Latent Source Models for Nonparametric Inference
by
George H. Chen

B.S. with dual majors in Electrical Engineering and Computer Sciences,
Engineering Mathematics and Statistics, UC Berkeley, May 2010

S.M. in Electrical Engineering and Computer Science, MIT, June 2012
Electrical Engineer, MIT, June 2014

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

June 2015

(© 2015 Massachusetts Institute of Technology
All Rights Reserved.

Signature of Author:

George H. Chen
Department of Electrical Engineering and Computer Science
May 20, 2015

Certified by:

Polina Golland
Associate Professor of Electrical Engineering and Computer Science
Thesis Co-Supervisor

Certified by:

Devavrat Shah
Associate Professor of Electrical Engineering and Computer Science
Thesis Co-Supervisor

Accepted by:

Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Committee for Graduate Students

Latent Source Models for Nonparametric Inference
by George H. Chen

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Abstract

Nearest-neighbor inference methods have been widely and successfully used in numerous
applications such as forecasting which news topics will go viral, recommending products to
people in online stores, and delineating objects in images by looking at image patches.
However, there is little theoretical understanding of when, why, and how well these
nonparametric inference methods work in terms of key problem-specific quantities relevant
to practitioners. This thesis bridges the gap between theory and practice for these
methods in the three specific case studies of time series classification, online collaborative
filtering, and patch-based image segmentation. To do so, for each of these problems,
we prescribe a probabilistic model in which the data appear generated from unknown
“latent sources” that capture salient structure in the problem. These latent source models
naturally lead to nearest-neighbor or nearest-neighbor-like inference methods similar to
ones already used in practice. We derive theoretical performance guarantees for these
methods, relating inference quality to the amount of training data available and problems-
specific structure modeled by the latent sources.

Thesis Co-Supervisor: Polina Golland
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Co-Supervisor: Devavrat Shah
Title: Associate Professor of Electrical Engineering and Computer Science

Acknowledgments

Five years previous, | embarked on an adventure that would turn out far better than |
could’ve imagined — an adventure full of plot twists, red herrings, disasters, and triumphs
culminating in the best years of my life thus far. What ultimately made this rollercoaster
experience that is grad school transcend any expectation of mine wasn’t really the re-
search or the classes or the free food. No, what strung together grad school for me was
my social network that kept me going every step of the way. These few lines are but a
feeble attempt at a proper thank you to the incredible people who have helped me in my
MIT journey.

Perhaps my grad school experience was peculiar, between switching (sub)fields twice,
exploring an armada of rather time-consuming extracurricular activities, and sporadically
finding time to actually do research. That | largely don’t relate to PHD Comics and
that I've had so much freedom to pursue my vichysoisse of random interests, inside and
outside of lab, is thanks to my two stellar advisors Polina Golland and Devavrat Shah.

When | started at MIT, | knew nothing about medical image computing. Despite this,
Polina offered to take me on as a student months before | moved to the colder climates of
Cambridge. Over the years, she provided me with an enormous amount of applied insight,
helping me think about how to debug numerous technical hurdles — often by visualizing
my way out of despair — and keeping me focused on problems pertinent to practitioners.
She’s a straight shooter who is more than happy to explain why she disagrees with me
on various courses of action but to let me still try what | wanted, whether it turned out
to be a huge mistake or whether | ended up pleasantly surprising her by succeeding by
the skin of my teeth. Regardless, she always has her students’ best interests at heart
and has been great to talk to about my interests professional or otherwise.

Whereas Polina supplied me with applied insight, Devavrat supplied me with theo-
retical insight. After being a teaching assistant for Devavrat and chatting to him about
scoring competitive dorm events that | was organizing during my second year at MIT,
| decided to ask Devavrat to be a co-advisor to stretch me in a direction that | knew
very little about: tackling theoretical problems. Like Polina, undeterred by my lack of
experience, Devavrat agreed to co-advise me. In the years that followed, after my usual
meetings with him in which | often entered the meeting dejected after futile attempts at
cracking a problem, | walked away optimistic, energized, and ready to prove the next
lemma. Suffice it to say, Devavrat’s enthusiasm is dangerously contagious.

Finding the third member of my thesis committee turned out to be easy. As an
undergrad at UC Berkeley, | had run into then-grad-student Sahand Negahban at various
social events. Apparently as a Berkeley undergrad, he had been an executive officer in
the same student organization | had become heavily involved in (Eta Kappa Nu, the
international electrical and computer engineering honor society). Meanwhile, he was
also my teaching assistant for Berkeley's probabilistic graphical models class. Little did
| know that many years later, he'd postdoc in Devavrat’s group, start professing up a
storm at Yale, and land on my thesis committee, pointing me to a slew of results from
the statistics community that | was unaware of. Along the way, he also introduced me to
biking a fixie, which remains my preferred method of commute.

My work in Polina and Devavrat’s groups wouldn’t have been possible without my
various collaborators over the years and the members of both groups who provided feed-
back on my paper drafts, practice presentations, and incoherent ramblings. Specifically
for the work in this thesis, Stan Nikolov ran experimental results on data from Twitter
before he ventured off to work there full-time, and Guy Bresler found and resolved a few
plot holes in my proofs (oops). Guy was also a source of great debate over whether a
probabilistic model reflects reality, and of conversation on cycling, climbing, and skiing.
I'm convinced that Guy is the Bear Grylls of MIT. | also thank my officemates and other
members of CSAIL and LIDS who had to put up with my spontaneous questions and
remarks, chain coffee drinking, and other antics. Adrian Dalca and Ramesh Sridharan
were particularly helpful with random day-to-day issues like fighting a reqularly mal-
functioning file system and other computing quagmires. | also thank my labmate Dhruv
Parthasarathy for hosting me in Tel Aviv during the 2014 Israel-Gaza conflict.

To stall research, | taught three semesters and one |AP session, all for classes related
to statistical inference. In these endeavors, | had the fortune of teaching for Costis
Daskalakis, Greg Wornell, Lizhong Zheng, and my two advisors, and for the IAP course,
| co-lectured with Ramesh Sridharan. Teaching has been a tremendously rewarding
experience for me, helping students learn and occasionally being the one to introduce that
mind-blowing concept that might come handy in the future, whether it's understanding a
fundamental result like Bayes' rule or the underlying Markov chain theory behind Google
PageRank or the power of approximate inference, for example, in quickly localizing a
self-driving car. Of course, teaching is also a great way to learn. Through a myriad of
discussions with the rest of the teaching staff, | solidified my understanding of heaps of
concepts that | didn’t know as well before. Meanwhile, | purchased a tablet so that | could
make Khan-Academy-style videos for students, and | thank Roger Grosse, Gauri Joshi,
Ramesh Sridharan, and George Tucker for pitching in and making videos as well. Ramesh
and | also developed a series of projects during MIT’s inaugural offering of undergraduate
class “Introduction to Inference”, and we continued our collaboration for the IAP course
“Statistics for Research Projects”. Our efforts led to us jointly winning a departmental
teaching award as well as MIT's Goodwin Medal for “conspicuously effective teaching”.
| want to especially thank the faculty nominators for recognizing our work.

Despite the immense amount of learning in lab and teaching, the most learning in grad
school for me happened outside of academics during my year-long tenure as one of five

executive officers in the Sidney-Pacific graduate dorm alongside Jen Jarvis, Pierre-Olivier
Lepage, Steve Morgan, and Steph Nam. As the Sidney-Pacific Executive Council 2012-
2013, the five of us managed 50 student officers and ran a 700-resident grad dorm with the
guidance of housemasters Roger and Dottie Mark, and associate housemasters Annette
Kim and Roland Tang — housemasters who let us try and fail and try again, who made
sure we knew what to do when we did fail, and who cared deeply about us and our
leadership development. Together, we secured $140,000 of funding, programmed copious
amounts of events, started a community garden, launched a new website, and overhauled
resources throughout the building to better service students. We also weathered severe
conflict resolution scenarios, and when the Boston Marathon bombings happened and
the city shut down, our officers mobilized to feed the entire dorm and offer support. All
of this (and so much more) was student-driven and on a volunteer basis. Easily this year
emerged as the best and the most pivotal of my grad school career, seeing the formulation
of nearly all my closest friendships here and the inception of many future opportunities.

Among the Sidney-Pacific friendships, Brian Spatocco, who had recruited me for and
taught me to run competitive dorm events before he recruited me to become an executive
officer for the dorm, reached out to recruit me a third time, asking me to join a rural
development project with mutual friends from the dorm Kendall Nowocin and Kelli Xu.
Suddenly, the four of us with disparate backgrounds combined forces to analyze satellite
images, automatically identifying buildings and villages in rural India and simulating
installation of solar-powered grids with the goal of helping bring electricity to those
without it. We ended up winning the $10,000 grand prize at the 2014 MIT IDEAS Global
Challenge, which we used to visit five companies in India and travel to extremely poor
villages and slums. Needless to say, this travel experience was jarringly eye-opening,
seeing the conditions of how some of the poorest people in the world live. For our
travels, we added a fifth member Vivek Sakhrani to the team, now called GridForm. Then
Ramesh Sridharan put me in touch with Kush Varshney who had worked on using satellite
images to identify candidate villages to send direct cash transfers to. Shortly afterward,
together with Kush Varshney and Brian Abelson, GridForm put forth a journal paper on
the amazing potential of satellite image analysis in aiding rural development planning.

| now give special thanks to a few people (some revealed already above!) who
have been central to my grad school life. | thank my housemates Steve Morgan, Javier
Sanchez-Yamagishi, Brian Spatocco, and Kelli Xu for putting up with my hectic, high-
octane schedule this past year and me often not hanging out as a result. | also thank Boris
Braverman, Shaiyan Keshvari, Eric Trieu, and Nate Zuk for some incredible conversations
about life, the universe, and everything.

It's not easy doing justice to the names already mentioned and to the ones that haven't
been of many friends that | would like to thank from the many walks of my life, from those
| met at Sidney-Pacific to the musical cyclists at the Biomansion to my buddies in Brain
and Cognitive Sciences to my college friends from Eta Kappa Nu to the bartenders at
Backbar, and beyond — a social network that has helped see me through to the end of
this extraordinary chapter in the meta-thesis that is my life.

| end by thanking my brother and my parents for their support over the years.

Abstract

Acknowledgements

List of Figures

1 Introduction

1.1 Nonparametric Inference
1.2 Latent Source Models and Theoretical Guarantees
1.3 Summary of Results
1.4 Bibliographic Note

2 Preliminaries

2.1 Concentration Inequalities
2.2 Collecting Enough Training Data

3 Time Series Classification

3.1 Nonparametric Time Series Classifiers
3.2 A Latent Source Model
3.3 Approximating an Oracle Classifier

3.4 Theoretical Performance Guarantees

3.5 Learning the Latent Sources

3.6 Lower Bound on Misclassification Rate

3.7 Proofs
3.7.1
3.7.2
373
374

3.8 Experimental Results
3.9 Discussion

Proof of Theorem 3.4.1
Proof of Theorem 3.5.1
Proof of Corollary 3.5.1
Proof of Theorem 3.6.1

4 Online Collaborative Filtering

41 A Latent Source Model and a Learning Problem

Contents

10 CONTENTS
4.2 Approximating an Oracle Algorithm 54
4.3 Collaborative Filtering with Two Exploration Types 56
4.4 A Theoretical Performance Guarantee 58
45 Proof of Theorem 4.4.1 61

451 Proof of Lemma 451 63

452 Proof of Lemma 452 66

453 Proof of Lemma 456 68

454 Proof of Lemma 457 70

46 Experimental Results. Lo o 72
47 Discussion 74

5 Patch-Based Image Segmentation 77
5.1 Pointwise Segmentation Lo 79
511 Inference 80

5.1.2 Theoretical Guarantees, 82

5.2 Multipoint Segmentation L 84
521 Inference 84

53 Experimental Results 87
54 Proof of Theorem 511 88
5.5 Discussion 91

6 Conclusions and Future Directions 93
6.1 More Training Data, More Problems? 93
6.2 Outlier Screening 94
6.3 Fast, Scalable Nonparametric Inference 94

Bibliography 95

3.1
3.2
3.3

4.1

4.2

5.1
52

List of Figures

Time series classification results on syntheticdata 46
How news topics become trends on Twitter 47
Time series classification results by Nikolov (2012) on Twitter data 48
Top users by top movies ratings matrix with rows and columns reordered

to show clustering of users and items for the Movielens10m dataset. 73
Average cumulative rewards over time: (a) Movielens10m, (b) Netflix. . . . 74
Example image segmentation results oo 87
Dice volume overlap scores. 88

11

12

LIST OF FIGURES

Chapter 1

Introduction

The last two decades have seen an unprecedented explosion in the availability of data
pertaining to virtually all avenues of human endeavor. People document their day-to-day
lives on social networks. Stores collect information on customers to better recommend
products. Hospitals house electronic medical records to assist medical diagnosis. In
no small part due to the Internet and increasingly powerful sensors whether it be rela-
tively inexpensive smartphone cameras to far more elaborate devices such as magnetic
resonance imaging scanners and the Large Hadron Collider, we now collect and share
massive troves of data. How do we turn this deluge of data into valuable insights?

A fundamental problem is that we do not know the rich structure underlying the data a
priori. However, by having access to gargantuan volumes of data, practitioners have found
that we can often sidestep the question of explicitly positing or learning the structure
underlying the data altogether. When we posit intricate structure for data, the structure
may stray from reality or otherwise not account for the full palette of possibilities in what
the data look like. When we learn structure, the computational overhead and amount of
data needed may dwarf what is sufficient for tackling the prediction task we aim to solve.
Instead of positing or learning structure, we can instead let the data more directly drive
our predictions using so-called nonparametric inference methods.

This thesis showcases three case studies of nonparametric inference. In our first case
study, to forecast whether an ongoing news topic will go viral, we compare its activity
to those of past news topics that we know have gone viral as well as those that did not.
Along similar lines, in online stores or recommendation websites that have both huge
user bases and endless items to recommend, we predict whether a user will like an item
by looking at what other similar users like. For our final case study, in computer vision,
to delineate where an object of interest is in an image, we compare patches of the image
to patches in a training database of images for which we know where the object is.

B 1.1 Nonparametric Inference

The nonparametric inference methods used throughout this thesis are variations of a
simple approach called weighted plurality voting, which we describe in the context of our
first case study. To predict whether the news topic “Barclays scandal” will go viral, we
compare its activity to those of past news topics which we know to have gone viral or not.
These labeled past news topics are called training data. Each of these past news topics

13

14 CHAPTER 1. INTRODUCTION

casts a weighted vote, where the weight depends on how similar the past news topic’s
activity is to that of the news topic “Barclays scandal”. Summing over all weighted votes
from past news topics that had gone viral results in a total vote for “Barclays scandal”
going viral. Similarly, summing over all weighted votes from past news topic that did not
go viral results in a total vote for “Barclays scandal” not going viral. Finally, weighted
plurality voting declares “Barclays scandal” will go viral or not based on which of the two
total votes is higher. In this case, there are two outcomes we vote on: whether news topic
“Barclays scandal” goes viral or not. With only two outcomes, weighted plurality voting
is called weighted majority voting. In general when there are more than two outcomes,
weighted plurality voting chooses whichever outcome has the highest total vote, which
need not be the majority.

We refer to weighted plurality voting as a nearest-neighbor-like method. In our
example of forecasting whether the news topic “Barclays scandal” goes viral, the past
news topics that are most similar to “Barclays scandal” contribute the most to the final
prediction. These most similar training data points could be thought of as “nearest
neighbors” to the news topic “Barclays scandal”. Naturally, a commonly used variant of
weighted plurality voting is nearest-neighbor classification, in which we only consider
weighted (which also allows for unweighted) votes of the single most similar past news
topic or a select few of the most similar past news topics.

Despite their name, nonparametric inference methods, such as weighted plurality
voting, are generally not parameter-free. Rather, they make very few assumptions on
the underlying model for the data. There could still be parameters that must be chosen.
For example, we need to define a measure of how similar two news topics’ activities
are in how we described weighted plurality voting. In practice, these choices can make
substantial differences in inference quality, and in this thesis we shall see how some of
these choices relate to relatively weak assumptions on structure in the data.

An impetus for the popularity of nearest-neighbor-like methods lies in their effi-
ciency of computation. Fast approximate nearest-neighbor search algorithms for high-
dimensional spaces (e.g., Gionis et al. (1999); Bawa et al. (2005); Ailon and Chazelle
(2006); Andoni and Indyk (2006); Datar et al. (2004); Muja and Lowe (2009); Mathy et al.
(2015)) can rapidly determine which data points are close to each other, while readily
parallelizing across different search queries. These methods often use locality-sensitive
hashing (Gionis et al., 1999), which comes with a theoretical guarantee on its approxima-
tion accuracy for nearest-neighbor search, or randomized trees (e.g., Bawa et al. (2005);
Muja and Lowe (2009); Mathy et al. (2015)), which quickly prune search spaces when the
trees are sufficiently balanced. Such trees can be efficiently constructed as data stream
in (Mathy et al., 2015). Even the large body of work on random decision forests, which are
fast in practice, can be thought of in terms of nearest-neighbor inference (Criminisi et al.,
2011). Here, each tree in the forest has leaves that are associated with different training
data, and to predict a particular property of a new data point, we determine which leaf the
new data point belongs to, effectively finding which training data are nearest to it. Thus,
one could interpret random decision forests as learning nearest-neighbor relationships
that maximize performance on an inference task such as classification or regression.

Sec. 1.2. Latent Source Models and Theoretical Guarantees 15

While nearest-neighbor-like methods have been widely used in practice, there is
little theoretical understanding of when, why, and how well these methods work in terms
of the amount of training data available and relevant structural properties in the data.
This thesis aims to bridge the gap between theory and practice for nearest-neighbor-like
methods. To do so, we present what we call latent source models for the three seemingly
disparate problems of time series classification, online collaborative filtering, and patch-
based image segmentation, corresponding to our three case studies. The recurring theme
in how we approach each of these problems turns out to be the same. We begin with a
generic model that assumes very little structure. We show how an oracle algorithm can
be described by weighted plurality voting. We then approximate the oracle algorithm
with a nearest-neighbor-like method akin to what'’s used in practice, for which we derive
theoretical performance guarantees.

Existing theoretical work on nearest-neighbor methods has largely been asymptotic
in nature or otherwise studied much more general settings than what we consider. As
the amount of training data tends to infinity, nearest-neighbor classification has been
shown to achieve a probability of error that is at worst twice the Bayes error rate, and
when considering the nearest K neighbors with K allowed to grow with the amount of
data, the error rate approaches the Bayes error rate (Cover and Hart, 1967). However,
rather than examining the asymptotic case in which the amount of data goes to infinity,
we instead pursue nonasymptotic performance guarantees in which no quantities tend to
infinity. Nonasymptotic quarantees have been studied for nearest-neighbor methods in
fairly general settings in order to obtain rates of convergence for classification (Cover,
1968), regression (Kpotufe, 2011), and density estimation (Dasgupta and Kpotufe, 2014).
Our results are far less general and provide tighter guarantees as we instead focus on the
three case studies above, each of which exhibits different structure. Guarantees on rates
of convergence have been demonstrated previously for very specific settings in terms of
the number of nearest neighbors considered (Hall et al., 2008). For simplicity, we will not
consider choosing an appropriate number K of nearest neighbors, instead either using
just the nearest neighbor (K = 1), using all neighbors within some ball, or using all
neighbors but weighting them according to a similarity measure between data points.

B 1.2 Latent Source Models and Theoretical Guarantees

This thesis establishes nonasymptotic performance guarantees for nearest-neighbor-like
methods in the three diverse applications in terms of the available training data and
structural properties specific to each application. To do so, for each case study, we treat
our training data as random i.i.d. samples from an underlying probabilistic model that is
intentionally chosen to be simple with few assumptions. Much like how physicists aim
to better understand the world by studying simple idealized situations such as merely
two particles colliding, our probabilistic modeling also, for each case study, examines
simple situations, emphasizing specific structural elements to the application of interest.
Each time, we provide empirical justification for why the specific structural elements we
assume reasonably model data from the particular application. Of course, there could be

16 CHAPTER 1. INTRODUCTION

other more elaborate structure present in the data, but as long as the simple structure
we consider is present, our theoretical results apply.

We now provide an overview of what the basic problem setups are and what structural
assumptions we impose for each of the three case studies, resulting in three probabilistic
models. For each case study, we informally state our main theoretical result. Note that
we reuse variable names across the case studies, with the same variable name meaning
something similar across applications.

Time Series Classification (Chapter 3)

Motivated by the application of forecasting which news topics will go viral on Twitter,
we hypothesize that in various time series classification problems, there are not many
prototypical time series relative to the number of time series we have access to. For
example, we suspect that news topics only go viral on Twitter in a relatively small number
k of distinct ways whereas we can collect a massive number n > k of Twitter time series
corresponding to different news topics. To operationalize this hypothesis, we propose a
latent source model for time series, where there are k unknown prototypical time series
referred to as latent sources, each of which has label “viral” or “not viral”. A new time
series is generated by randomly choosing one of these latent sources, adding noise, and
then introducing a random time shift. The true unobserved label for the time series is
the same as that of whichever latent source the time series is generated from. The goal
is to infer what this label is, given the time series observed at time steps 1,2,..., T.

We relate weighted majority voting and nearest-neighbor classification to an oracle
MAP classifier that knows what the true latent sources are, and we provide theoretical
performance guarantees for both nonparametric classifiers. Our guarantees depend on
an intuitive “gap” condition that asks that any two training time series of opposite labels
be sufficiently separated by squared Euclidean distance Q(a?T) so as to not confuse
classification, where o is a noise scale parameter. Squared Euclidean distance comes
into play because we use a variant of it to define similarity between time series. If this
gap condition does not hold, then the closest two training time series of opposite labels
are within noise of each other! We informally summarize our theoretical quarantees in
the theorem below.

Theorem 1.2.1 (Informal statement of Theorem 3.4.1). Under the latent source model for
time series classification and with the gap condition satisfied, if we have n = ©(k log k)
labeled training time series, then weighted majority voting and nearest-neighbor classi-
fication each correctly classify a time series with high probability after observing its first
Q(log k) time steps.

As our analysis accounts for how much of the time series we observe, our results
readily apply to the “online” setting in which a time series is to be classified while it
streams in, as is the case for forecasting which ongoing news topics go viral, along with
the “offline” setting where we have access to the entire time series.

Why not just learn the latent sources? We answer this question by looking at a
specific instantiation of our model that leads to a spherical Gaussian mixture model,

Sec. 1.2. Latent Source Models and Theoretical Guarantees 17

with each latent source corresponding to a mixture component. We show that existing
performance guarantees on learning spherical Gaussian mixture models require more
stringent conditions than what our results require, suggesting that learning the latent
sources is a harder problem than the ultimate goal of classification.

Finally, we assess how good our theoretical guarantees are on nearest-neighbor
and weighted majority voting time series classification. To do so, we establish a new
lower bound on the probability of misclassification for any classifier. In other words, no
classifier can achieve better misclassification rate than this lower bound. Our performance
guarantees on nearest-neighbor and weighted majority voting classification are stated in
terms of upper bounds on misclassification rate, and by comparing these upper bounds
with our lower bound, we see when the decay rates of misclassification are similar. We
also discuss a change in the nonparametric inference methods that could potentially lead
to better performance both in theory and practice.

Online Recommendation Systems (Chapter 4)

Our second case study examines online recommendation systems like Netflix and Pan-
dora, where by “online” we mean that items are recommended to users over time. For
such systems, a widely used approach is collaborative filtering, which capitalizes on the
basic idea that if Alice is similar to Bob and Bob likes oranges, then Alice probably likes
oranges too. Despite the prevalence of collaborative filtering methods in recommendation
systems, there has been little theoretical development on when, why, and how well they
work as a function of system quantities including the number of users n, the number of
items m, and how much time has elapsed T. Here, the training data are the ratings re-
vealed so far. At each time step, we make recommendations to users, effectively choosing
what the training data look like at the next time step. Thus, recommendations we make
now can affect recommendations we make later! From this dynamical process in which
the classical tradeoff between exploration and exploitation emerges, we aim to simulta-
neously learn about users while giving them good item recommendations. To tame this
complex problem, we study a variant of a specific commonly used collaborative filtering
method and anchor our analysis to a toy model of an online recommendation system.

We focus on cosine-similarity collaborative filtering, which measures how similar
users are by the cosine similarity of their revealed item preferences so far. To decide
what item to recommend to a user, the method finds nearest neighbors to the user in terms
of cosine similarity, and computes votes for items based on revealed item ratings of the
nearest neighbors. Weighted plurality voting then selects an item for recommendation.
This procedure inherently exploits what we currently know about users. Before we have
seen enough ratings though, exploitation may not work well. We include two types of
exploration, one to explore the space of items, and one to explore the space of users. We
call the resulting recommendation algorithm CoLLABORATIVE-GREEDY.

To analyze CoLLABORATIVE-GREEDY, we introduce a simple model of an online recom-
mendation system in which at each time step, for each of the n users, we recommend
exactly one item. We assume every user then immediately consumes and rates the item

18 CHAPTER 1. INTRODUCTION

that we recommended with one of two ratings: +1 (like) or —1 (dislike). Once a user
consumes an item (e.g., watches a movie), we disallow the item to be recommended to
the same user again. Initially, none of the users have consumed any items, and so up to
time T, each user will have consumed and rated exactly T items. For simplicity, we do
not assume structure over items, so the rating for each item gives us no information about
the rating for any other item. We also assume item preferences to be static, i.e., a user’s
rating for an item does not change over time. We remark that while our setup clearly
oversimplifies the rich, complex temporal dynamics in a real online recommendation sys-
tem, it offers a clean baseline framework for theoretically evaluating recommendation
algorithms and, despite its simplicity, highlights the crucial role collaboration plays in
recommendation.

To see why collaboration is essential in our model, consider when there’s only a single
user. Then to learn anything about an item, we have to ask the user to rate the item, but
upon doing so, we can’t recommend that item again! Moreover, because the rating for an
item is assumed to not provide us any information about other items (so we don't know
which items are similar), we can’t hope to find what the good items are except through
exhaustive trial and error. However, with a pool of users, and with structure over users,
we should be able to make good recommendations. A complimentary approach beyond
the scope of this thesis is to exploit item similarity and recommend similar items to what
a user already liked. Theoretical analysis for this alternative setup is in (Voloch, 2015).

For our setup, we impose a simple structure over users by assuming that they come
from a relatively small number k of latent sources, where k « n. This assumption is
similar to the structure we imposed on time series in our first case study. We remark
that although our model of an online recommendation system is overly simplistic, the
assumptions we place on what the actual rating data look like are quite weak as we
will assume very little about the different underlying item preferences for the k different
latent sources. Under this latent source model for online recommendation systems, we
establish a theoretical guarantee for CoLLABORATIVE-GREEDY.

Theorem 1.2.2 (Informal statement of Theorem 4.4.1). Under the above latent source
model, a low noise condition, and a notion of separation between the k user types, with
number of users n = O(km), the expected fraction of likeable items that COLLABORATIVE-
GREEDY recommends is essentially optimal after some initial number of time steps scaling
as nearly log(km), where m is the total number of items.

We supplement our theory with experimental results, where we simulate an online
recommendation system and show that CoLLABORATIVE-GREEDY outperforms existing base-
line online recommendation methods.

Patch-Based Image Segmentation (Chapter 5)

Lastly, given an image, we look at how to separate a foreground object of interest from
the background, a problem referred to in computer vision as image segmentation. Our
motivating application is delineating anatomical organs in medical images. Here, nearest-
neighbor-like methods are, again, widely used in practice and are often very successful.

Sec. 1.2. Latent Source Models and Theoretical Guarantees 19

Specifically, there has been a proliferation of methods operating on small patches of
images. For example, to determine whether a pixel is foreground or background, consider
the patch centered at that pixel — is this patch similar to patches we have seen in training
data for which we know whether their center pixels are foreground or background? If so,
we can transfer labels over from these “nearest-neighbor” patches found in training data.

Naturally, as patches provide only local context, one would expect a local theory to
explain when these nearest-neighbor-like patch-based image segmentation methods to
work. We show that this is indeed the case. Specifically, we build on existing work that
has shown that natural image patches could be very accurately modeled as a Gaussian
mixture model (Zoran and Weiss, 2011, 2012) by now asking that patches centered at
nearby pixels satisfy a certain local smoothness property that we introduce and that we
call a jigsaw condition. The basic idea is that nearby patches are like puzzle pieces
that need to fit to properly form an overall plausible image. Our probabilistic model,
which we call a latent source model for patch-based image segmentation, thus has two
key components: patches appear to be generated from mixture models, and that nearby
mixture models are in some sense similar.

For nearest-neighbor-like methods to succeed when searching for nearby patches, we
again ask for a gap condition to hold so that the closest training patches with different la-
bels are well-separated. However, we only need to consider training patches centered at
pixels that are close by, where how close by depends on the jigsaw condition. We specif-
ically ask for this gap to be at least squared Euclidean distance Q(a? log(|N|k log(|Z|))),
where o is a noise parameter, k refers to the maximum number of mixture components
needed in representing an image patch, |N| is the maximum size of neighboring pixels
that relates to the jigsaw condition, and |Z| is the number of pixels. We now informally
state our main result.

Theorem 1.2.3 (Informal statement of Theorem 5.1.1). Under the latent source model
for patch-based image segmentation and with the gap condition satisfied, if we have
n = ©(k log(|Z|k)) labeled training images, then weighted majority voting and nearest-
neighbor segmentation each achieve average pixel mislabeling rate that can be made
arbitrarily small (but in general nonzero).

The jigsaw condition imposes local structure and enables us to borrow the analysis
techniques for the time series classification case. Going beyond this local condition, we
introduce global structure to produce a more general probabilistic model for which we
derive an iterative, easily parallelizable inference algorithm. Special cases of our new
algorithm recover various existing patch-based segmentation algorithms. We empirically
show that our new algorithm substantially outperforms the two algorithms we provide
theoretical quarantees for. Establishing a theoretical performance guarantee for this new
algorithm that exploits global structure is a topic for future research.

20 CHAPTER 1. INTRODUCTION

B 1.3 Summary of Results

Qualitatively, our theoretical performance guarantees for all three case studies rely on
separation. For time series classification, we ask that time series corresponding to dif-
ferent labels be well-separated. For online collaborative filtering, we ask that users
have item preferences that are well-separated across different types of users. For patch-
based image segmentation, we ask that patches corresponding to different labels be well-
separated. This idea of separation arises naturally since a nearest-neighbor method can
be confused and make an error when two data points of different types are too close
together and the nearest neighbor found is of the wrong type.

Using such a separation (also called a margin) condition is not new and has, for in-
stance, led to fast learning rates for nonparametric classifiers in general settings (Mam-
men and Tsybakov, 1999; Tsybakov, 2004; Audibert and Tsybakov, 2007) and to results
on how many training data are sufficient for learning Gaussian mixture models (Dasqupta
and Schulman, 2007). We emphasize that we ground our analysis in three case studies
and do not aim for as general a setting as possible since our goal is to justify the per-
formance of nearest-neighbor-like methods resembling what's already used in practice
for the three applications of interest. As such, certain structural elements specific to
these applications appear in our results. Our analysis could help practitioners for these
applications better understand specific structure in data that enable nearest-neighbor
methods to succeed, while hinting at new algorithms with potentially better performance
guarantees, such as our new iterative patch-based image segmentation algorithm.

B 1.4 Bibliographic Note

Preliminary versions of the time series classification results (Chapter 3) and online col-
laborative filtering results (Chapter 4) appeared in (Chen et al., 2013) and (Bresler et al.,
2014), respectively. The image segmentation work (Chapter 5) will appear in (Chen et al,,
2015).

Chapter 2

Preliminaries

We review relevant probability results in this chapter, most of which are used in analyzing
all three case studies. A recurring theme is that data appear to come from different
clusters. The nonparametric inference methods we examine work well when there are
enough training data from every cluster and, moreover, the inference can distinguish
between different clusters. The main machinery ensuring that these two events hold
comprises concentration inequalities that provide precise statements for how fast random
empirical quantities converge to deterministic population quantities, such as how fast a
sample average approaches the population mean that it estimates. In turn, we can then
derive rates at which probabilities of various “bad” events go to zero.

We present some concentration inequalities in Section 2.1, and then apply one such
inequality to determine how many training data to collect in Section 2.2. To keep the
exposition reasonably self-contained as well as to entertain the interested reader, we
include proofs for all results in this chapter, relying only on elementary probability,
calculus, and big O notation from introductory computer science.

B 2.1 Concentration Inequalities

Consider a random variable X with finite mean E[X]. With different additional assump-
tions on X, we can bound the probability that X deviates significantly from E[X]:

e Markov inequality. Suppose that X is nonnegative. Then for any s > 0,

EX]

P(X >s) <
S

Proof. Fix s > 0. Note that X > s1{X > s}, where 1{-} is the indicator function:
1{A} =1 if statement A holds, and 1{A} = 0 otherwise. Taking the expectation

of both sides, E[X] > E[s1{X > s}] = sE[1{X > s}] = sP(X > s). [|
e Chebyshev inequality. Suppose that X has finite variance var(X). Then for any
s>0,)
var
P(IX — BIX] > 5) < 5.

21

22

CHAPTER 2. PRELIMINARIES

Proof. Apply Markov's inequality to (X — E[X])?, which has expectation var(X). H

Chernoff bounds. Let ¢ > 0. If the expectation E[exp(¢X)] is finite, then for any
s € R, we have the upper tail bound

P(X > s) < exp(—¢s)Elexp(oX)].
Proof. Apply Markov’'s inequality to exp(¢X) with s replaced by exp(¢s). |

The expectation E[exp(¢X)] being finite is a strong assumption on X. In particular,
note that the moment generating function Mx(z) = E[exp(zX)] of X, if it is finite,

tells us all the moments of X: E[X/] = dz/z\/;X(O) for all ¢ € {0,1,...}, from which
we could compute, for example, the mean and variance of X. Where the moment
generating function Mx(z) of X is finite also tells us how fast a tail of the distribution
of X decays. As suggested by the bound above, asking that Mx(z) be finite for
z = ¢ > 0 leads to a bound on the probability of X being large, i.e., the upper tail

of the distribution of X.

To bound the probability of X being small, we ask that the moment generating
function Mx(z) be finite for z = —¢ < 0. Specifically, if E[exp(—¢X)] is finite, then
for any s > 0, we have the lower tail bound

P(X <'s) < exp(¢s)E[exp(—¢X)].
Proof. Apply Markov's inequality to exp(—@X) with s replaced by exp(—¢s). |

Binomial concentration. Let X be distributed as a binomial distribution with n
trials and probability of success p, which we denote X ~ Binomial(n, p). Then for
0<s<np,

P(X <s) <exp (— le(np—s)z).

Proof. We use the lower tail Chernoff bound: P(X < s) < exp(¢s)E[exp(—¢X)].
To get a handle on E[exp(—¢X)], first note that the moment generating function of
X ~ Binomial(n, p) is Mx(z) = Elexp(zX)] = (1 + p(e* — 1))". Then

Elexp(—¢X)] = Mx(—¢) = (1+p(e~*—1))" < [exp (p(e”=1))]" = exp(np(e”?~1)),
where the inequality uses the fact that 1 + x < e* for all x € R. Hence,

P(X < 's) < exp(@s) exp(np(e”? — 1)) = exp(¢s + np(e™® —1)).

Sec. 2.1. Concentration Inequalities 23

We choose ¢ to make the right-hand side as small as possible. This is a calculus
exericse of setting the derivative (with respect to ¢) of the exponent in the right-
hand side to 0. Doing so, we find the optimal choice to be ¢ = log(“2). Substituting
this back into the above bound,

exp(—(np — S)).

np_ — (P’ axp(—(np — s)) =
P(X <s) <exp (slog < np+s) = (<) exp(—(np —s)) = (%)%»np

Next, noting that x* > exp(—(1 — x) + (1 — x)?/2) for x € (0, 1), and that % € (0,1),

exp(—(np — 5)) exp(—(np — s))
PX < s) < (o) = op(—(1— =)+ (1 = S22
= exp (2;Lp(np — 5)2)

where the last step is due to a bit of algebra. |

e Sub-Gaussian concentration. If the distribution of X has tails that decay at least as
fast as that of a Gaussian, then it is called sub-Gaussian (Buldygin and Kozachenko,
1980). For example, any Gaussian random variable is sub-Gaussian. Any random
variable with finite support, such as a uniform distribution over a finite interval, is
also sub-Gaussian. Formally, X is sub-Gaussian with parameter o > 0 if for every
¢ R,

2 2
E[exp (¢(X — E[X))] <exp(¢)

In other words, the centered random variable X — E[X] has moment generating
function E[exp(¢(X —E[X])] that is always upper-bounded by the moment generating
function of a zero-mean Gaussian with variance o2. As discussed previously, the
moment generating function relates to how fast the tails of a distribution decay.

Before presenting tail probability bounds for sub-Gaussian random variables, we
note an important property that summing two independent sub-Gaussian random
variables Wy and W, with parameters g1 and 0, results in another sub-Gaussian

random variable, now with parameter \/01 + 02 This property follows from inde-
pendence and the definition of a sub-Gaussian random variable:

E[exp (¢(W1 + W, —E[W1 — Wz]))]
= E[exp (p(W1 — E[W1])) JE[exp (¢(W> — E[W,]))]

<exp(¢2 2)exp(¢22022) :exp(¢2(012+022)).

2
From this result, one can readily show that if Wy, ..., W, are independent and each
is sub-Gaussian with parameter g, then defining random vector W = (W, ..., W)

and letting @ = (a1,...,a,) € R"” be an arbitrary vector of deterministic constants,

24

CHAPTER 2. PRELIMINARIES

the dot product (a, W) =3 " _, a,W, is sub-Gaussian with parameter ||a|/o, where
|| - || denotes the Euclidean norm of a vector.

If X is sub-Gaussian with parameter o, then for any s > 0, the following bounds
hold:

52

P(X > E[X]+s) < exp (—Z—GZ),
52
P(X < E[X] —) < exp (—ﬁ),
S2
PIX —E[X] 2 5) < 2exp (— o).

Proof. The first two inequalities use Chernoff bounds. Plugging in centered random
variable X — E[X] into the upper tail Chernoff bound, and using the definition of a
sub-Gaussian random variable, we obtain

P(X > E[X]+ s) = P(X — E[X] >

< exp(¢S)E[e><p — E[X]))]
202 ¢20.2

)=exp(—¢$+ :)

< exp(—gs)exp (£

We optimize ¢ to make the right-hand side as small as possible, amounting to
setting the derivative (with respect to ¢) of the exponent in the right-hand side
to 0. Doing so, we find the optimal choice to be ¢ = s/g?, which yields the first

inequality
2
P(X > E[X] + 5) < exp (- %)
When X is sub-Gaussian with parameter g, then so is —X, and by similar reasoning
as above, one could establish the second inequality

&2
P(X < E[X]—s) < exp (- ﬁ)
The last inequality follows from union-bounding the first two:
P(X — E[X]| > s) = B({X > E[X] + s} U {X < E[X] - s})
2
s

IP’(XzE[X]+s)+IP’(X§E[X]—s)§2exp(—ﬁ).

A basic proof technique for analyzing an ensemble of random variables Xi,..., X, is to
first show that the sum) | _; X, satisfies one of the above conditions, upon which we can

bound the probability that it deviates from its expected value E[} "

X,]. For example,

u=1

this approach enables us to examine how fast an empirical average %Zu=1 X, converges
to the true population mean E[1 5" _ X,]

Sec. 2.2. Collecting Enough Training Data 25

B 2.2 Collecting Enough Training Data

Suppose there are k clusters that occur with probabilities s, ..., ;r¢. Thus, when data
are generated i.i.d. from these clusters, each data point belongs to cluster g € {1, ..., k}
with probability my. How many samples are needed before we see all k clusters?

With equal cluster probabilities 7y = --- = ¢ = 1/k, the question reduces to the
classical coupon collector’s problem, where the samples are thought of as coupons of
which there are k types. In this case, it turns out that after collecting O(k log k) coupons,
a coupon collector will have seen all k coupon types with high probability. Of course, in
the settings we are interested in, each coupon is a training data point.

We present the solution to the more general problem with potentially unequal cluster
probabilities in the form of two lemmas. The first lemma establishes how many samples
are sufficient so that we will, with high probability, draw a sample from a particular
cluster.

Lemma 2.2.1. With n i.i.d. samples where each sample belongs to cluster g € {1, ..., k}
with probability Mg,
1
P(cluster g has < 517 occurrences) < exp (— %)
Proof. This result follows from a Chernoff bound applied to the binomial distribution,
described in the previous section on concentration inequalities: Note that the g-th cluster
occurs A ~ Binomial(n, rg) times, so

1 1
7(nﬂg—*nﬂ'g)2) :exp(—ﬂ). |

1
P(A< Jnmy) < exp (- 2nm, 2 8

This lemma says that with n samples, then with probability at least 1 — exp(—nu,/8),
there are more than nsy/2 samples from the g-th cluster.
We next ensure that we see every cluster with high probability.

Lemma 2.2.2. With n i.i.d. samples where each sample belongs to cluster g € {1,..., k}
with probability g,

—_—

IP’(EI a cluster with <

N TTmin
< 5N i occurrences) < kexp | —)

8
where mnin = min{my, ..., m}.

Proof. This result follows from a union bound:

N| —

k
IP’(U{cluster g has < =nmyin occurrences})
g=1

k
1
< ZIP’(cluster g has < =nmyin occurrences)
g=1

N

26 CHAPTER 2. PRELIMINARIES

k
< ZIP’(cluster g has <
g—1

<Zexp() gexp(nﬂmm):kexp(—m;min). |

Hence, with probability at least 1—k exp(—nmmin/8), there are more than nmyin /2 samples
from every cluster. In particular, with any choice of 0 € (0, 1), if we have n > % log(k/9)
samples, then we will see nmyin/2 > 0 samples from every cluster with probability at
least 1 — 0. Returning to the coupon collector’s problem where mni, = 1/k, we see
that collecting n = [8k log(k/0)] = O(k log k) coupons is sufficient to see all k types of
coupons with high probability.

Jrg OCCu rrences)

Chapter 3

Time Series Classification

A key task in mining temporal data is being able to identify anomalous events, often
before they happen. As a running example used throughout this chapter, consider a time
series that tracks how much activity there is for a particular news topic on Twitter. Given
the time series up to present time, will this news topic go viral? Borrowing Twitter’s
terminology, we label the time series a “trend” and call its corresponding news topic a
“trending topic” if the news topic goes viral. Otherwise, the time series is labeled “not
trend”. We seek to forecast whether a news topic will become a trend before it is declared
a trend (or not) by Twitter, amounting to what’s called a binary time series classification
problem: can we correctly classify a time series as one of two labels?

Importantly, we skirt the discussion of what makes a topic considered trending. While
it is not public knowledge how Twitter defines a topic to be a trending topic, Twitter does
provide information for which topics are trending topics. We take these labels to be
ground truth, effectively treating how a topic goes viral to be a black box supplied by
Twitter. Thus, our goal of forecasting trending news topics could more generally be
described as predicting whether a news topic will be a trend before it is declared to be a
trend by any third party that we can collect ground truth labels from. Existing work that
identify trends on Twitter (Cataldi et al., 2010; Mathioudakis and Koudas, 2010; Becker
et al, 2011) instead, as part of their trend detection, define models for what trends are.
The same could be said of previous work on novel document detection (Kasiviswanathan
et al., 2011, 2012). In contrast, we neither define a model for what trends are nor do
we assume we know such a definition. Our only way of indirectly probing a definition is
through collecting ground truth labels of news topics from a third party like Twitter.

For this problem of forecasting news trends on Twitter, Nikolov (2012) has shown that
weighted majority voting can predict whether a news topic will be a trend in advance of
Twitter 79% of the time, with a mean early advantage of 1 hour and 26 minutes, a true
positive rate of 95%, and a false positive rate of 4%. We summarize this result later in
this chapter.

The success of nearest-neighbor or nearest-neighbor-like methods in time series clas-
sification is hardly limited to forecasting which news topics will go viral. Such methods
have also been used, for example, to detect abnormal brain activity in EEG recordings
(Chaovalitwongse et al., 2007), classify protein sequences (Kajan et al.,, 2006), and pre-
dict whether a cell phone subscriber will switch providers (Lee et al,, 2012). In fact, while
numerous standard classification methods have been tailored to classify time series, a

27

28 CHAPTER 3. TIME SERIES CLASSIFICATION

simple nearest-neighbor approach has been found to be hard to beat in terms of classifi-
cation performance on a variety of datasets (Xi et al., 2006), with results competitive to or
better than various other more elaborate methods such as neural networks (Nanopoulos
et al., 2001), decision trees (Rodriguez and Alonso, 2004), and support vector machines
(Wu and Chang, 2004). More recently, researchers have examined which distance to use
with nearest-neighbor classification (Batista et al., 2011; Ding et al., 2008; Weinberger
and Saul, 2009) or how to boost classification performance by applying different trans-
formations to the time series before using nearest-neighbor classification (Bagnall et al,,
2012). These existing results are mostly experimental, lacking theoretical justification
for both when nearest-neighbor-Llike time series classifiers should be expected to perform
well and how well.

In this chapter, we establish theoretical performance guarantees for nearest-neighbor
and weighted majority voting time series classification in terms of available training
data. To focus the exposition on high-level ideas and intuition, we defer all proofs to
Section 3.7. We begin in Section 3.1 by precisely stating the nonparametric inference
methods we shall analyze. As we view data as random, our theoretical guarantees rely on
an underlying probabilistic model for time series. We present such a model in Section 3.2,
which we call a latent source model for time series classification. Our model is guided
by the hypothesis that there are only a small number of unknown latent sources from
which time series are generated.

Turning toward analysis, in Section 3.3, we show how weighted majority voting ap-
proximates an oracle maximum a posteriori (MAP) classifier that knows the latent sources.
Naturally, we can’t hope to outperform this oracle MAP classifier. However, if the num-
ber of training data grows large, we would expect weighted majority voting to better
approximate the oracle classifier. With this high-level intuition in mind, we then present
our main theoretical result in Section 3.4, stating nonasymptotic performance guarantees
for nearest-neighbor and weighted majority voting time series classification. Note that
neither method actually estimates what the latent sources are.

To compare our work to existing results that can learn the latent sources, and also
to examine how far our performance guarantees are from what is optimal, in Sections 3.5
and 3.6, we consider a specific instantiation of our model that makes it into a spheri-
cal Gaussian mixture model. In this special case, the latent sources are precisely the
mixture model components, so we can compare our guarantees to existing quarantees for
algorithms that learn spherical Gaussian mixture models. As we show in Section 3.5, the
theoretical guarantees for these existing learning algorithms either require more strin-
gent conditions on the data or require more training data than what we show is sufficient
for time series classification. Then in Section 3.5, we establish a lower bound on the mis-
classification rate for any classifier and compare this bound with our upper bounds on the
misclassification rates of nearest-neighbor and weighted majority voting classification.

Finally, we present experimental results in Section 3.8. Using synthetic data, we find
weighted majority voting to outperform nearest-neighbor classification early on when we
observe very little of the time series to be classified. This suggests weighted majority
voting to be better suited for forecasting anomalous events than nearest-neighbor clas-

Sec. 3.1. Nonparametric Time Series Classifiers 29

sification. Returning to our running example of forecasting news trends on Twitter, we
summarize the weighted majority voting results by Nikolov (2012) and show that the real
time series data in this case do exhibit clustering behavior. The cluster centers could be
thought of as the underlying latent sources.

B 3.1 Nonparametric Time Series Classifiers

We represent each time series as a function mapping Z to R. Given time series Y observed
at time steps 1,2,..., T, we want to classify it as having either label +1 (“trend”) or
—1 (“not trend”). To do so, we have access to labeled training data consisting of time
series Y4,..., Y, with corresponding labels Ly,...,L, € {+1,—1}. We now present
three simple nonparametric inference methods for time series classification.

n}d(T)(Yu, Y) be the index of the
nearest training data point to Y, where d{/)(Y,, Y) is some “distance” between time
series Y, and Y, superscript (T) indicates that we are only allowed to look at the first T
time steps (i.e., time steps 1,2,...,T) of Y (but we're allowed to look outside of these
time steps for each training time series Y, foruv € {1,..., n}). Then we declare the label
for Y to be the same as that of the u-th (i.e, the nearest) training data point:

.....

Nearest-neighbor classifier. Let U = argmin, g

L) = L. (3.1)
Dtstance d(T)() could for example, be squared Euclidean distance: d(7)(Y,,Y) =
Zt 1(— Y(1))> £ ||V, — Y||3. However, this distance only looks at the first T
time steps of tralmng time series Y,. Since time series in our training data are fully
known, we need not restrict our attention to their first T time steps. Thus, we instead
use the following distance function throughout the rest of this chapter:

.
(M) _ , e
d(Y,, Y)= an Z (t+A)=Y(1))? = pef AmaT-TO IIII o) | Yu®A=Y||%,

where we minimize over integer time shifts with a pre-specified maximum allowed shift
Apax > 0, and we use A® A to denote time series A advanced by A time steps, i.e.,
(A® A)(t) = A(t + A).

Weighted majority voting. Each training time series Y, casts a weighted vote e
for whether time series Y has label L,, where constant 6 > 0 is a scaling parameter that
determines the “sphere of influence” of each training data point. The total votes for label
+1 and —1 are given by

—0dM(Y,,Y)

Vi (Y; 0) = Zexp od)(Y,, V))1{L, = +1},

V_4(Y; 6) = Zexp (—ed(y,, V)1{L, = —1}.

u=1

30 CHAPTER 3. TIME SERIES CLASSIFICATION

The label with the majority of overall weighted votes is declared as the label for Y:

-~ 1 if Viq(Y;0) > V(Y
Wy {71 0z v

WMV (3.2)

—1 otherwise.

Using a larger time window size T corresponds to waiting longer before we make a
prediction. We need to trade off how long we wait and how accurate we want our
prediction. When 6 — oo, we obtain nearest-neighbor classification.

Generalized weighted majority voting. Lastly, applications may call for trading off true
and false positive rates. One way to do this is to bias the prediction toward one of the
labels, such as scaling the total vote for label —1 by factor 7 > 0. The resulting decision
rule, which we refer to as generalized weighted majority voting, is thus:
10 v+ 6) = {+1 if Via(Y;0) > TV (Y;0),

. (3.3)
—1 otherwise,

where setting T = 1 recovers the usual weighted majority voting (3.2). This modification
to the classifier can be thought of as adjusting the priors on the relative sizes of the two
classes. Our theoretical results to follow actually cover this more general case rather
than only that of T = 1.

H 3.2 A Latent Source Model

We assume there to be k distinct prototypical time series i, ..., px with corresponding
labels A1, ..., Ak € {+1,—1} that are not all the same. These labeled time series occur
with strictly positive probabilities s, ..., ¢ and are referred to as latent sources. For
inference, we will not know what the prototypical time series are, how many there are of
them, or what probabilities they occur with. A new time series is generated as follows:

1. Sample latent source index G € {1, ..., k} so that G = g with probability 7.

2. Sample integer time shift A uniformly from {0, 1, ..., Amax}. (For a technical reason,
we restrict to nonnegative shifts here, whereas in our distance function d7) from
before, we allow for negative shifts as well. As we discuss in Section 3.7.1, the
generative model could indeed allow for shifts from {—Apax, ..., Amax}, in which
case for our proof techniques to work, the distance function we use needs to look at
shifts up to magnitude 2Anax.)

3. Output time series Y to be latent source g advanced by A time steps, followed by
adding noise time series W, i.e., Y(t) = ug(t + A) + W(t). Entries of noise W are
i.i.d. zero-mean sub-Gaussian with parameter o. The true label for Y is assigned
to be L = Aq.

The above generative process defines our latent source model for time series classification.
Importantly, we make no assumptions about what the latent sources actually are aside
from them being distinct and that there is at least one latent source per label.

Sec. 3.3. Approximating an Oracle Classifier 31

B 3.3 Approximating an Oracle Classifier

If we knew the latent sources and if noise entries W(t) were i.i.d. N(0, 21—9) across time
indices t, then the maximum a posteriori (MAP) estimate for label L given the first T
time steps of time series Y is

+1 i RUL(Y;6) > 1,

. (3.4)
—1 otherwise,

NT
Liap(Y: 6) = {

where

Rip(Y: 0) 2 =250 (3.5)

.....

and D, & {0, ..., Amax}. Note that in the ratio above, the numerator is a sum of weighted
votes for label +1, and the denominator is a sum of weighted votes for label —1.

However, we do not know the latent sources, nor do we know if the noise is i.i.d. Gaus-
sian. We assume that we have access to n training data sampled i.i.d. from the latent
source model, where we have access to all time steps of each training time series, as
well as every training time series’ label. Denote D £ {—Amax,---,0,..., Anax}. Then we
approximate the MAP classifier by using training data as proxies for the latent sources.
Specifically, we take ratio (3.5), replace the inner sum by a minimum in the exponent,
replace each latent source time series with training time series, drop the proportions
71, ...,k that we do not know, and replace Dy by D to obtain the ratio

R(T)(Y, 9) A Zu€{1 n} st L,=+1 exp (- 9(mlnAED ” YU ® A — YHZT)) _ V+‘](Y; 9)

Y vt} st L= &P (= O(minacp [Yu ® A= Y[7)) V(Y5 6)
(3.6)
Plugging R'") in place of R,&,‘TA)\P in classification rule (3.4) yields weighted majority vot-
ing (3.2), which as we have already discussed becomes nearest-neighbor classification
when 6 — oo. That nearest-neighbor classification and weighted majority voting ap-
proximate the oracle MAP classifier suggest that they should perform better when this
approximation improves, which should happen with more training data and not too much
noise as to muddle where the true decision boundaries are between labels +1 and —1.
Also, note that measuring similarity between time series in terms of squared Euclidean
distances naturally comes out of using Gaussian noise. Squared Euclidean distance will
thus appear in how we define the separation gap between time series of opposite labels.

Using different noise model would change this gap condition.

As a technical remark, if we didn't replace the summations over time shifts with
minimums in the exponent, then we have a kernel density estimate in the numerator
and in the denominator (Fukunaga, 1990, Chapter 7), where the kernel is Gaussian, and
our main theoretical result for weighted majority voting to follow would still hold using
the same proof. We use a minimum rather a summation over time shifts to make the
method more similar to existing time series classification work (e.g., Xi et al. (2006)),
which minimize over nonlinear time warpings rather than simple shifts.

32 CHAPTER 3. TIME SERIES CLASSIFICATION

B 3.4 Theoretical Performance Guarantees

We now present our main theoretical result of this chapter which provides performance
guarantees for nearest-neighbor classification (3.1) and generalized weighted majority
voting (3.3), accounting for the number of training data n and the number of time steps T
that we observe of the time series to be classified. This result depends on the following
separation gap, which depends on time horizon T:

gl & min Y@ A—Y, ®N|3.
uve{l,...n} st L,#L,,
ANED

This quantity measures how far apart the two different label classes +1 and —1 are if
we only look at length-T chunks of each time series and allow all shifts of at most Apax
time steps in either direction. We're now in a position to state this chapter’s main result.

Theorem 3.4.1. Let my, = min{my, ..., i}, o = P(L=41) = 2521 mgl{Ag = +1},

and n_4 £ P(L = —1) = 2521 mg1{Ag = —1}. Under the latent source model for time
series classification with n training data points:

(a) The probability that nearest-neighbor classification misclassifies time series Y with
label L satisfies the bound

NJTmin

PLRAY) # 1) < kexp (= 20)+ (2000 + Nexp (— ——G17).

1602

(b) The probability that generalized weighted majority voting (with parameter 6) mis-
classifies time series Y with label L satisfies the bound

P(LD(Y;0) # 1)
NJTmin

8

< kexp (—) + (TJT+1 + 1;71_1) (2Amax + 1)nexp (— (60— 40292)Q(T)).

To interpret this theorem, first note that the two upper bounds actually match when,
for generalized weighted majority voting, we choose 7 = 1 (corresponding to reqular
weighted majority voting) and 6 = #. This suggests the two methods to have similar
behavior when the gap grows with the number of time steps T that we see of time series Y.
Thus, we shall just examine the upper bound for nearest-neighbor classification.

We consider sufficient conditions that ensure that the nearest-neighbor classification
upper bound is at most 0 € (0, 1). Specifically, we look at when each of the two terms on
the right-hand side is at most 8/2. For the first term, the number of training data n should

be sufficiently large so that we see all the different latent sources: n > % log(2k/0).
For the second term, the gap G!") should be sufficiently large so that the nearest training
time series found has the correct label: G(7) > 1602 log (Z(ZAmaX + 1)n/5). There are
different ways to change the gap, such as increasing how many time steps T we get to
observe of time series Y, and changing what quantity the time series are tracking.

Sec. 3.5. Learning the Latent Sources 33

The linear dependence in the second term for both upper bounds in the Theorem
result from a worst-case analysis in which only one training time series comes from the
same latent source as the time series to be classified, and the other n —1 < n training
time series have the wrong label. If we have some estimates or bounds on k, 7pin, Amax,
and ¢, then one way to prevent the linear scaling with n is to randomly subsample our
training data. Specifically, if we have access to a large enough pool of labeled time series,
i.e., the pool has Q(% log %) time series, then we can subsample n = 9(% log %) of
them to use as training data, in which case nearest-neighbor classification (3.1) correctly
classifies a new time series Y with probability at least 1 — ¢ if the gap grows as

g7 = Q(az(log(2Amax + 1) + log (57: : logg))).
min

For example, consider when the latent sources occur with equal probability, so i, = 1/k.
Then so long as the gap grows as

g = Q(UZ(log(2Amax + 1) + log (glog g))) - 0(02(log(2Amax + 1) + log g))
i.e., logarithmic in the number of latent sources k, then nearest-neighbor classification is
correct with probability at least 1 — 6. If, furthermore, the gap grows as Q(a?T) (which is
a reasonable growth rate since otherwise, the closest two training time series of opposite
labels are within noise of each other), then observing the first T = Q(log(2Anax + 1) +
log %) time steps from the time series is sufficient to classify it correctly with probability
at least 1 — 0. This corresponds to the informal statement of Theorem 1.2.1.

Although our performance guarantees for the two nonparametric methods are com-
parable, in our experimental results in Section 3.8, we find weighted majority voting to
outperform nearest-neighbor classification when T is small, and then as T grows large,
the two methods exhibit similar performance in agreement with our theoretical analysis.
For small T, it could still be fairly likely that the nearest neighbor found has the wrong
label, dooming the nearest-neighbor classifier to failure. Weighted majority voting, on
the other hand, can recover from this situation as there may be enough correctly labeled
training time series close by that contribute to a higher overall vote for the correct class.
This robustness of weighted majority voting makes it favorable in the online setting where
we want to make a prediction as early as possible.

W 3.5 Learning the Latent Sources

If we can estimate the latent sources accurately, then we could plug these estimates in
place of the true latent sources in the MAP classifier and achieve classification perfor-
mance close to optimal. If we restrict the noise to be Gaussian and assume Apax = 0,
then the latent source model corresponds to a spherical Gaussian mixture model. To
simplify discussion in this section, we assume latent sources to occur with equal prob-
ability 1/k. We could learn a spherical Gaussian mixture model using Dasqupta and

34 CHAPTER 3. TIME SERIES CLASSIFICATION

Schulman’s modified EM algorithm (Dasgupta and Schulman, 2007). Their theoretical
guarantee depends on the true separation between the closest two latent sources, namely

T)x & 2
(T 2 2,

min —
g.he{l,.., Il<} s.t. g#h Hug Uh’

which needs to satisfy GU7)* 3 ¢2\/T. Then with number of training time series n =
Q(max{1, ol }k log %), gap G!"* = Q(? log g), and number of initial time steps observed

g
o'T? k o'T?
7= 0o {1 Gz oo [o1 G)

their algorithm achieves, with probability at least 1 — 0, an additive eaV/T error (in
Euclidean distance) close to optimal in estimating every latent source. In contrast, our
result is in terms of gap G!7) that depends not on the true separation between two latent
sources but instead on the minimum observed separation in the training data between
two time series of opposite labels. In fact, our gap, in their setting, grows as Q(d?T)
even when their gap G!7)* grows sublinear in T.

In particular, while their result cannot handle the regime where O(d” log %) < g <
o’V/T, ours can, using n = O(k log %) training time series and observing the first T =
Q(log %) time steps to classify a time series correctly with probability at least 1—9. This
follows from our theorem below, which specializes Theorem 3.4.1 to the Gaussian setting
with no time shifts and uses gap G!")* instead of G{"). We also present an accompanying
corollary to interpret the theorem. Both our theorem and corollary to follow still hold if
gap G!7)* were instead replaced by the squared Euclidean distance between the closest
two latent sources with opposite labels:

It 2 , 2
e g,he{1,...r,r)<l}ns.t. AgAn g = tanll7-

Intuitively, if latent sources of the same label are extremely close by (so that G(7)* is
small) yet latent sources of opposite labels are far away (so that G{")T is large), then we
should expect the classification problem to be relatively easy compared to learning the
latent sources because the latter still needs to tease apart the different latent sources
that are extremely close by.

Theorem 3.5.1. Let sy > 0 and s; > 0. Suppose that G{T)* > s%. Under the latent source
model for time series with Gaussian noise, no time shifts, and n training data points:

(a) The probability that nearest-neighbor classification misclassifies time series Y with
label L satisfies the bound

2 2 2
nyl < _ Mwin) 1~ B I VR L
IP’(LNN(Y)%L)_kexp(:)+ ; exp(402) + 5 exp(—s2)

+ nexp (_ (g(T)* — 251V G + 20°T — 4%/ Tsz))

1602

Sec. 3.5. Learning the Latent Sources 35

(b) The probability that generalized weighted majority voting misclassifies time series
Y with label L satisfies the bound

P(L(Y; 6) # L)
NJTTmin
SkeXp(_ 8)

+ (TJT+1 +1;ﬂ_1)nexp((0 — 405°0) (Q(T)* 251V G 4 20°T — 4g m))

Both of these guarantees still hold with G\ replaced by gint

2 S2 n2

—i—%exp(412)+fexp(s2)

As with Theorem 3.4.1, the two upper bounds are comparable and can be made to match
by choosing T =1 and 6 = # for generalized weighted majority voting. To interpret this
theorem, we choose specific values for s1 and s, and consider the worst case tolerated
by the theorem in which G(7)* = 5%, arriving at the following corollary.

Corollary 3.5.1. Let 0 € (0,1). Under the latent source model for time series classifica-
tion with Gaussian noise, no time shifts, and n > % log % training data points, if

2
G > 462 log %,

2 2
T24logn§+8log46+2\/(3l096+8log4;)log,;,

then nearest-neighbor classification and generalized weighted majority voting (with T =
1,0 = 81?) each classify a new time series correctly with probability at least 1 — 3. This
statement still holds if G\T)* is replaced by g(nt,

Hence, when the latent sources occur with equal probability (so myin = 1/k), then with
n = 0(c? log %) training data and so long as the gap grows as G!"* = Q(d? log %),
after observing T = Q(log %) time steps of Y, the two nonparametric inference algorithms
correctly classify Y with probability at least 1 — 0.

Vempala and Wang (2004) have a spectral method for learning Gaussian mixture mod-
els that can handle smaller G\ than Dasgupta and Schulman's approach but requires
n = Q(T3k?) training data, where we've hidden the dependence on o2 and other variables
of interest for clarity of presentation. Hsu and Kakade (2013) have a moment-based es-
timator that doesn’t use a gap condition but, under a different non-degeneracy condition,
requires substantially more samples for our problem setup, i.e, n = Q((k'* 4+ Tk'")/?) to
achieve an € approximation of the mixture components. These results need substantially
more training data than what we've shown is sufficient for classification.

To fit a Gaussian mixture model to massive training datasets, in practice, using all the
training data could be prohibitively expensive. In such scenarios, one could instead non-
uniformly subsample O(Tk3/&?) time series from the training data using the procedure
given in (Feldman et al., 2011) and then feed the resulting smaller dataset, referred to as
a (k, €)-coreset, to the EM algorithm for learning the latent sources. This procedure still
requires more training time series than needed for classification and lacks a guarantee
that the estimated latent sources will be close to the true latent sources.

36 CHAPTER 3. TIME SERIES CLASSIFICATION

B 3.6 Lower Bound on Misclassification Rate

To understand how good our theoretical performance guarantees for nearest-neighbor
and weighted majority voting time series classification are, we establish a lower bound
on the misclassification rate for any classifier under the Gaussian noise setting with no
time shifts as in the previous section. This lower bound depends on the true gap between
latent sources of opposite labels, namely g(ht,

Theorem 3.6.1. Under the latent source model for time series classification with Gaussian
noise and no time shifts, the probability of misclassifying time series using any classifier
satisfies the bound

]] 1 F(7+1m1/2 T
P(misclassify) > JT+17T_‘|7T%~m exp (— Z—UZQ(T)T — (ETI_(T/Z)))V 26T — 5)

where I is the Gamma function: T(z) £ [;°x*~'e™*dx defined for z > 0. Note that
C(T+1)/2

)) grows sublinear in T.

We can compare this result to the misclassification rate upper bound of nearest-neighbor
classification in Theorem 3.5.1. While this upper bound does not match the lower bound,
its fourth and final term decays exponentially with gap G!")T as well as time horizon T,
similar to the only term in our lower bound. The other three terms in the upper bound
could be made arbitrarily small but in doing so slows down how fast the fourth term
decays. We suspect our upper bound to be loose as our analysis is worst-case. Even so,
it's possible that nearest-neighbor and weighted majority voting simply aren’t optimal.

B 3.7 Proofs

We now present the proofs of Theorems 3.4.1, 3.5.1, and 3.6.1, along with Corollary 3.5.1.
Since we look at time series in length-T windows, we equivalently view these windows
as T-dimensional vectors.

M 3.7.1 Proof of Theorem 3.4.1

Let &ll-sources denote the event that the training data consists of more than numyi, /2 points
from every latent source. By Lemma 2.2.2, this event happens with probability at least
1 — k exp(—nmmin/8). For the remainder of the proof, we assume event &,|_sources t0 hold.
Under the latent source model, the observed time series Y is generated from some
latent source Ay for g* € {1,...,k}, with time shift Ay € D, = {0,1,...,Anax} and
noise signal Wj:
Y = lg ® AN + W

Since event E,isources holds, there exists some training time series Y+, foru* € {1,...,n},
that is also generated from latent source A4+, but with different shift A; € D, and noise
signal W5:

Yo = Hgx & Ny + Wi,

Sec. 3.7. Proofs 37

Therefore, we can rewrite Y in terms of Y,« as follows:

Y =pg ®A + W
= ((Yor — W) ® (—A2)) ® A + W,
=Yy ® (A1 —A2)+ (W — W ® (A — Ap))
=Y @A + W, (3.7)

where A* 2 Ay — Ay € D = {~Apax,....—1,0,1, ..., Anax} (note the change from D
to D) and W = Wj — W, ® A. Since noise signals Wj and W, are i.i.d. over time and
sub-Gaussian with parameter g, noise signal W is also i.i.d. over time and sub-Gaussian,
now with parameter /2.

We remark that the generative model could allow for time shifts sampled uniformly at
random from some arbitrary finite set D’ C Z that need not equal Dy, but our analysis to
follow will require nearest-neighbor classification to look at training time series shifted
by amount A* of the form Ay — Ay with A1, A, € D'. When D' = D,, then A* € D.

Performance Guarantee for Nearest-Neighbor Classification

Given event &|i-sources, the probability of error for nearest-neighbor classification is

P(/L\;\RJ(Y) ?é L | gall—sources)
-]P(L = +1 | gall—sources)P(zf\Rj(Y) =1 | &all-sources, L = +1)
+P(L = =1 | Eattsources)PLNL(Y) = +1 | Eatisources, L = —1), (38)

The rest of the proof is mainly on upper-bounding P(Z;\RJ(Y) = —1 | &lisources, L = +1).
Bounding P(/[;\JT,L(Y) = +1 | &lisources, L = —1) is similar. Suppose L = +1. Nearest-

neighbor classification makes an error and declares Zf\m(Y) = —1 when the nearest
neighbor Y5 found has label L; = —1, where

(@,A)= argmin ||Y,®A—Y||Z = argmin |V, ®A— (Y, ® A*+ W)
ve{1,...,n},AeD ve{1,...,n},AeD

2
T

where the second equality uses equation (3.7). By optimality of (ﬁ,ﬁ) for the above
optimization problem, we have

[Ye®A— (Y @A +W)||3 > || Va®A— (Y- @A +W)|3 forallue{1,...,n},A €D.
Plugging in v = u* and A = A*, we obtain
IWIF > [1Vs ® A= (Yo @ A"+ W)|F

= |(Ya®A = Y, ® A*) — W3

= [Va®A— Yy @AY 3 =2V @A = Yy ® A", W)T + [|W][2,

38 CHAPTER 3. TIME SERIES CLASSIFICATION

where (Q, Q')r = ZtT:1 Q(t)Q’(t) for time series Q and Q. The above inequality can be
equivalently written as

AV ®A Y ® A, W)7 2 ||V @ A= Y, @ A} (39)

Since the true label is L = +1, which is the same label as training time series Y+, then
nearest-neighbor classification making an error implies the existence of a training time
series Y3 with label L = —1 that satisfies optimality condition (3.9). Therefore,

PL(Y) = =1 | Eatsources, L = +1)

SI[D(U {2<Ya®£_yu*®A*'W>T2Hyﬁ®£—yu*®A*H%}
Ue{1 rrrrr n} st Lg=—1,
AeD
< Z P(2<YE®A—YU*®A*’W>72||ya®g_yu*®A*H2T)

a€{1 n} s.t. LE:_1.
AeD

= > P(exp(2(Yy @ A — Yo @ A", W)7) > exp(¢]| Vg ® A — Yy @ A7[[7))

< > exp(— ¢ Vs ® A — Ve ® A% 3)E[exp2e(Va ® A — Yye @ A%, W)T)]
ue{1,...,n} st. Lg=—1,

AeD
< > exp(— || Vs ® A — Yo ® A[|3) exp(4¢%0?|| Vs ® A — Y, @ A]|3)
ue{1,...n} st. L;=—1,

AeD
= > exp (— (¢ — 4¢%0?)||Va ® A — Y, ® A*||%)
ue{l,...n} st. Ly=—1,

AeD

< > ep(—(s—497%G")

< n|Dlexp(— (¢ — 4¢202)Q(T))
= n(20nax + 1) exp (— (¢ — 4¢202)Q(T))

@ N(2Amax + 1) exp (— g\"), (3.10)

1602

where step (1) is by a union bound, step (2) is by Markov's inequality for ¢ > 0, step (3)
is by sub-Gaussianity, and step (4) is by choosing ¢ = #.
A similar calculation shows that

PLUL(Y) = =1L = +1) < n(2Dpax + 1) exp (— 79(”), (3.11)

Sec. 3.7. Proofs 39

Plugging in bounds (3.10) and (3.11) into equation (3.8) yields

~ 1
BLA(Y) # L | Eatcsources) < (2o + Nnexp (= 72567).

Finally,
(() 7& L) (all- sources)P(A(T) 7& L | gall sources)
+ IP)(all—sources) (7/: L | all sources
T
< P(Lg\“l](y) ?é L | gall sources) + P(all- sources)

< (2Amax + Nnexp (Q(T)) + kexp (J;mm)

1602
Performance Guarantee for Generalized Weighted Majority Voting

Given event &i-sources, the probability of error for generalized weighted majority voting is

P(L(Y;6) # L | Eatsources)
=P(L = +1 | Eati-sources)P(L ”(Y 0) = —1 | &lisources, L = +1)
+P(L = 1| Entisources) (LYY 8) = +1 | Eatisources, L = —1)
=P(L = +1P(L(Y; 0) = =1 | Eattsources, L = +1)
+P(L=—1)PL(Y; 6) = +1 | Eatsources, L = —1), (3.12)

where the second equality holds since the training data are independent of the label
of a new time series generated. The rest of the proof primarily shows how to bound

(L (Y 0) = —1 | &li-sources, L = +1). Bounding IP(L (Y 0) = +1 | ati-sources, L = —1)
is almost identical. By Markov's inequality,

(L (Y 9 -1 |gall sources: L= +1)

1 1

= (Y@) > ; Eallsources, L = +1)
1

<7 [R(T)(Y. 9 Eall-sources, L = +1]

=T1E all-sources L=+1 ’ 313
’ [R(T) u*®A*+W9) 5“ +] 343
where the last step uses equation (3.7), which, as a reminder, relied on event &l _sources
holding.

To proceed further, we begin by upper-bounding the term within the expectation,
namely 1/RT (u ®A*+ W; 0). Note that for any u € {1,...,n}, shift A € D, and time
series Q,

1 < 2_ue{l, .n} st Ly=—1,0ep XP(—0O[| Yy ® A — Qll7)

.....

RM(Q; 0) = exp(—0]Y; ® A — Q2)

40 CHAPTER 3. TIME SERIES CLASSIFICATION

In particular, we can choose u = u* and A = A*, so

1 Zu6{1 n} st. L,=—1,A€D exp(—0[|Y, ® A — QHZT)

.....

RUTN(Q; 6) ~ exp(—0] Yo ® A" — Q%)

Recall that we're upper-bounding 1/R(7)(Y,« ® A* + W; 0), corresponding to setting
Q = Y, ® A* + W. Doing this substitution, we get

1
R(T)(Yu* ® A* + W, 0)
Zue{1 ,,,,, n} st L,=—1,AeD exp(—QH Yu ®A— (Yu* ® A* + W)H%’)
exp(—6] Yo @ A — (Yo ® A + W)[3)
— Zue{1 ,,,,, n} st Li=—1,0eD EXP(—0/[(Yy ® A — Yy @ A7) — Wii3)
exp(—6W3)
—0(]| Yu®A—Y,x @A |3 =2(Y, ®A—Y = @A*, W) 1 +||W||3)

_ Zu€{1 n} st L,=—1,AeD €

exp(—0[|W[|3)
— > exp (= O(|Yu ®A = Yy @ A [T = 2(Y, ® A — Yy @ A", W)7))
ve{l,...n} st. L,=—1,AeD
= > exp(—0|| Yy ® A — Vi @ A*||5) exp(20(Yy @ A — Ve @ A, W)T).

ve{l,...n} st. L,=—1,A€eD

What we actually want to bound is the expectation of the left-hand side, given event
Eall-sources holding and L = +1. Taking this expectation for both sides above,

1
E[R(T)(Yu* ® A+ W: 9) Sall—sources, L= +1]
: E[Z 9_9”Y“®A_YU*®A*||2Teze(yu@f)A—Yu*@A*,W)T Eall-sources, L = +1]
ve{l,..,n} st L,=—1,
AeD
= L ewaleA-Ye @ NHEW[ep(Y, @ A= Vi © 47 W)r)]
ue{l,...n} st. Ly=—1
AeD

exp(—0|| Yy ® A — Yy ® A*||3) exp(46%0?|| Yy, ® A — Ve ® A*||F)

M

- 5 exp (— (0 — 46%0%)| Yy ® A — Y, ® A*3)

exp (— (6 — 46%0%)G!")

-]

< n|D|exp (— (6 — 46%0%)G\")

Sec. 3.7. Proofs 4

= n(20nax + 1) exp (— (6 — 46%0*)G11),

where the second inequality uses the fact that W consists of entries that are i.i.d. zero-
mean sub-Gaussian with parameter v/20. Plugging the above into inequality (3.13), we
get

PLU(Y; 0) = =1 | Eattsources, L = +1) < Tn(2nax + 1) exp (— (6 — 46%62)G 7). (3.14)

A similar calculation yields

PLI(Y; 0) = +1 | Eattcsourcess L = —1) < =n(20nax + 1) exp (— (6 —46%3%)G 7). (3.15)

N =

Plugging inequalities (3.14) and (3.15) into equation (3.12) gives
[P(/L\(TT)(Y; 9) 7& L | gall-sources)
< P(L=+1)Tn(20max + 1) exp (— (6 — 46%02)G!")

+P(L = —1)1;n(2Amax +1)exp (— (6 —46%0%)G!"))
= (IP’(L = +)T+P(L = —1)1;)n(2Amax +1)exp (— (0 — 46%62)g7).
Finally,
P(L(Y; 0) # L) = P(Eatsources) P(L(Y; 0) # L | Ealisources)

+ P(aCll—sources)P(L(TT)(Y; 9) :/é L | acll—sources)
<SPLD(Y;6) # L | Eattsources) + P(Edi-sources)

< (]P(L — 4T+ P(L = —1)1;)n(2Amax +1)exp (— (0 — 4626767
anmln)

|
8

+kexp(—

B 3.7.2 Proof of Theorem 3.5.1

We prove Theorem 3.5.1 using gap G!")T, which gives a stronger result than with gap G(7)*
that disregards the labels of the latent sources. The proof using gap G!")* is the same.

As with the proof of Theorem 3.4.1, we begin by assuming that there are more than
NTmin/2 training time series from every latent source, i.e, that event & sources holds. By
Lemma 2.2.2, this happens with probability at least 1 — k exp(—nsmpin/8).

Let Y;q and Y_4 be two training time series with labels +1 and —1. These time series
exist since event &,(_sources holds and, moreover, the latent source model assumes that the
underlying latent sources don't all have the same label. Under the latent source model,
Yoo = X)) 4 ws) and Yo = X020 4 WO, where X0%), X2 e {0, i}
denote the true latent sources corresponding to Y,¢ and Y_4, and W) and W1 are
the noise signals corresponding to Y,q and Y_; that consist of i.i.d. N'(0, 0?) entries.
Thus,

[Yir — Y3

42 CHAPTER 3. TIME SERIES CLASSIFICATION

- ||(X(Y+1) + Wy — (x0=1) 4 W(Y—1))H2T
= ||(X(Y+1) _ X(Y,1)) + (W(Y+1) — W(h))HZT

- ||X(Y+1) — X(Y—1)||%_ + 2(X(Y+1) — XxU=)) W(Y*”)T + ||W(Y+1) — W(Y—1)H%_.
We next want to analyze how far || Y1 — Y_4||% deviates from || X"+1) — X0=1)||2 With s,
and s; as fixed positive constants, define & _distances-good t0 be the event where for every

pair of training time series Y;1 and Y_1 with labels +1 and —1 respectively, we have
both

<X(Y+1) — xU=) Ve W(Y—1)>T > — W) — wl=1)|1s4, (3.16)
W) — W02 5 202 T — 407/ Ts;. (3.17)

We show when event & i_distances-good holds with sufficiently high probability:

e Bound (3.16): Note that (X(+1) — x(=1) Wi¥s1) — W)y is zero-mean sub-
Gaussian with parameter v2a| X(Y+1) — X(=1)| 1, so

2
P(X) — XO=) pe) 0=y < i xYen) — x (Y1) < (_ i)
(¢)< |l Irs1) <exp (=55
A union bound over all pairs of training time series with opposite labels gives
P(L X0 — xO-0, W)) < g x) _X(m”m})
Yi1,Yq

< Z]P((X(YH) — XU=) W) =y < g x0) —X(Y*1)||TS1)

Vi, Y
2 2 2 2
s s n s
< ex(— 1):n n_q ex (——1)<—ex (——1)
+1, 71

where nyq is the number of training time series with labels +1, and n_1 = n — n4q
is the number of training time series with label —1.

e Bound (3.17): Due to a result by Laurent and Massart (2000, Lemma 1), we have
P(|W) — WO=)|13 < 20°T — 40°VTh) < 2.

A union bound gives

P(U (W) — w3 <26°T — 402/ Ts2}

Yiq, Y

> PIWY) — WU |E < 20°T — 407/ Tsy)
Y1, Yo

IA

n2
g e %2 = nyq1n_4 e 2 < Te_sz.
Y, Yo

IA

Sec. 3.7. Proofs 43

By a union bound, the “good” event &yooq £ Elisources N &all-distances-good happens with

—$

2
probability at least 1 — k exp(—"g™) — %2 exp(—%) — "Tze
Assuming that event &yo0q holds and gt > s%,
1Yo — Yol
= HX(Y+1) — X(Y—1)H%_ + 2(X(Y+1) — X)) W(Y”))T + ||W(Y+1) — W(Y*”HZT
> [|IXY+) — xO=0)12 2 x4 — XU=) 1250 4 26°T — 40%/Ts,
= (X" = XU 7 — 51)? — 57 + 20%T — 40°\/Ts;
> (VG —s1)2 — 52 +20°T —40°\/Ts,
— 251V GNT 4+ 20%T — 40%/Ts,.

Minimizing both sides over training time series Y;q and Y_4 with labels +1 and —1,

G\ > gt —267/GNt +20°T — 40°/Ts. (3.18)

Using the same proof as for Theorem 3.4.1 except where now instead of only asking
&all-sources to hold, we ask that event &y o4 to hold, and we use the bound above relating
G to GUT)T, nearest-neighbor classification has probability of error

2 52 n2

n
e (=g + e

— (g~ 25V/GTTF 4+ 20°T — 407 Ts2)).

and generalized weighted majority voting has probability of error

PEG(Y) # 1) < kexp (— 20)

8
—I—nexp(

P(L(Y; 6) # L)
2

) 2 2
< kexp (— m;mm) + %exp (— %) + %exp(—sz)
+ (T7T+1 + 1;71_1)ne><p((6 — 42) (— 251V G t +20%T — 402 Tsz)).

W 3.7.3 Proof of Corollary 3.5.1

T)x

Again, here we can replace ¢t with G\T*, and the proof would still go through. Let
0 € (0,1). For the nearest-neighbor classification upper bound in Theorem 3.4.1, we
ask that each of the four right hand side terms be at most 0/4. Specifically, we set

s1 = 204/log % 6 and s; = log & 6 , which makes the second and third terms each exactly

8 |og 4k -5 - Finally, for the fourth term,
we do a worst-case analysis. Speaﬁcallg, with ¢ our " choices for s1 and sz, by completing
the square, we have

Gt —2617/GNT +26°T — 46°\/Ts>

44 CHAPTER 3. TIME SERIES CLASSIFICATION

=gt —40v/gT Tlog 2T 40\/Tlog 5
VGt —201/1 402 o 202T — 407/ T i
—(Q — 20 og?)—a 96+U o 0g
n? n?
> —402 log 5+ 20°T — 40*/ T log =

nexp (- 1617(g<7>7“ — 251V Gt +20°T — 402\/T52))

1 / n?
gnexp(—160 (—40 log?-i—ZU T —40? Tlogé))

<0
=3

Hence,

where the second inequality holds when
n? / n? 4n
T >2log—+2\/ T log— —.
> l096—|— log(5+8log 5

n? 4n \/ n? 4n n?
T>4logf+8lg?+2 (3[09?4—8[09?)[09?.
M 3.7.4 Proof of Theorem 3.6.1

Let L denote the predicted label for L using any classifier. Due to a result by Santhi and
Vardy (2006, equation (4)), for binary classification,

This happens when

~ P(L=+1)p(Y|L=+1P(L =—-"1)p(Y|L=—1
p(Y)

where the right-hand side is referred to as the harmonic lower bound. We lower-bound
this harmonic lower bound. For any two latent sources X1, X1 € {1, ..., pk} with
labels +1 and —1 respectively,
/IP’(L =+MNp(Y|L=+1P(L =-1)p(Y|L= —1)dY

p(Y)

17T (de{1 ,,,,, k} ﬂgN(Yi Hg., UZITXT) (Zg€{1 ,,,,, k} ﬂgN(Y; Hg: UZITXT))
_ st Ag=+1 st Ag=—1 dy
p(Y)
(1
/(ZJT)T/zUTJT 1771 Z N(Y: X1, 0 |T><T))(Z N(Y; X1, 0 |TxT))dY
ge{1,...k} ge{1,...k}

Sec. 3.7. Proofs 45

> /(Zﬂ)T/ZUTJT+17r 12 N Xir, Pl rIN(Y; X g, 02l 7)d Y

= Q2n) e nan 472, /N(Y; X_1, Pl 7)Y N(Y; X1, 0Plrx7)dY)

T2 T . 2
= (2m)"PoT mpm A By x,gottr, pN (Vi Xoa, 0%177)]

1
7T+17T—1jTr%]inEY~N(X+1,UZITXr)[eXp (- 2702” Y — X HZT)]

=

) 1
> 7 T By ot | €60 (= 53 (1Y = Xaall7 + X1 = X177)]

X=X

— JT+1JL17T2 e _217(||Y_X+1”2T+2”Y_X+1||THX+1—X—1||T)]

(3.20)

12
TRy n (i 027 L€

where step (1) uses the fact that

k
1
. 2 § _
g:1

™~

k
p(Y) = anN(Y; pg, ?l7x7) <
g=1

and step (2) uses the triangle inequality
1Y = Xallr = (Y = X) + (X = X2) 7 <Y = Xaallr + [X0 = Xall7.

Let's bound the expectation in the last line of inequality (3.20). With Y treated as
a random sample from N(X,1, 0%l7x7), then Y = X, + W, where W ~ N (0, 6l 7).
Therefore

1
By nptor.ottran| o0 = 502 (1Y = Xaallf + 20V = X7 X0 = Xl)]
1 2
= Ewooatrn)| @9 [= 555 (IWIE + 2WIr1Xa = X)) |

M 1
> e = 55 Ewenioonr [IWIF + 2IWI7 X = Xal7])

1
= exp (~ 552 (Ewen.02ty) IIWIF]+ 211X51 = XAl 7Ewen 0,027,)l WHT]))
() 1 F(r+mn/2
—exp(ﬁ(g T+2HX+‘]— 1”7'0'\/2(([_(;_—/2;/)))
T V2I(T +1)/2
- exp(S = X = Xallr a((r(T/z)))), (3.21)

where step (1) 'Ls by Jensen’s inequality, and step (2) uses the fact that %”W”zr is
distributed as a x? random variable with T degrees of freedom, so E[|| W|%] = o?T, while

L|W||7 is a x random variable with T degrees of freedom, so E[||W/|7] = av2H T’TL;Z/Z).
Stringing together inequalities (3.19), (3.20), and (3.21), we get

~

1
P(L# L) 2 a1 7o P (= 551 X1 =X l[F = 5 = X =Xl

V2I(T + 1)/2))
ol (T/)2) '

46 CHAPTER 3. TIME SERIES CLASSIFICATION

Since the above holds for all latent sources X1 and X_1 with labels +1 and —1, we
have

~

1 T 20T +1N)/2
PL# L) 2 a7 e (= 55677 = 5 — v Q‘T”‘fﬁ(ﬁz))/). m

B 3.8 Experimental Results

Synthetic data. We generate kK = 200 latent sources that occur with equal probability,
where each latent source is constructed by first sampling i.i.d. AV(0,100) entries per
time step and then applying a 1D Gaussian smoothing filter with scale parameter 30.
Half of the latent sources are labeled +1 and the other half —1. Then n = Bklogk
training time series are sampled, for various values of B, as per the latent source model
where the noise added is i.i.d. (0, 1), and the maximum time shift is Ay = 100. We
similarly generate 1000 time series to use as test data. We set 6 = 1/8 for weighted
majority voting. For B = 8, we compare the classification error rates on test data for
weighted majority voting, nearest-neighbor classification, and the MAP classifier with
oracle access to the true latent sources as shown in Figure 3.1(a). We see that weighted
majority voting outperforms nearest-neighbor classification but as T grows large, the
two methods’ performances converge to that of the MAP classifier. Fixing T = 100, we
then compare the classification error rates of the three methods using varying amounts
of training data, as shown in Figure 3.1(b); the oracle MAP classifier is also shown but
does not actually depend on training data. We see that as B increases, both weighted
majority voting and nearest-neighbor classification steadily improve in performance.

Forecasting trending topics on twitter. We now summarize experimental results reported
in (Nikolov, 2012) and subsequently in (Chen et al.,, 2013). From June 2012 user posts on
Twitter, 500 examples of trends were sampled at random from a list of news trends, and

0.6 0.25

——— Weighted majority voting
0.2F — — — Nearest-neighbor classifier
Oracle MAP classifier

——— Weighted majority voting
— — — Nearest-neighbor classifier
Oracle MAP classifier

0.5

041 0.15

0.3r
0.1r

02r
0.05F
0.1r

Classification error rate on test data

Classification error rate on test data

0 5‘0 100 150 200 1 2 3 4) 5 6 7 8
(a) (b)

Figure 3.1: Results on synthetic data. (a) Classification error rate vs. number of initial
time steps T used; training set size: n = Bk log k where B = 8. (b) Classification error
rate at T = 100 vs. B. All experiments were repeated 20 times with newly generated
latent sources, training data, and test data each time. Error bars denote one standard
deviation above and below the mean value.

Sec. 3.8. Experimental Results 47

activity

time

Figure 3.2: How news topics become trends on Twitter. The top left shows some time
series of activity leading up to a news topic becoming trending. These time series
superimposed look like clutter, but we can separate them into different clusters, as shown
in the next five plots. Each cluster represents a “way” that a news topic becomes trending.

500 examples of non-trends were sampled based on phrases appearing in posts. As it's
unknown to the public how Twitter chooses what phrases are considered as candidate
phrases for trending topics, it's unclear what the size of the non-trend category is in
comparison to the size of the trend category. Thus, for simplicity, the label class sizes
were controlled to be equal, and standard weighted majority voting (3.2) was used to
classify time series, where Apax is set to the maximum possible (all shifts are considered).
In practice, one could assemble the training data to have uneven label class sizes and
then tune 7 for generalized weighted majority voting (3.3).

Per topic, Nikolov (2012) created a time series based on a pre-processed version
of the rate of how often the topic was shared by users on Twitter. Chen et al. (2013)
empirically found that the time series for news topics that become trends tend to follow
a finite number of patterns; a few examples of these patterns are shown in Figure 3.2.
These few patterns could be thought of as latent sources. The trends and non-trends
were randomly divided into two halves, one to use as training data and one to use as test
data. Nikolov (2012) applied weighted majority voting, sweeping over 6, T, and data
pre-processing parameters. As shown in Figure 3.3(a), with one choice of parameters,
weighted majority voting detected trending topics in advance of Twitter 79% of the time,
and on average 1.43 hours earlier, with a true positive rate (TPR) of 95% and a false
positive rate (FPR) of 4%. Naturally, there are tradeoffs between TPR, FPR, and how
early one wants to make a prediction (i.e., how small time horizon T is). As shown in
Figure 3.3(c), an “aggressive” parameter setting yields early detection and high TPR but
high FPR, and a “conservative” parameter setting yields low FPR but late detection and
low TPR. An “in-between” setting can strike the right balance.

48 CHAPTER 3. TIME SERIES CLASSIFICATION

ROC Curve Envelope

60 1 early|] x 068
w50 - late || &
< 40 4 0.4r
3
o 30 1 L
S] :
o . ,

-4 -2 0 2 4 6 00 02 04 06 08 10
hours late

(a) (b)

top

60000 Plearly) =0.79
50000 p(iate) =0.21
€ 40000
3 30000
20000
100001
E10 -8 -6 -4 -2 0 2 4 6 8
center

Early detection vs. position on ROC curve i i
™ T T T [early|
H ate ||

[(early) =2.90 hrs

(late) =1.08 hrs

50000 Plearly) =0.40
40000} Alate) =0.60
5 30000} (earty) =1.20 hrs.
o
! : : © 20000} {fate) =165 hrs.
o4 i o 10000}

910 -8 -6 -4 -2 0 2 4 6 8

bottom

0.6 :

TPR

0.2f : bottom | 6000 Pearly) =0.13

50001 pa

‘g 4000
3 3000

: : : [(tate) =291 hrs.
: : : 2000}
0.0 ifrrressrereesiens s i 1000}
i L . . . i 0 . . J

0.0 0.2 04 06 08 1.0 0% =8 6 -4 =2 0 2 4 & 8
FPR hours late

[(earty) =171 hrs.

Figure 3.3: Results from Nikolov (2012) on Twitter data. (a) Weighted majority voting
achieves a low error rate (FPR of 4%, TPR of 95%) and detects trending topics in advance
of Twitter 79% of the time, with a mean of 1.43 hours when it does for a particular choice
of parameters. (b) Envelope of all ROC curves shows the tradeoff between TPR and
FPR. (c) Distribution of detection times for “aggressive” (top), “conservative” (bottom)
and “in-between” (center) parameter settings.

B 3.9 Discussion

Having to subsample the training data to keep the misclassification rate upper bounds
from scaling with n seems strange. Shouldn’t more data only help us? Or is it that by
seeing more data, due to noise, as we get more and more samples, we're bound to get
unlucky and encounter a training time series with the wrong label that is close to the
time series we want to classify, causing nearest-neighbor classification to get confused
and buckle? In fact, our later results in this thesis will also involve some training data
subsampling, yet it's unclear whether this is really necessary for the nearest-neighbor-
like inference methods we consider.

Sec. 3.9. Discussion 49

When the number of training data n is large, a more clever strategy that still involves
subsampling but now uses all the training data is to randomly partition the training data
into groups of size G(T log 6) each. Then we can apply weighted majority voting within
each group. A final prediction can be made by a “meta” majority vote: choose the most
popular label across the different groups’ label predictions. This meta-voting strategy
readily lends itself to analysis. In particular, since the training data in different groups
are independent, weighted majority voting's predictions across the different groups are
also independent and we know when we can ensure each of these predictions to be correct

N TTmin

with probability at least 1 — d. Then among the G)(log(k/é)) groups, the number of correct

label predictions stochastically dominates a Binomlal(@(lo”g@;”é)), 1— 6) random variable.
We can then apply a binomial concentration inequality to lower-bound this meta-voting
strategy’s probability of success.

We end this chapter by relating separation gap G!")T in Sections 3.5 and 3.6 to
the margin condition of Mammen and Tsybakov (1999) and Tsybakov (2004) (recall that
separation gap G!7)7 between the true latent sources relates to the separation gap G!')
in the training data via inequality (3.18)). The basic idea is that classification should be
challenging if for observed time series Y, the posterior probability P(L = +1 | Y) is close
to 1/2. When this happens, it means that Y is close to the decision boundary and could
plausibly be explained by both labels. Thus, if the probability that Y lands close to the
decision boundary is sufficiently low, then an inference algorithm that, either explicitly
or implicitly, estimates the decision boundary well should achieve a low misclassification
rate. Mammen and Tsybakov (1999) and Tsybakov (2004) formalize this margin condition
as follows:

P()P(L —+1]|Y)— %‘ < s) < Cs?, (3.22)

for some finite C > 0, ¢ > 0, and all 0 < s < s* for some s* < 1/2. Note that
the randomness is over Y. With additional assumptions on the behavior of the decision
boundary, Tsybakov (2004) and Audibert and Tsybakov (2007) showed that nonparametric
classifiers can have misclassification rates that exceed the optimal Bayes error rate by
as low as O(n~") or even lower under a far more restrictive assumption on how label L
relates to observation Y.

To sketch how separation gap G117 relates to the above margin condition, we consider
the one-dimensional Gaussian case with no time shifts where we have two latent sources:
if Y has label L = 41 then it is generated from N(y, %) and if Y has label L = —1 then
it is generated from N (—pu, o) for constants y > 0, and o > 0, and where P(L = +1) =
P(L = —1) = 1/2. For this example, an optimal MAP decision rule classifies Y to have
label +1 if Y > 0, and to have label —1 otherwise. Thus, the decision boundary is at
Y = 0. Meanwhile, the separation gap is given by)T =y — (—p) = 2u. To relate to
margin condition (3.22), note that for s € [0, 1/2),

R R R L e B]

14+2s 1+2s

5¢) — oo when s — 1/2. The right-hand side

where log(7552) = 0 when s = 0, and log(7=

50 CHAPTER 3. TIME SERIES CLASSIFICATION

interval corresponds to the decision boundary Y = 0 up to some closeness parameter s.
For this interval to be far away enough from the two latent source means —p and p,
henceforth, we assume that s is small enough so that

o (15) <

In other words, the interval doesn’t contain the latent source means —y and p. Then

:}P’(YE [—;tog(]fij)é’;log(ﬁi)])
L

— Ip(:+1)IP’(Ye[_02log(1+25) o’ log(1+2$)]‘L:+1)

2u 1-2s!"2p 1—-2s
+1P>(L=—1)P(Ye [—g;log(tgz),;;log(lJ_riz)HL:—‘l)
(by sgmmetrg):P(YE [—g;log(}igz),ilog(ltgz)]’szq)

e[G [12) Lo (122))

[55to0 (75) = (= 5o (5 DI o0 (1255)e?)

IN

—U—Zlo (1+25) (Uzlo (1+2$)' 02)
B A VXY A U el v
o 14 2s 1 0’ 14252
_ LY P 2
‘ﬁzﬂul"g(wzs)ex"(02(“ 2,;“’9(1—25))) (3-23)
where the inequality uses the fact that since % log(}f%i) < u, the largest value of the
density of N (u, 0?) within interval [~ log(1£2), & log(1£22)] is N(% log(1£25); 41, 0?).

Examining the Taylor expansion of (3.23), one can then derive an upper bound of the
form P(|P(L=+1]Y)— %| <'s) < Cs® by choosing ¢ to be the (positive integer) order
of the Taylor expansion, and then choosing constant C large enough. For example, if we
want a linear bound (¢ = 1), note that the right-hand side of inequality (3.23) has Taylor

. 8 Uze—uz/az 2 . . 8 o e_“2/02
expansion 4/ 2 &—s + O(s%). Choosing C to be sufficiently larger than T

results in a bound for small enough s, thus satisfying margin condition (3.22).

We note that bound (3.23) decays exponentially with the separation gap G!")7 = 2.
One way to intuit this result is that since our noise is sub-Gaussian, the probability
that Y deviates significantly from its generating latent source decays exponentially as
a function of how far Y is from this latent source. When the separation gap between
latent sources of opposite labels is large, then it means that to land close to the decision
boundary, Y would have to be quite far from even the two closest latent sources with
opposite labels. This event's probability goes to 0 as the separation gap grows large.

Chapter 4

Online Collaborative Filtering

Recommendation systems have become ubiquitous in our lives, helping us filter the vast
expanse of information we encounter into small selections tailored to our personal tastes.
Prominent examples include Amazon recommending items to buy, Netflix recommend-
ing movies, and LinkedIn recommending jobs. In practice, recommendations are often
made via collaborative filtering, which boils down to recommending an item to a user
by considering items that other similar or “nearby” users liked. Collaborative filtering
has been used extensively for decades now including in the GrouplLens news recom-
mendation system (Resnick et al., 1994), Amazon’s item recommendation system (Linden
et al,, 2003), the Netflix $1 million grand prize winning algorithm by BellKor's Pragmatic
Chaos (Koren, 2009; Toscher and Jahrer, 2009; Piotte and Chabbert, 2009), and a recent
song recommendation system (Aiolli, 2013) that won the Million Song Dataset Challenge
(Bertin-Mahieux et al., 2011).

Most such systems operate in the “online” setting, where items are constantly rec-
ommended to users over time. In many scenarios, it does not make sense to recommend
an item that is already consumed. For example, once Alice watches a movie, there’s little
point to recommending the same movie to her again, at least not immediately, and one
could argue that recommending unwatched movies and already watched movies could be
handled as separate cases. Finally, what matters is whether a likable item is recom-
mended to a user rather than an unlikable one. In short, a good online recommendation
system should recommend different likable items continually over time.

Despite the success of collaborative filtering, there has been little theoretical devel-
opment to justify its effectiveness in the online setting. Instead, most work (e.g., Cal et al.
(2010); Candés and Recht (2009); Keshavan et al. (2010a,b); Recht (2011)) has been in
the “offline” setting, where we freeze time, have access to all “revealed” ratings users
have provided so far, and predict all “missing” ratings for items users haven't yet rated.
This offline problem setup perhaps gained enormous popularity amongst both academics
and practitioners after Netflix offered a $1 million dollar grand prize for a solution to the
problem that outperformed theirs by a pre-specified performance metric. The setup itself
is a matrix completion problem, where we consider a matrix of ratings where rows index
users and columns index items (e.g., movies), and the (u, i)-th entry is either the rating
that user u gave item i, or marked as missing. The goal then is to fill in these missing
ratings, typically by imposing a low-rank constraint on the ratings matrix. The theoretical
guarantees for such methods usually assume that the items that users view are uniform

51

52 CHAPTER 4. ONLINE COLLABORATIVE FILTERING

at random, which is not the case in reality and also doesn’t account for the fact that real
recommendation systems should and are biasing users into rating certain items, hope-
fully items that they like. Only recently has this assumption been lifted for theoretical
analysis of the offline setting (Lee and Shraibman, 2013). Of course, none of these model
the true online nature of recommendation systems with time marching forward and the
system continuously providing recommendations and receiving user feedback.

Moving to this online setting, most work has been phrased in the context of the
classical so-called multi-armed bandit problem, first introduced by Thompson (1933).
The name of the problem originates from the “one-armed bandit” slot machine found in
casinos in which a gambler pulls the arm of the machine and receives a random reward.
Naturally, the m-armed bandit problem refers to when the gambler has m such machines
to play and seeks to maximize her or his cumulative reward over time, playing one machine
at each time step. Translated to the context of online recommendation systems, the m
machines are items, and playing a machine refers to recommending an item. We remark
that in this standard setup of the multi-armed bandit problem, there is only a single user
and hence no concept of collaboration between users, and only recently has there been
work on incorporating a pool of users (Bui et al,, 2012; Gentile et al., 2014).

Even so, there hasn’t been a justification for why existing commonly used collaborative
filtering methods work in this online setting, with the closest related work analyzing the
asymptotic consistency of cosine-similarity collaborative filtering in predicting the rating
of the next unseen item (Biau et al., 2010), or examining the ability of a collaborative
filtering method to predict ratings in an asymptotic information-theoretic setting (Barman
and Dabeer, 2012). Dabeer (2013) uses a similar model as ours but analyzes an algorithm
the knows the number of user and item types, which we won’t assume we have access to.

In this chapter, we justify when, why, and how well a variant of cosine-similarity
collaborative filtering works. This main result relies on an underlying model for an online
recommendation system as well as a clear objective of what a recommendation method
should be optimizing, both of which are presented in Section 4.1. Our setup imposes
the constraint that once an item is consumed by a user, the system can’t recommend the
item to the same user again. In the context of the multi-armed bandit problem, once a
gambler pulls the arm of a machine, the machine breaks and is no longer available!

For analysis, similar to the time series classification setting, we begin with an oracle
MAP inference algorithm that knows the underlying model parameters in Section 4.2. We
show how to approximate this oracle recommendation algorithm with cosine-similarity col-
laborative filtering, where it becomes apparent when we should expect cosine-similarity
filtering to work well. Before the approximation works well though, there should be suffi-
cient exploration upfront. We include two types of exploration, one to probe the space of
items and the other to probe the space of users. This leads to a simple cosine-similarity
collaborative filtering algorithm described in Section 4.3, which we modify slightly to
obtain a more readily analyzable algorithm called CoLLaBORATIVE-GREEDY. This sets up
the stage for our main result of this chapter in Section 4.4, which provides a theoretical
performance guarantee for CoLLABORATIVE-GREEDY. Its proof is in Section 4.5.

We present experimental results in Section 4.6. First, we provide evidence that

Sec. 41. A Latent Source Model and a Learning Problem 53

real movie recommendation data do exhibit clustering behavior across users. In fact,
items cluster as well, which we do not account for in our model. Then, to test our
algorithm CoLLABORATIVE-GREEDY, we simulate an online recommendation system that
uses ratings from real movie recommendation datasets and show that CoLLABORATIVE-
GREEDY outperforms several existing collaborative filtering methods.

W 4.1 A Latent Source Model and a Learning Problem

We consider a system with n users and m items. At each time step, each user is rec-
ommended an item that she or he hasn’'t consumed yet, upon which, for simplicity, we
assume that the user immediately consumes the item and rates it +1 (like) or —1 (dis-
like)." The reward earned by the recommendation system up to any time step is the total
number of liked items that have been recommended so far across all users. Formally,
index time by t € {1,2,...}, and users by u € {1,...,n}. Let ¢, € {1,..., m} be the
item recommended to user u at time t. Let YLS? € {—1,0,+1} be the rating provided by
user u for item i up to and including time t, where O indicates that no rating has been
given yet. A reasonable objective is to maximize the expected reward r'’) up to time T:

T n

sy EvI=3) Ev)

t=1 u=1 i=1 u=1

The ratings are noisy: the latent item preferences for user u are represented by a length-
m vector p, € [0,1]", where user u likes item i with probability p,;, independently
across items. For a user u, we say that item i is likable if py; > 1/2 and unlikable
otherwise. To maximize the expected reward r'), clearly likable items for the user should
be recommended before unlikable ones.

In this chapter, we focus on recommending likable items. Thus, instead of maximizing
the expected reward r(’), we aim to maximize the expected number of likable items
recommended up to time T:

T n
A 2SS EX, (4.1)

t=1 u=1
where X,; is the indicator random variable for whether the item recommended to user u
at time t is likable, e, X,t = +1 if pyy,, > 1/2 and X,;; = 0 otherwise. Maximizing (7
and rg) differ since the former asks that we prioritize items according to their probability

of being liked.

Recommending likable items for a user in an arbitrary order is sufficient for many
real recommendation systems such as for movies and music. For example, we suspect
that users wouldn't actually prefer to listen to music starting from the songs that their

"In practice, a user could ignore the recommendation. To keep our exposition simple, however, we stick to
this setting that resembles song recommendation systems like Pandora that per user continually recommends
a single item at a time. For example, if a user rates a song as “thumbs down” then we assign a rating of
—1 (dislike), and any other action corresponds to +1 (like).

54 CHAPTER 4. ONLINE COLLABORATIVE FILTERING

user type would like with highest probability to the ones their user type would like
with lowest probability; instead, each user would listen to songs that she or he finds
likable, ordered such that there is sufficient diversity in the playlist to keep the user
experience interesting. We target the modest goal of merely recommending likable items,
in any order. Of course, if all likable items have the same probability of being liked and
similarly for all unlikable items, then maximizing r{’) and rf) are equivalent.

The fundamental challenge is that to learn about a user’s preference for an item, we
need the user to rate (and thus consume) the item. But then we cannot recommend that
item to the user again! Thus, the only way to learn about a user’s preferences is through
collaboration, or inferring from other users’ ratings. Broadly, such inference is possible
if the users’ preferences are somehow related.

In this chapter, we assume a simple structure for shared user preferences. We posit
that there are k <« n different types of users, where users of the same type have identical
item preference vectors. Specifically, we denote the k underlying item preference vectors
as t,...,pk € 10,1 If users u and v are of the same type g € {1,...,k}, then
pu = pv = Hg. The number of user types k represents the heterogeneity in the population.
For ease of exposition, in this chapter we assume that a user belongs to each user type
with probability 1/k. We refer to the overall model as a latent source model for online
collaborative filtering, where each user type corresponds to a latent source of users. We
remark that there is evidence suggesting real movie recommendation data to be well
modeled by clustering of both users and items (Sutskever et al.,, 2009). Our model only
assumes clustering over users.

Our problem setup relates to some versions of the multi-armed bandit problem. A
fundamental difference between our setup and that of the standard stochastic multi-armed
bandit problem (Thompson, 1933; Bubeck and Cesa-Bianchi, 2012) is that the latter
allows each item to be recommended an infinite number of times. Thus, the solution
concept for the stochastic multi-armed bandit problem is to determine the best item (arm)
and keep choosing it (Auer et al,, 2002). This observation applies also to “clustered
bandits” (Bui et al., 2012), which like our work seeks to capture collaboration between
users. On the other hand, “sleeping bandits” (Kleinberg et al., 2010) allow for the
available items at each time step to vary, but the analysis is worst-case in terms of which
items are available over time. In our setup, the sequence of items that are available is
not adversarial. Our model combines the collaborative aspect of clustered bandits with
dynamic item availability from sleeping bandits, where we impose a strict structure on
how items become unavailable.

B 4.2 Approximating an Oracle Algorithm

We begin with an algorithm that has oracle access to the true item preference vectors
U, ..., bk €10,1]" of the k user types, but does not know which type each user belongs
to. One could show that at time t 4+ 1, the MAP recommendation given the past ratings

Sec. 42. Approximating an Oracle Algorithm 55

for user u is to choose item i that user u has not consumed that maximizes

k
Y wpew]~ 3 D(Ber(vf]+ 12 [Bertu) | (42
g=1

jesupp(Yy)

where supp(-) denotes the support of a vector (its set of nonzero entries), Ber(:) denotes
the Bernoulli distribution, and D(:||-) denotes KL divergence; as a reminder, Y is the
revealed ratings vector for user u up to and including time t. Notice that the MAP
recommendation is a weighted pluralitg vote. Each user type g casts a vote with weight
pgiexp { — 2 jcsupp(vl?) D(Ber(() 1)/2)||Ber(ug;)) } for item i. The weight is the
probability that user type g ltkes item { downweighted by how misaligned user u's
revealed ratings so far YLSt) are with py. To obtain a recommendation, we sum all the
votes for each item that user u has not consumed yet, and choose the item with the
highest vote.

In reality, we know neither the number of user types k nor the item preference vectors
m, ..., Ug. If these vectors are in some sense sufficiently well-separated, then after
enough revealed ratings for user u, the exponentially decaying weight in equation (4.2)
should eliminate all the user types’ contributions except for that of user u’s type, and
furthermore, if the revealed ratings aren’t too noisy, then the exponentially decaying
weight for user u's type should be going to 1. In other words, if user u belongs to type
h, then for sufficiently large t,

k
Zyg,-exp{ — > D(Ber((Y) +1)/2)||Ber(yg,))} — i as t—oo. (43)
jesupp(¥s")

Of course, we do not know pip;. We could estimate it using neighbors for user u, where
we use cosine similarity to define the neighborhoods as it is widely used in collaborative
filtering. Specifically, we estimate pp; with:

o 1YY = +1)
~(t
Pul 21 T, 1Y £ 0}

1/2 otherwise,

i Y, o 1{YS #0} >0,

where the user’s neighborhood N[(f) is defined as
NO2fvet,..., n} (Y, YOy > glsupp(YD) N supp(Y D)} .

Here 6 is a pre-specified parameter. In particular, user v is a neighbor of user u precisely
if the cosine similarity between their revealed ratings over items they have both rated is

at least 6. To see this, let Q,, = supp(Y,St)) N supp(Yy)) be the support overlap of Y,St)
and Y\ft), and let (-, -)q,, be the dot product restricted to entries in Q,,. Then

(v vy (v§, vNa,
Q ’
| UV| \/(Ylst)' Ylgt)>0uv\/< ‘St)’ V(t)>0uv

56 CHAPTER 4. ONLINE COLLABORATIVE FILTERING

is the cosine similarity of revealed rating vectors YLS” and Y restricted to the overlap
of their supports.

The above approximation assumed two conditions: low noise and user type separation.
Both of these conditions turn up in our theoretical performance guarantee in Section 4.4,
where the separation will be in terms of cosine similarity. With both conditions satisfied,
after enough items are explored and revealed, approximation (4.3) should work well and
could be thought of as exploiting what we've learned thus far about the users’ preferences.
However, in the initial transition period in which we have not seen enough ratings for
user u, we shouldn’t just be exploiting. Whereas the oracle MAP recommender neatly
handles this transition period, we’ll opt for the simpler action of randomized exploration
to develop two collaborative filtering algorithms in the next section. We remark that
if instead of cosine similarity, we used another similarity measure between users, we
suspect that our main theoretical result to follow could still work with a different user
type separation condition.

B 4.3 Collaborative Filtering with Two Exploration Types

For clarity of presentation, we begin by describing a simpler recommendation algorithm
SiMPLE-COLLABORATIVE-GREEDY. To make SimpLE-CoLLABORATIVE-GREEDY more amenable
to analysis, we modify it slightly to obtain CoLLABORATIVE-GREEDY. Both algorithms are
syntactically similar to an algorithm called e-GReEDY for the standard multi-armed bandit
setting, which explores items with probability € and otherwise greedily chooses the best
item seen so far based on a plurality vote (Sutton and Barto, 1998). The exploration
probability € is allowed to decay with time: as we learn more about the different bandit
machines, or items in our setting, we should be able to explore less and exploit more.

The standard multi-armed bandit setting does not have user collaboration, and one
could interpret asking each user to randomly explore an item as probing the space of
items. To explicitly encourage user collaboration, we could ask users to all explore the
same item, which probes the space of users. Accounting for the constraint in our setting
that an item can’t be recommended to the same user more than once, we thus have the
two following exploration types:

e Random exploration. For every user, recommend an item that she or he hasn’t
consumed yet uniformly at random.

e Joint exploration. Ask every user to provide a rating for the next unseen item in a
shared, randomly chosen sequence of the m items.

Our first algorithm SimpLE-CoLLABORATIVE-GREEDY thus does one of three actions at each
time step t: With probability €r, we do the above random exploration step. With prob-
ability), we do the above joint exploration step. Finally, if we do do neither of these
exploration steps, then we do a greedy exploitation step for every user: recommend
whichever item i user u has not consumed yet that maximizes the plurality vote ﬁffl) given
by equation (4.4), which relied on cosine similarity to find nearby users.

Sec. 43. Collaborative Filtering with Two Exploration Types 57

We choose the exploration probabilities eg and g; as follows. For a pre-specified rate
a € (0,4/7], we set the probability of random exploration to be er(n) = 1/n® (decaying
with the number of users), and the probability of joint exploration to be g/(t) = 1/t
(decaying with time). For ease of presentation, we set the two explorations to have the
same decay rate @, but our proof easily extends to encompass different decay rates for
the two exploration types. Furthermore, the constant 4/7 > « is not special. It could be
different and only affects another constant in our proof. The resulting algorithm is given
in Algorithm 1.

Algorithm 1: SimMpLE-CoLLABORATIVE-GREEDY (and CoLLABORATIVE-GREEDY)
Input: Parameters 6 € [0,1], a € (0, 4/7]

Select a random ordering w of the items {1,..., m}. Define
1 1
er(n) = prt and g(t) = a

for time stept =1,2,..., T do

With prob. er(n): (random exploration) for each user, recommend a random
item that the user has not rated.

With prob. g(t): (joint exploration) for each user, recommend the first item in
w that the user has not rated.

With prob. 1 — g/(t) — er(n): (exploitation) for each user u, recommend an
item i that the user has not rated and that maximizes score ﬁﬁf} given by
equation (4.4), which depends on threshold 6. (For CoLLABORATIVE-GREEDY, use

score 55} given by equation (4.5) instead.)

The main technical hurdle in analyzing SimMpLE-CoLLABORATIVE-GREEDY is that it's not
trivial reasoning about the items that two users have both rated, especially the items
recommended by cosine similarity exploitation. In other words, which items have revealed
ratings follows a nontrivial probability distribution. We can easily circumvent this issue
by changing the definition of the neighborhood of a user u to only consider items that have
been jointly explored. Specifically, if we denote t; to be the number of joint exploration
steps up to time t, then we're quaranteed that there's a subset of t; items chosen uniformly
at random that all users have consumed and rated (this is the first t; items in random
item sequence w in Algorithm 1). The algorithm CoLLABORATIVE-GREEDY results from this

slight change. Formally, we replace a user’s item score /p\ffl) given in equation (4.4) with

2Rl 1{Y = +1}
Put £ T,cxe 1{Y #0}

1/2 otherwise,

if 0 1{Y'" £ 0} >0,
t ZVENL) { vi + } (4.5)

where the neighborhood of user u is given by

N2 fve{1,...,n}: (Y, ¥) > 6lsupp(V{") N supp(Y{")

}

58 CHAPTER 4. ONLINE COLLABORATIVE FILTERING

and %t) consists of the revealed ratings of user u restricted to the first ¢; jointly explored
items up to time t. In other words,

()
Yul =

= Y[S? if item i is among the first t; items in random sequence w of Algorithm 1,
0 otherwise.

We also give CoLLABORATIVE-GREEDY in Algorithm 1. Our experimental results in Sec-
tion 4.6 suggest that the two algorithms have similar performance.

B 4.4 A Theoretical Performance Guarantee

We now present the main result of this chapter that characterizes the performance of
CorLaBorATIVE-GREEDY. This result depends on two conditions, hinted at earlier:

e Low noise. There exists a constant ¢ € [0, 1/2) such that
min{1 — pgi, ygi} < 0

for all user types g € {1,...,k} and items i € {1,..., m}. In particular, ¢ mea-
sures how far the probabilities of liking items are from 0 or 1. If ¢ = 0, then the
probabilities are all 0 or 1, so user ratings are deterministic and there is no noise.
If 0 = 1/2 (which is actually disallowed by the condition), then there is an item
with probability 1/2 of being liked. We can’t hope to predict whether a user will
like this item better than chance.

Note that this low noise condition holding with parameter o implies that it also
holds with parameter ¢’ € (g, 1/2).

e Cosine separation. There exists a constant G* € (0, 1] such that for two different
user types g and h,

%(ng —1,2u,—1) < (1 =G%)(1 = 20)%

where 1 is the all ones vector. The left-hand side is an expected cosine similarity. To
see this, let Y, and Y;" be fully-revealed rating vectors of users u and v from types g
and h respectively. Then E[L(Yy, V)] = L(215 —1, 2, —1) is the expected cosine
similarity between fully-revealed rating vectors Y7 and Y}, where the expectation is
over the random ratings of items. Constant G* can be thought of as a true gap: the
larger it is, the smaller the cosine similarities between different user types can be.
To combat noise, when o increases, the condition asks that the cosine similarity
between different user types decrease, i.e., that user types become more separated.

Note that this cosine separation condition holding with parameter G* implies that
it also holds with parameter G* € (0, G*).

Sec. 4.4. A Theoretical Performance Guarantee 59

The low noise condition ensures that with a finite number of samples, we can correctly
classify each item as either likable or unlikable. The cosine separation condition ensures
that using cosine similarity can tease apart users of different types over time. A worry
may be that the cosine separation condition is too stringent and might only hold in with
expected cosine similarity E[-1 (Y, ¥)] scaling as o(1). We provide some examples after
the statement of this chapter’s main result for which the cosine separation condition holds
with E[L(Y}, Y;)] scaling as ©(1).

We assume that the number of users satisfies n = O(m¢) for some constant C > 1.
This is without loss of generality since otherwise, we can randomly divide the n users
into separate population pools, each of size O(m®) and run the recommendation algorithm
independently for each pool to achieve the same overall performance guarantee.

Finally, we define ¢, the minimum proportion of likable items for any user (and thus
any user type):
er'n=1 T{pui > 1/2}
ge{1,...k} m '

We're now ready to state this chapter’'s main theorem.

Theorem 4.4.1. Let 0 € (0,1) be a pre-specified tolerance. Suppose that the low noise
condition holds with parameter o, and the cosine separation condition holds with param-
eter G*. Take as input to CoLLABORATIVE-GREEDY 6 = %(1 — 20)°G* where G* € (0,1],
and a € (0,4/7]. Under the latent source model for online collaborative filtering, if the
number of users n = O(m®) satisfies

n= Q(kmlog%%— (%)1/a),

then for any Tieqrn < T < {m, the expected proportion of likable items recommended by
CoLLABORATIVE-GREEDY up until time T satisfies

)

ri _ Tlearn _
Do (1T
where
k _
- _ o logim_é"g)é 1/ a)+ (i)wa
learn = (1 — 20_)4(g*)2 5 .

The precise conditions (without using big O notation) on the number of users n and
learning duration Tiearn are provided in Lemma 4.5.3 for which no attempt has been made
to optimize the many large constants.

The above theorem says that there are Tiear initial time steps for which CoLLABORATIVE-
GREEDY may be giving poor recommendations. Afterward, for Tiearn < T < {m, the al-
gorithm becomes near-optimal, recommending a fraction of likable items 1 — 0 close to
what an optimal oracle algorithm (that recommends all likable items first) would achieve.
(Note that this oracle algorithm is different from the MAP oracle algorithm presented

60 CHAPTER 4. ONLINE COLLABORATIVE FILTERING

earlier, which does not get to know which user is assigned to which latent source.) Then
for time horizon T > {m, we can no longer guarantee that there are likable items left
to recommend. Indeed, if the user types each have the same fraction of likable items,
then even an oracle recommender would use up the {m likable items by this time. To
give a sense of how long the learning period Tiear is, note that when a = 1/2, we have
Tiearn scaling as logz(km), and if we choose o close to 0, then Tiearn becomes nearly
log(km). In summary, after Tiearn initial time steps, which could be made nearly log(km),
and with number of users scaling as km, CoLLABORATIVE-GREEDY is essentially optimal.
This recovers the informal statement of Theorem 1.2.2.

To provide intuition for the cosine separation condition, we calculate parameter G*
for three examples that build on top of each other.

Example 4.4.1. Consider when there is no noise, i.e, 0 = 0. Then users’ ratings are
deterministic given their user type. We construct the true underlying item preference vec-
tors py, ..., px €[0,1]" by sampling every entry pg; (g € {1,..., k} andie {1,...,m})
to be i.id. Bernoulli(1/2). In this case, the cosine separation condition, with true gap

G* =1—1/9" holds with probability at least 1 — .

m
To show this, note that for any item i and pair of distinct user types g and h, the

product (2ug; — 1)(2up; — 1) is a Rademacher random variable (+1 or —1 each with
probability %) and thus the dot product (2uy —1,2u, — 1) is equal to the sum of m
i.i.d. Rademacher random variables, each of which is sub-Gaussian with parameter 1.
Hence, the sum is zero-mean sub-Gaussian with parameter \/m, implying that

2
P(<2u9—1,2uh—1>25) gexp(—z—).

m
Plugging in s = m/ lolgnm, we see that

1 /logm 1
P(E<2Ug—1,211h—1> > T) < e

Union-bounding over all distinct pairs of user types,

1 logm k
IF’(U {m<2Ug_1r2Uh_1>2 - })S(Z)
g.he{1

..... k} s.t. g#h

1 k?
7S7
m = m

Hence, with probability at least 1 — %2 we have

logm

1

—(2pg — 1,2, — 1
m< Hg Hp > < m
for every distinct pair of user types g and h. Noting that o = 0, the cosine separation

logm
ot

condition holds with parameter G* to be 1 —

Sec. 45. Proof of Theorem 4.4.1 61

Example 4.4.2. We expand on the previous example by introducing noise with parameter
o € (0,1/2). Now let the item preference vectors py, ..., pk € 10,1]™ have iid. entries
that are 1 — o (likable) or o (unlikable) with probability % each. Then for a distinct
pair of user types g and h, if pyg; = pp; (which happens with probability 1/2), then
E[(2ug—1)-un—1)] = (1—0)*+0%2=20(1—0) = (1-20)%, and if g # pni (50 Hgi = 1—tn;
in this example, also occurring with probability 1/2), then E[(2uy — 1) - 2up — 1)] =
20(1 — 0) — (1 — 0)? — 0> = —(1 — 20)%. This means that (2ug —1,2p, — 1) is again
a sum of Rademacher random variables, except now scaled by (1 — 20)?. This sum is
sub-Gaussian with parameter \/m(1 — 20)?. By a similar calculation as the previous
example, with probability at least 1 — k%/m,

1 logm
—ug —1,2u, — 1 1 —20)?
m(ug py — 1) < (o)™/ p-

for every distinct pair of user types g and h. Thus, the cosine separation condition holds

with parameter G* = 1 — lo%.

Example 4.4.3. Building off our second example, we now suppose that entries in the
item preference vectors n,. .., tk € [0,1]" have entries that are 1 — o (likable) with
probability ¢ € (0,1/2), and o (unlikable) with probability 1 — . Then for item i and
different user types g and h, pg; = pp; with probability ¢ + (1 —). This implies that
E[(2ug — 1,2y — 1)) = m(1 — 20)*(1 — 2{)?, and one can verify that the dot product
(2ug —1,2pp — 1) is still sub-Gaussian with parameter \/m(1 — 20)?. Using a similar
calculation as before but now accounting for the mean of the dot product no longer being
0, with probability at least 1 — k%/m,

%(2,19 1, 2u—1) < (1 —20)2((1 — 2072 +4/ l(’im)

for every distinct pair of user types g and h. Then the cosine separation condition holds

with parameter G* =1 — (1 — 2{)? —

logm
r

B 4.5 Proof of Theorem 4.4.1

Recall that X,; is the indicator random variable for whether the item ¢, recommended
to user u at time t is likable, ie., pyy, > 1/2. This is equivalent to the event that
Puy,, = 1 — 0, under the low noise condition (with parameter o) holding. Then the

expected proportion of likable items is

(7
+ =

1 T n 1 T n
=Y Y EXul= 7o)) P =1).

t=1 u=1 t=1 u=1

Our proof focuses on lower-bounding P(X,; = 1). The key idea is to condition on what
we call the “good neighborhood” event &yod(u, t):

5good(u, i‘)

62 CHAPTER 4. ONLINE COLLABORATIVE FILTERING

= { at time t, user u has > % neighbors from the same user type (“good neighbors”),

(1 — 20)tn'—@
20km

This good neighborhood event will enable us to argue that after an initial learning time,
with high probability there are at most (% — 0) as many ratings from bad neighbors as
there are from good neighbors.

The proof of Theorem 4.4.1 consists of two parts. The first part uses joint exploration
to show that after a sufficient amount of time, the good neighborhood event &yood(u, t)
holds with high probability.

and < neighbors from other user types (“bad neighbors")}.

Lemma 4.5.1. For user u, after

£ 321og(20kmn®/(1 — 20)) 1/(1=a)
- (1—20)%(G*)

time steps,

4%\ 241—a
P(Egood(u, 1)) Z’I—exp(—gn—k) —12exp(— a 2”)32(5) !)
In the above lower bound, the first exponentially decaying term could be thought of as
the penalty for not having enough users from the k user types, and the second decaying
term could be thought of as the penalty for not yet clustering the users correctly.

The second part of our proof to Theorem 4.4.1 shows that, with high probability, the
good neighborhoods have, through random exploration, accurately estimated the proba-
bility of liking each item. Thus, we correctly classify each item as likable or not with
high probability, which leads to a lower bound on P(X,; = 1).

Lemma 4.5.2. For user u at time t, if the good neighborhood event Eyy04(u, t) holds and
t < {m, then

(1—20)2tn1_") 11
160km

t® n<

Here, the first exponentially decaying term could be thought of as the cost of not
classifying items correctly as likable or unlikable, and the last two decaying terms
together could be thought of as the cost of exploration (we explore with probability
g(t) + er(n) = 1/t* +1/n?).

We defer the proofs of Lemmas 4.5.1 and 4.5.2 to Sections 4.5.1 and 4.5.2. Combining
these lemmas and choosing appropriate constraints on the numbers of users and items,
we produce the following lemma.

IP’(Xut:1)21—2mexp(—

Lemma 4.5.3. Let 0 € (0,1) be a pre-specified tolerance. If the number of users n and
items m satisfy

n > max {8klog % (%)1/0(}'

Sec. 45. Proof of Theorem 4.4.1 63

321og(20kmn®/(1 — 20)) \ "7 [32010g(96/6) \ "7 [4\ /e
(mztzmax{((1= 203G) ((1—20)(9)) (3 }
160km lo 16m
(1= 20)2 (5)

nt' =