besides depth-rotation. S1 Text describes
additional simulations for changes in illumination. These depend on material properties. It
also describes simulations of pose (standing, sitting, etc)-invariant body recognition.

Transformation compatibility
How can object experience—i.e., templates—be assigned to subsystems in order to facilitate
productive transfer? If each individual object is assigned to a separate group, the negative
effects of using templates from the wrong class are avoided; but past experience can never be
transferred to new objects. So far we have only said that “3D structure” determines which
objects can be productively grouped together. In this section we derive a more concrete crite-
rion: transformation compatibility.

Invariance and Domain Specificity
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Given a set of objects sampled from a category, what determines when HW-modules encod-
ing templates for a few members of the class can be used to approximately invariantly recognize
unfamiliar members of the category from a single example view? Recall that the transfer of
invariance depends on the condition given by Eq (3). For non-group transformations this
turns out to require that the objects “transform the same way” (see S1 Text for the proof; the
notion of a “nice class” is also related [76, 77]). Given a set of orbits of different objects (only

the image sequences are needed), we would like to have an index �c that measures how similarly

the objects in the class transform. If an object category has too low �c, then there would be no

gain from creating a subsystem for that category. Whenever a category has high �c, it is a candi-
date for having a dedicated subsystem.

The transformation compatibility of two objects A and B is defined as follows. Consider a
smooth transformation T parameterized by i. Since Tmay be class-specific, let TA denote its
application to object A. One of the requirements that must be satisfied for �-invariance to
transfer from an object A to an object B is that TA and TB have equal Jacobians (see S1 Text).
This suggests an operational definition of the transformation compatibility between two
objects ψ(A, B).

Let Ai be the ith frame of the video of object A transforming and Bi be the ith frame of the
video of object B transforming. The Jacobian can be approximated by the “video” of difference
images: JA(i) = jAi − Ai+1j (8i). Then define the “instantaneous” transformation compatibility
ψ(A, B)(i): = hJA(i), JB(i)i. Thus for a range of parameters i 2 R = [−r, r], the empirical transfor-
mation compatibility between A and B is

cðA;BÞ :¼ 1

jRj
Xr

i¼�r

hJAðiÞ; JBðiÞi: ð4Þ

The index �c that we compute for sets of objects is the mean value of ψ(A, B) taken over all
pairs A, B from the set. For very large sets of objects it could be estimated by randomly sam-
pling pairs. In the present case, we were able to use all pairs in the available data.

For the case of rotation in depth, we used 3D modeling / rendering software [75] to obtain

(dense samples from) orbits. We computed the transformation compatibility index �c for sev-

eral datasets from different sources. Faces had the highest �c of any naturalistic category we
tested—unsurprising since recognizability likely influenced face evolution. A set of chair

objects (from [78]) had very low �c implying no benefit would be obtained from a chair-specific
region. More interestingly, we tested a set of synthetic “wire” objects, very similar to those used
in many classic experiments on view-based recognition e.g. [79–81]. We found that the wire

objects had the lowest �c of any category we tested; experience with familiar wire objects does
not transfer to new wire objects. Therefore it is never productive to group them into a
subsystem.

Simulations: The domain specific architecture of visual cortex
The above considerations suggest an unsupervised strategy for sorting object experience into
subsystems. An online ψ-based clustering algorithm could sort each newly learned object
representation into the subsystem (cluster) with which it transforms most compatibly. With
some extra assumptions beyond those required for the main theory, such an algorithm could
be regarded as a very stylized model of the development (or evolution) of visual cortex. In this
context we asked: Is it possible to derive predictions for the specific object classes that will “get
their own private piece of real estate in the brain” [8] from the invariance hypothesis?

The extra assumptions required at this point are as follows.
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1. Cortical object representations (HW-modules) are sampled from the distributionD of
objects and their transformations encountered under natural visual experience.

2. Subsystems are localized on cortex.

3. The number of HW-modules in a local region and the proportion belonging to different cat-
egories determines the predicted BOLD response for contrasts between the categories. For
example, a cluster with 90% face HW-modules, 10% car HW-modules, and no other HW-
modules would respond strongly in the faces—cars contrast, but not as strongly as it would
in a faces—airplanes contrast. We assume that clusters containing very few HW-modules
are too small to be imaged with the resolution of fMRI—though they may be visible with
other methods that have higher resolution.

Any model that can predict which specific categories will have domain-specific regions
must depend on contingent facts about the world, in particular, the—difficult to approximate
—distributionD of objects and their transformations encountered during natural vision. Con-
sider the following: HW-modules may be assigned to cluster near one another on cortex in

order to maximize the transformation compatibility �c of the set of objects represented in each
local neighborhood. Whenever a new object is learned, its HW-module could be placed on cor-
tex in the neighborhood with which it transforms most compatibly. Assume a new object is
sampled fromD at each iteration. We conjecture that the resulting cortex model obtained after
running this for some time would have a small number of very large clusters, probably corre-
sponding to faces, bodies, and orthography in a literate brain’s native language. The rest of the
objects would be encoded by HW-modules at random locations. Since neuroimaging methods
like fMRI have limited resolution, only the largest clusters would be visible to them. Cortical

regions with low �c would appear in neuroimaging experiments as generic “object regions” like
LOC [82].

Since we did not attempt the difficult task of sampling fromD, we were not able to test the
conjecture directly. However, by assuming particular distributions and sampling from a large
library of 3D models [74, 78], we can study the special case where the only transformation is
rotation in depth. Each object was rendered at a range of viewpoints: −90° to 90° in increments
of 5 degrees. The objects were drawn from five categories: faces, bodies, animals, chairs, and
vehicles. Rather than trying to estimate the frequencies with which these objects occur in natu-
ral vision, we instead aimed for predictions that could be shown to be robust over a range of
assumptions onD. Thus we repeated the online clustering experiment three times, each using
a different object distribution (see S2 Table, and S6, S7, S8, S9, and S10 Figs).

The ψ-based clustering algorithm we used can be summarized as follows: Consider a model
consisting of a number of subsystems. When an object is learned, add its newly-created HW-
module to the subsystem with which its transformations are most compatible. If the new
object’s average compatibility with all the existing subsystems is below a threshold, then create
a new subsystem for the newly learned object. Repeat this procedure for each object—sampled
according to the distribution of objects encountered in natural vision (or whatever approxima-
tion is available). See S1 Text for the algorithm’s pseudocode. Fig 4 shows example clusters
obtained by this method.

Robust face and body clusters always appeared (Fig 5, S8, S9, and S10 Figs). Due to the

strong effect of �c, a face cluster formed even when the distribution of objects was biased
against faces as in Fig 5. Most of the other objects ended up in very small clusters consisting of
just a few objects. For the experiment of Figs 4 and 5, 16% of the bodies, 64% of the animals,
44% of the chairs, and 22% of the vehicles were in clusters consisting of just one object. No
faces ended up in single-object clusters.
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To confirm that ψ-based clustering is useful for object recognition with these images, we
compared the recognition performance of the subsystems to the complete system that was
trained using all available templates irrespective of their cluster assignment. We simulated two
recognition tasks: one basic-level categorization task, view-invariant cars vs. airplanes, and one
subordinate-level task, view-invariant face recognition. For these tests, each “trial” consisted of
a pair of images. In the face recognition task, the goal was to respond ‘same’ if the two images
depicted the same individual. In the cars vs. airplanes case, the goal was to respond ‘same’ if
both images depicted objects of the same category. In both cases, all the objects in the cluster
were used as templates; the test sets were completely disjoint. The classifier was the same as in
Figs 2 and 3. In this case, the threshold was optimized on a held out training set.

As expected from the theory, performance on the subordinate-level view-invariant face rec-
ognition task was significantly higher when the face cluster was used (Fig 5B). The basic-level
categorization task was performed to similar accuracy using any of the clusters (Fig 5C). This
confirms that invariance to class-specific transformations is only necessary for subordinate
level tasks.

Discussion
We explored implications of the hypothesis that achieving transformation invariance is the
main goal of the ventral stream. Invariance from a single example could be achieved for group
transformations in a generic way. However, for non-group transformations, only approximate
invariance is possible; and even for that, it is necessary to have experience with objects that
transform similarly. This implies that the optimal organization of the ventral stream is one that
facilitates the transfer of invariance within—but not between—object categories. Assuming
that a subsystem must reside in a localized cortical neighborhood, this could explain the func-
tion of domain-specific regions in the ventral stream’s recognition algorithm: to enable subor-
dinate level identification of novel objects from a single example.

Following on from our analysis implicating transformation compatibility as the key factor
determining when invariance can be productively transferred between objects, we simulated
the development of visual cortex using a clustering algorithm based on transformation compat-
ibility. This allowed us to address the question of why faces, bodies, and words get their own

Fig 4. Example clustering results. Three example clusters that developed in a simulation with an object distribution biased against faces (the same
simulation as in S8C, S9C, and S10C Figs).

doi:10.1371/journal.pcbi.1004390.g004
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dedicated regions but other object categories (apparently) do not [8]. This question has not
previously been the focus of theoretical study.

Despite the simplicity of our model, we showed that it robustly yields face and body clusters
across a range of object frequency assumptions. We also used the model to confirm two theo-
retical predictions: (1) that invariance to non-group transformations is only needed for subor-
dinate level identification; and (2) that clustering by transformation compatibility yields
subsystems that improve performance beyond that of the system trained using data from all
categories. These results motivate the the next phase of this work: building biologically-plausi-
ble models that learn from natural video. Such models automatically incorporate a better esti-
mate of the natural object distribution. Variants of these models may be able to quantitatively
reproduce human level performance on simultaneous multi-category subordinate level (i.e.,
fine-grained) visual recognition tasks and potentially find application in computer vision as
well as neuroscience. In [42], we report encouraging preliminary results along these lines.

Why are there domain-specific regions in later stages of the ventral stream hierarchy but
not in early visual areas [2, 3]? The templates used to implement invariance to group transfor-
mations need not be changed for different object classes while the templates implementing
non-group invariance are class-specific. Thus it is efficient to put the generic circuitry of the
first regime in the hierarchy’s early stages, postponing the need to branch to different domain-
specific regions tuned to specific object classes until later, i.e., more anterior, stages. In the
macaque face-processing system, category selectivity develops in a series of steps; posterior face
regions are less face selective than anterior ones [34, 83]. Additionally, there is a progression
from a view-specific face representation in earlier regions to a view-tolerant representation in
the most anterior region [34]. Both findings could be accounted for in a face-specific hierarchi-
cal model that increases in template size and pooling region size with each subsequent layer
(e.g., [41, 42, 84, 85]). The use of large face-specific templates may be an effective way to gate
the entrance to the face-specific subsystem so as to keep out spurious activations from non-
faces. The algorithmic effect of large face-specific templates is to confer tolerance to clutter [41,
42]. These results are particularly interesting in light of models showing that large face tem-
plates are sufficient to explain holistic effects observed in psychophysics experiments [73, 86].

As stated in the introduction, properties of the ventral stream are thought to be determined
by three factors: (1) computational and algorithmic constraints; (2) biological implementation
constraints; and (3) the contingencies of the visual environment [18–22]. Up to now, we have
stressed the contribution of factor (1) over the others. In particular, we have almost entirely
ignored factor (2). We now discuss the role played by anatomical considerations in this account
of ventral stream function.

That the the circuitry comprising a subsystem must be localized on cortex is a key assump-
tion of this work. In principle, any HW-module could be anywhere, as long as the wiring all
went to the right place. However, there are several reasons to think that the actual constraints

Fig 5. Simulation of the development of domain-specific regions. In this case the distribution of objects was biased against faces (faces were only 16 of
the 156 objects in this simulation). Depth-rotation is the only transformation used here. The main assumption is that the distance along cortex between two
HW-modules for two different templates is proportional to how similarly the two templates transform. See S8, S9, and S10 Figs for results of the analogous
simulations using different object distributions A.Multidimensional scaling plot based on pairwise transformation compatibility c. B. Results on a test of view-
invariant face verification (same-different matching). Each bar corresponds to a different cluster produced by an iterative clustering algorithm based on �c
which models visual development—see supplementary methods. The labels on the abscissa correspond to the dominant category in the cluster.C. Basic-
level categorization results: Cars versus airplanes. Error bars were obtained by repeating the experiment 5 times, presenting the objects in a different random
order during development and randomly choosing different objects for the test set.

doi:10.1371/journal.pcbi.1004390.g005
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under which the brain operates and its available information processing mechanisms favor a
situation in which, at each level of the hierarchy, all the specialized circuitry for one domain is
in a localized region of cortex, separate from the circuitry for other domains. Wiring length
considerations are likely to play a role here [87–90]. Another possibility is that localization on
cortex enables the use of neuromodulatory mechanisms that act on local neighborhoods of cor-
tex to affect all the circuitry for a particular domain at once [91].

There are other domain-specific regions in the ventral stream besides faces and bodies; we
consider several of them in light of our results here. It is possible that even more regions for
less-common (or less transformation-compatible) object classes would appear with higher res-
olution scans. One example may be the fruit area, discovered in macaques with high-field fMRI
[3].

1. Lateral Occipital Complex (LOC) [82]
These results imply that LOC is not really a dedicated region for general object processing.
Rather, it is a heterogeneous area of cortex containing many domain-specific regions too
small to be detected with the resolution of fMRI. It may also include clusters that are not
dominated by one object category as we sometimes observed appearing in simulations (see
Fig 4 and S1 Text).

2. The Visual Word Form Area (VWFA) [4]
In addition to the generic transformations that apply to all objects, printed words undergo
several non-generic transformations that never occur with other objects. We can read
despite the large image changes occurring when a page is viewed from a different angle.
Additionally, many properties of printed letters change with typeface, but our ability to read
—even in novel fonts—is preserved. Reading hand-written text poses an even more severe
version of the same computational problem. Thus, VWFA is well-accounted for by the
invariance hypothesis. Words are frequently-viewed stimuli which undergo class-specific
transformations. This account appears to be in accord with others in the literature [92, 93].

3. Parahippocampal Place Area (PPA) [94]
A recent study by Kornblith et al. describes properties of neurons in two macaque scene-
selective regions deemed the lateral and medial place patches (LPP and MPP) [95]. While
homology has not been definitively established, it seems likely that these regions are homol-
ogous to the human PPA [96]. Moreover, this scene-processing network may be analogous
to the face-processing hierarchy of [34]. In particular, MPP showed weaker effects of view-
point, depth, and objects than LPP. This is suggestive of a scene-processing hierarchy that
computes a representation of scene-identity that is (approximately) invariant to those fac-
tors. Any of them might be transformations for which this region is compatible in the sense
of our theory. One possibility, which we considered in preliminary work, is that invariant
perception of scene identity despite changes in monocular depth signals driven by traversing
a scene (e.g., linear perspective) could be discounted in the same manner as face viewpoint.
It is possible that putative scene-selective categories compute depth-tolerant representa-
tions. We confirmed this for the special case of long hallways differing in the placement of
objects along the walls: a view-based model that pools over images of template hallways can
be used to recognize novel hallways [97]. Furthermore, fast same-different judgements of
scene identity tolerate substantial changes in perspective depth [97]. Of course, this begs the
question: of what use would be a depth-invariant scene representation? One possibility
could be to provide a landmark representation suitable for anchoring a polar coordinate sys-
tem [98]. Intriguingly, [95] found that cells in the macaque scene-selective network were
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particularly sensitive to the presence of long straight lines—as might be expected in an inter-
mediate stage on the way to computing perspective invariance.

Is this proposal at odds with the literature emphasizing the view-dependence of human
vision when tested on subordinate level tasks with unfamiliar examples—e.g. [72, 79, 99]? We
believe it is consistent with most of this literature. We merely emphasize the substantial view-
tolerance achieved for certain object classes, while they emphasize the lack of complete invari-
ance. Their emphasis was appropriate in the context of earlier debates about view-invariance
[100–103], and before differences between the view-tolerance achieved on basic-level and sub-
ordinate-level tasks were fully appreciated [104–106].

The view-dependence observed in experiments with novel faces [72, 107] is consistent with
the predictions of our theory. The 3D structure of faces does not vary wildly within the class,
but there is still some significant variation. It is this variability in 3D structure within the class
that is the source of the imperfect performance in our simulations. Many psychophysical
experiments on viewpoint invariance were performed with synthetic “wire” objects defined
entirely by their 3D structure e.g., [79–81]. We found that they were by far, the least transfor-

mation-compatible (lowest �c) objects we tested (Table 1). Thus our proposal predicts particu-
larly weak performance on viewpoint-tolerance tasks with novel examples of these stimuli and
that is precisely what is observed [80].

Tarr and Gauthier (1998) found that learned viewpoint-dependent mechanisms could gen-
eralize across members of a homogenous object class [106]. They tested both homogenous
block-like objects, and several other classes of more complex novel shapes. They concluded
that this kind of generalization was restricted to visually similar objects. These results seem to
be consistent with our proposal. Additionally, our hypothesis predicts better within-class gen-

eralization for object classes with higher �c. That is, transformation compatibility, not visual
similarity per se, may be the factor influencing the extent of within-class generalization of
learned view-tolerance. Though, in practice, the two are usually correlated and hard to disen-
tangle. In a related experiment, Sinha and Poggio (1996) showed that the perception of an
ambiguous transformation’s rigidity could be biased by experience [108]. View-based accounts
of their results predict that the effect would generalize to novel objects of the same class. Since
this effect can be obtained with particularly simple stimuli, it might be possible to design them
so as to separate specific notions of visual similarity and transformation compatibility. In

Table 1. Table of transformation compatibilities. COIL-100 is a library of images of 100 common house-
hold items photographed from a range of orientations using a turntable [114]. The wire objects resemble
those used in psychophysics and physiology experiments: [79–81]. They were generated according to the
same protocol as in those studies.

Object class Transformation �c

Chairs Rotation in depth 0.00540

Fig 3 faces Rotation in depth 0.57600

Fig 3 class B Rotation in depth 0.95310

Fig 3 class C Rotation in depth 0.83800

Fig 3 all classes Rotation in depth 0.26520

COIL-100 [114] Rotation in depth 0.00630

Wire objects [80] Rotation in depth -0.00007

doi:10.1371/journal.pcbi.1004390.t001
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accord with our prediction that group transformations ought to be discounted earlier in the
recognition process, [108] found that their effect was spared by presenting the training and test
objects at different scales.

Many authors have argued that seemingly domain-specific regions are actually explained by
perceptual expertise [24–27, 109]. Our account is compatible with some aspects of this idea.
However, it is largely agnostic about whether the sorting of object classes into subsystems takes
place over the course of evolution or during an organism’s lifetime. A combination of both is
also possible—e.g. as in [110]. That said, our proposal does intersect this debate in several
ways.

1. Our theory agrees with most expertise-based accounts that subordinate-level identification
is the relevant task.

2. The expertise argument has always relied quite heavily on the idea that discriminating indi-
viduals from similar distractors is somehow difficult. Our account allows greater precision:
the precise component of difficulty that matters is invariance to non-group
transformations.

3. Our theory predicts a critical factor determining which objects could be productively
grouped into a module that is clearly formulated and operationalized: the transformation

compatibility �c.

Under our account, domain-specific regions arise because they are needed in order to facili-
tate the generalization of learned transformation invariance to novel category-members. Most
studies of clustering and perceptual expertise do not use this task. However, Srihasam et al.
tested a version of the perceptual expertise hypothesis that could be understood in this way
[111]. They trained macaques to associate reward amounts with letters and numerals (26 sym-
bols). In each trial, a pair of symbols were displayed and the task was to pick the symbol associ-
ated with greater reward. Importantly, the 3-year training process occurred in the animal’s
home cage and eye tracking was not used. Thus, the distance and angle with which the monkey
subjects viewed the stimuli was not tightly controlled during training. The symbols would have
projected onto their retina in many different ways. These are exactly the same transformations
that we proposed are the reason for the VWFA. In accord with our prediction, Srihasam et al.
found that this training experience caused the formation of category-selective regions in the
temporal lobe. Furthermore, the same regions were activated selectively irrespective of stimulus
size, position, and font. Interestingly, this result only held for juvenile macaques, implying
there may be a critical period for cluster formation [111].

Our main prediction is the link between transformation compatibility and domain-specific
clustering. Thus one way to test whether this account of expertise-related clustering is correct
could be to train monkeys to recognize individual objects of unfamiliar classes invariantly to
3D rotation in depth. The task should involve generalization from a single example view of a
novel exemplar. The training procedure should involve exposure to videos of a large number of
objects from each category undergoing rotations in depth. Several categories with different
transformation compatibilities should be used. The prediction is that after training there will
be greater clustering of selectivity for the classes with greater average transformation compati-

bility (higher �c). Furthermore, if one could record from neurons in the category-selective clus-
ters, the theory would predict some similar properties to the macaque face-processing
hierarchy: several interconnected regions progressing from view-specificity in the earlier
regions to view-tolerance in the later regions. However, unless the novel object classes actually
transform like faces, the clusters produced by expertise should be parallel to the face clusters
but separate from them.
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How should these results be understood in light of recent reports of very strong perfor-
mance of “deep learning” computer vision systems employing apparently generic circuitry for
object recognition tasks e.g., [62, 112]? We think that exhaustive greedy optimization of
parameters (weights) over a large labeled data set may have found a network similar to the
architecture we describe since all the basic structural elements (neurons with nonlinearities,
pooling, dot products, layers) required by our theory are identical to the elements in deep
learning networks. If this were true, our theory would also explain what these networks do and
why they work.

Methods

Training HW-architectures
An HW-architecture refers to a feedforward hierarchical network of HW-layers. An HW-layer
consists of K HW-modules arranged in parallel to one another (see Fig 1B). For an input image
I, the output of an HW-layer is a vector μ(I) with K elements. If I depicts a particular object,
then μ(I) is said to be the signature of that object.

The parameters (weights) of the k-th HW-module are uniquely determined by its template
book

T k ¼ ftk1; � � � ; tkmg: ð5Þ

For all simulations in this paper, the output of the k-th HW-module is given by

mkðIÞ ¼ max
t2T k

hI; ti
k I kk t k

� �
: ð6Þ

We used a nonparametric method of training HW-modules that models the outcome of
temporal continuity-based unsupervised learning [42, 67]. In each experiment, the training
data consisted of K videos represented as sequences of frames. Each video depicted the trans-
formation of just one object. Let G0 be a family of transformations, e.g., a subset of the group of
translations or rotations. The set of frames in the k-th video was Otk = {gtk j g 2 G0}.

In each simulation, an HW-layer consisting of KHW-modules was constructed. The tem-
plate book T k of the k-th HW-module was chosen to be

T k :¼ Otk
¼ fgtk j g 2 G0g: ð7Þ

Note that HW-architectures are usually trained in a layer-wise manner (e.g., [57]). That is,
layer ℓ templates are encoded as “neural images” using the outputs of layer ℓ − 1. However, in
this paper, all the simulations use a single HW-layer.

One-layer HW-architectures are a particularly stylized abstraction of the ventral stream
hierarchy. With our training procedure, they have no free parameters at all. This makes them
ideal for simulations in which the aim is not to quantitatively reproduce experimental phenom-
ena, but rather to study general principles of cortical computation that constrain all levels of
the hierarchy alike.

Experiment 1 and 2: The test of transformation-tolerance from a single
example view

Procedure. The training set consisted of transformation sequences of K template objects.
At test time, in each trial the reference image was presented at the 0 transformation parameter
(either 0°, or the center of the image for experiment 1 and 2 respectively). In each trial, a num-
ber of query images were presented, 50% of which were targets. The signature of the reference
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image was computed and its Pearson correlation compared with each query image. This
allowed the plotting of an ROC curve by varying the acceptance threshold. The statistic
reported on the ordinate of Figs 2 and 3 was the area under the ROC curve averaged over all
choices of reference image and all resampled training and testing sets.

1. Translation experiments (Fig 2)
Stimuli. There were 100 faces and 100 random noise patterns in the dataset. For each rep-

etition of the experiment, two disjoint sets of 30 objects were selected at random from the 100.
The first was used as the template set and the second was used as the test set. Each experiment
was repeated 5 times with different random choices of template and testing sets. The error bars
on the ordinate of Fig 2 are ±1 standard deviation computed over the 5 repetitions.

2. Rotation in depth experiments (Fig 3)
Stimuli. All objects were rendered with perspective projection. For rotation in depth

experiments, the complete set of objects consisted of 40 untextured faces, 20 class B objects,
and 20 class C objects. For each of the 20 repetitions of the experiment, 10 template objects and
10 test objects were randomly selected. The template and test sets were chosen independently
and were always disjoint. Each face/object was rendered (using Blender [75]) at each orienta-
tion in 5° increments from −95° to 95°. The untextured face models were generated using Face-
gen [74].

Experiment 3: Transformation compatibility, multidimensional scaling
and online clustering experiments (Figs 4 and 5)

Stimuli: Faces, bodies, vehicles, chairs and animals. Blender was used to render images
of 3D models from two sources: 1. the Digimation archive (platinum edition), and 2. Facegen.
Each object was rendered at a range of viewpoints: −90° to 90° in increments of 5 degrees. This
procedure produced a transformation sequence for each object, i.e., a video. The full Digima-
tion set consisted of* 10,000 objects. However, our simulations only used textured objects
from the following categories: bodies, vehicles, chairs, and animals. For each experiment, the
number of objects used from each class is listed in S2 Table. A set of textured face models gen-
erated with FaceGen were added to the Digimation set. See S7 Fig for examples.

In total, 23,791 images were rendered for this experiment. The complete dataset is available
from cbmm.mit.edu.

Procedure. Let Ai be the ith frame of the video of object A transforming and Bi be the ith
frame of the video of object B transforming. Define a compatibility function ψ(A, B) to quantify
how similarly objects A and B transform.

First, approximate the Jacobian of a transformation sequence by the “video” of difference
images: JA(i) = jAi − Ai+1j (8i).

Then define the pairwise transformation compatibility as:

cðA;BÞ ¼
X

i

hJAðiÞ; JBðiÞi
k JAðiÞ kk JBðiÞ k ð8Þ

Transformation compatibility can be visualized by Multidimensional Scaling (MDS) [113].
The input to the MDS algorithm is the pairwise similarity matrix containing the transforma-
tion compatibilities between all pairs of objects.

For the ψ-based online clustering experiments, consider a model consisting of a number of
subsystems (HW-architectures). The clustering procedure was as follows: At each step a new
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object is learned. Its newly-created HW-module is added to the subsystem with which its trans-
formations are most compatible. If the new object’s average compatibility with all the existing
subsystems is below a threshold, then create a new subsystem for the newly learned object.
Repeat this procedure for each object.

The objects for this experiment were sampled from three different distributions: “realistic”
distribution, uniform distribution, and the biased against faces distribution, see S2 Table for
the numbers of objects used from each class.

The algorithm’s pseudocode is in S1 Text (Section 5.3). Fig 4 shows examples of clusters
obtained by this method.

Experiment 4: Evaluating the clustered models on subordinate-level and
basic-level tasks (Fig 5)

Stimuli. The stimuli were the same as in experiment 3.
Procedure. To confirm that ψ-based clustering is useful for object recognition with these

images, we compared the recognition performance of the subsystems to the complete system
that was trained using all available templates irrespective of their subsystem assignment.

Two recognition tasks were simulated: one basic level categorization task, view-invariant
cars vs. airplanes, and one subordinate level task, view-invariant face recognition. For the sub-
ordinate face recognition task, a pair of face images were given, the task was to determine
whether they depict the same person (positive) or not (negative). For basic level categorization,
a pair of car/airplane images were given; the task was to determine whether they depicted the
same basic-level category or not. That is, whether two images are both cars (positive), both air-
planes (positive) or one airplane and one car (negative). The classifier used for both tasks was
the same as the one used for experiments 1 and 2: for each test pair, the Pearson correlation
between the two signatures was compared to a threshold. The threshold was optimized on a
disjoint training set.

For each cluster, an HW-architecture was trained using only the objects in that cluster. If
there were K objects in the cluster, then its HW-architecture had KHW-modules. Applying Eq
(7), each HW-module’s template book was the set of frames from the transformation video of
one of the objects in the cluster. For both tasks, in the test phase, the signature of each test
image was computed with Eq (6).

Since the clustering procedure depends on the order in which the objects were presented,
for each of the 3 object distributions, we repeated the basic-level and subordinate level recogni-
tion tasks 5 times using different random presentation orders. The error bars in Fig 5B and 5C,
and S10 Fig convey the variability (one standard deviation) arising from presentation order.

Evaluation parameters:

• 60 new face objects (disjoint from the clustering set)

• Data was evenly split to 5 folds, 12 objects per fold.

• For each fold, 48 objects were used for threshold optimization. For the face recognition case,
12 faces were used for testing. For the basic-level case, 12 objects of each category were used
for testing.

• For each fold, 4000 pairs were used to learn the classification threshold θ (see below), 4000
pairs for testing.

• Performance was averaged over all folds.
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Supporting Information
S1 Text. Supplementary Information. Text S1
(PDF)

S1 Fig. It is hypothesized that properties of the ventral stream are determined by these
three factors.We are not the only ones to identify them in this way. For example, Simoncelli
and Olshausen distinguished the same three factors [20]. The crucial difference between their
efficient coding hypothesis and our invariance hypothesis is the particular computational task
that we consider. In their case, the task is to provide an efficient representation of the visual
world. In our case, the task is to provide an invariant signature supporting object recognition.
(TIF)

S2 Fig. Localization condition of the S-unit response for invariance under the transforma-
tion Tx.
(TIF)

S3 Fig. The Jacobians of the orbits of the image around the point p and the template must
be approximately equal for Eq (3) to hold in the case of smooth transformations.
(TIF)

S4 Fig. Class-specific transfer of illumination invariance. Bottom panel (II): Example images
from the three classes. Top panel (I): The left column shows the results of a test of illumination
invariance on statues of heads made from different materials (class A), the middle column
shows results for class B and the right column shows the results for class C. The view-based
model (blue curve) was built using images from class A in the top row, class B in the middle
row, and class C in the bottom row. The abscissa of each plot shows the maximum invariance
range (arbitrary units of the light source’s vertical distance from its central position) over
which target and distractor images were generated. The view-based model was never tested on
any of the images that were used as templates. Error bars (+/- one standard deviation) were
computed over 20 cross validation runs using different choices of template and test images.
(TIF)

S5 Fig. A. Example images for the pose-invariant body-recognition task. The images appearing
in the training phase were used as templates. The test measures the model’s performance on a
same-different task in which a reference image is compared to a query image. ‘Same’ responses
are marked correct when the reference and query image depict the same body (invariantly to
pose-variation).
B.Model performance: area under the ROC curve (AUC) for the same-different task with 10
testing images. The X-axis indicates the number of bodies used to train the model. Performance
was averaged over 10 cross-validation splits. The error bars indicate one standard deviation
over splits.
(TIF)

S6 Fig. Two factors are conjectured to influence the development of domain-specific
regions.
(TIF)

S7 Fig. Example object videos (transformation sequences) used in the ψ-based clustering
experiments.
(TIF)
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S8 Fig. Multidimensional Scaling (MDS) [113] visualizations of the object sets under the
ψ(A, B)-dissimilarity metric for the three object distributions. A. “realistic”, B. uniform, and
C. biased against faces (see table).
(TIF)

S9 Fig. The percentage of objects in the first N clusters containing the dominant category
object (clusters sorted by number of objects in dominant category). A, B and C are respec-
tively, the “realistic” distribution, uniform distribution, and the biased against faces distribu-
tion (see table)). 100% of the faces go to the first face cluster—only a single face cluster
developed in each experiment. Bodies were more “concentrated” in a small number of clusters,
while the other objects were all scattered in many clusters—thus their curves rise slowly. These
results were averaged over 5 repetitions of each clustering simulation using different randomly
chosen objects.
(TIF)

S10 Fig. The classification performance on face recognition, a subordinate-level task (top
row) and car vs. airplane, a basic-level categorization task (bottom row) using templates
from each cluster. 5-fold cross-validation, for each fold, the result from the best-performing
cluster of each category is reported. A, B and C indicate “realistic”, uniform, and biased distri-
butions respectively (see table). Note that performance on the face recognition task is strongest
when using the face cluster while the performance on the basic-level car vs. airplane task is not
stronger with the vehicle cluster (mostly cars and airplanes) than the others.
(TIF)
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