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AbstractNearest-neighbor inference methods have been widely and successfully used in numerousapplications such as forecasting which news topics will go viral, recommending products topeople in online stores, and delineating objects in images by looking at image patches.However, there is little theoretical understanding of when, why, and how well thesenonparametric inference methods work in terms of key problem-specific quantities relevantto practitioners. This thesis bridges the gap between theory and practice for thesemethods in the three specific case studies of time series classification, online collaborativefiltering, and patch-based image segmentation. To do so, for each of these problems,we prescribe a probabilistic model in which the data appear generated from unknown“latent sources” that capture salient structure in the problem. These latent source modelsnaturally lead to nearest-neighbor or nearest-neighbor-like inference methods similar toones already used in practice. We derive theoretical performance guarantees for thesemethods, relating inference quality to the amount of training data available and problems-specific structure modeled by the latent sources.
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Chapter 1

Introduction

The last two decades have seen an unprecedented explosion in the availability of datapertaining to virtually all avenues of human endeavor. People document their day-to-daylives on social networks. Stores collect information on customers to better recommendproducts. Hospitals house electronic medical records to assist medical diagnosis. Inno small part due to the Internet and increasingly powerful sensors whether it be rela-tively inexpensive smartphone cameras to far more elaborate devices such as magneticresonance imaging scanners and the Large Hadron Collider, we now collect and sharemassive troves of data. How do we turn this deluge of data into valuable insights?A fundamental problem is that we do not know the rich structure underlying the data apriori. However, by having access to gargantuan volumes of data, practitioners have foundthat we can often sidestep the question of explicitly positing or learning the structureunderlying the data altogether. When we posit intricate structure for data, the structuremay stray from reality or otherwise not account for the full palette of possibilities in whatthe data look like. When we learn structure, the computational overhead and amount ofdata needed may dwarf what is sufficient for tackling the prediction task we aim to solve.Instead of positing or learning structure, we can instead let the data more directly driveour predictions using so-called nonparametric inference methods.This thesis showcases three case studies of nonparametric inference. In our first casestudy, to forecast whether an ongoing news topic will go viral, we compare its activityto those of past news topics that we know have gone viral as well as those that did not.Along similar lines, in online stores or recommendation websites that have both hugeuser bases and endless items to recommend, we predict whether a user will like an itemby looking at what other similar users like. For our final case study, in computer vision,to delineate where an object of interest is in an image, we compare patches of the imageto patches in a training database of images for which we know where the object is.
� 1.1 Nonparametric Inference
The nonparametric inference methods used throughout this thesis are variations of asimple approach called weighted plurality voting, which we describe in the context of ourfirst case study. To predict whether the news topic “Barclays scandal” will go viral, wecompare its activity to those of past news topics which we know to have gone viral or not.These labeled past news topics are called training data. Each of these past news topics
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14 CHAPTER 1. INTRODUCTION
casts a weighted vote, where the weight depends on how similar the past news topic’sactivity is to that of the news topic “Barclays scandal”. Summing over all weighted votesfrom past news topics that had gone viral results in a total vote for “Barclays scandal”going viral. Similarly, summing over all weighted votes from past news topic that did notgo viral results in a total vote for “Barclays scandal” not going viral. Finally, weightedplurality voting declares “Barclays scandal” will go viral or not based on which of the twototal votes is higher. In this case, there are two outcomes we vote on: whether news topic“Barclays scandal” goes viral or not. With only two outcomes, weighted plurality votingis called weighted majority voting. In general when there are more than two outcomes,weighted plurality voting chooses whichever outcome has the highest total vote, whichneed not be the majority.We refer to weighted plurality voting as a nearest-neighbor-like method. In ourexample of forecasting whether the news topic “Barclays scandal” goes viral, the pastnews topics that are most similar to “Barclays scandal” contribute the most to the finalprediction. These most similar training data points could be thought of as “nearestneighbors” to the news topic “Barclays scandal”. Naturally, a commonly used variant ofweighted plurality voting is nearest-neighbor classification, in which we only considerweighted (which also allows for unweighted) votes of the single most similar past newstopic or a select few of the most similar past news topics.Despite their name, nonparametric inference methods, such as weighted pluralityvoting, are generally not parameter-free. Rather, they make very few assumptions onthe underlying model for the data. There could still be parameters that must be chosen.For example, we need to define a measure of how similar two news topics’ activitiesare in how we described weighted plurality voting. In practice, these choices can makesubstantial differences in inference quality, and in this thesis we shall see how some ofthese choices relate to relatively weak assumptions on structure in the data.An impetus for the popularity of nearest-neighbor-like methods lies in their effi-ciency of computation. Fast approximate nearest-neighbor search algorithms for high-dimensional spaces (e.g., Gionis et al. (1999); Bawa et al. (2005); Ailon and Chazelle(2006); Andoni and Indyk (2006); Datar et al. (2004); Muja and Lowe (2009); Mathy et al.(2015)) can rapidly determine which data points are close to each other, while readilyparallelizing across different search queries. These methods often use locality-sensitivehashing (Gionis et al., 1999), which comes with a theoretical guarantee on its approxima-tion accuracy for nearest-neighbor search, or randomized trees (e.g., Bawa et al. (2005);Muja and Lowe (2009); Mathy et al. (2015)), which quickly prune search spaces when thetrees are sufficiently balanced. Such trees can be efficiently constructed as data streamin (Mathy et al., 2015). Even the large body of work on random decision forests, which arefast in practice, can be thought of in terms of nearest-neighbor inference (Criminisi et al.,2011). Here, each tree in the forest has leaves that are associated with different trainingdata, and to predict a particular property of a new data point, we determine which leaf thenew data point belongs to, effectively finding which training data are nearest to it. Thus,one could interpret random decision forests as learning nearest-neighbor relationshipsthat maximize performance on an inference task such as classification or regression.
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While nearest-neighbor-like methods have been widely used in practice, there islittle theoretical understanding of when, why, and how well these methods work in termsof the amount of training data available and relevant structural properties in the data.This thesis aims to bridge the gap between theory and practice for nearest-neighbor-likemethods. To do so, we present what we call latent source models for the three seeminglydisparate problems of time series classification, online collaborative filtering, and patch-based image segmentation, corresponding to our three case studies. The recurring themein how we approach each of these problems turns out to be the same. We begin with ageneric model that assumes very little structure. We show how an oracle algorithm canbe described by weighted plurality voting. We then approximate the oracle algorithmwith a nearest-neighbor-like method akin to what’s used in practice, for which we derivetheoretical performance guarantees.Existing theoretical work on nearest-neighbor methods has largely been asymptoticin nature or otherwise studied much more general settings than what we consider. Asthe amount of training data tends to infinity, nearest-neighbor classification has beenshown to achieve a probability of error that is at worst twice the Bayes error rate, andwhen considering the nearest K neighbors with K allowed to grow with the amount ofdata, the error rate approaches the Bayes error rate (Cover and Hart, 1967). However,rather than examining the asymptotic case in which the amount of data goes to infinity,we instead pursue nonasymptotic performance guarantees in which no quantities tend toinfinity. Nonasymptotic guarantees have been studied for nearest-neighbor methods infairly general settings in order to obtain rates of convergence for classification (Cover,1968), regression (Kpotufe, 2011), and density estimation (Dasgupta and Kpotufe, 2014).Our results are far less general and provide tighter guarantees as we instead focus on thethree case studies above, each of which exhibits different structure. Guarantees on ratesof convergence have been demonstrated previously for very specific settings in terms ofthe number of nearest neighbors considered (Hall et al., 2008). For simplicity, we will notconsider choosing an appropriate number K of nearest neighbors, instead either usingjust the nearest neighbor (K = 1), using all neighbors within some ball, or using allneighbors but weighting them according to a similarity measure between data points.
� 1.2 Latent Source Models and Theoretical Guarantees
This thesis establishes nonasymptotic performance guarantees for nearest-neighbor-likemethods in the three diverse applications in terms of the available training data andstructural properties specific to each application. To do so, for each case study, we treatour training data as random i.i.d. samples from an underlying probabilistic model that isintentionally chosen to be simple with few assumptions. Much like how physicists aimto better understand the world by studying simple idealized situations such as merelytwo particles colliding, our probabilistic modeling also, for each case study, examinessimple situations, emphasizing specific structural elements to the application of interest.Each time, we provide empirical justification for why the specific structural elements weassume reasonably model data from the particular application. Of course, there could be



16 CHAPTER 1. INTRODUCTION
other more elaborate structure present in the data, but as long as the simple structurewe consider is present, our theoretical results apply.We now provide an overview of what the basic problem setups are and what structuralassumptions we impose for each of the three case studies, resulting in three probabilisticmodels. For each case study, we informally state our main theoretical result. Note thatwe reuse variable names across the case studies, with the same variable name meaningsomething similar across applications.
Time Series Classification (Chapter 3)Motivated by the application of forecasting which news topics will go viral on Twitter,we hypothesize that in various time series classification problems, there are not manyprototypical time series relative to the number of time series we have access to. Forexample, we suspect that news topics only go viral on Twitter in a relatively small number
k of distinct ways whereas we can collect a massive number n� k of Twitter time seriescorresponding to different news topics. To operationalize this hypothesis, we propose alatent source model for time series, where there are k unknown prototypical time seriesreferred to as latent sources, each of which has label “viral” or “not viral”. A new timeseries is generated by randomly choosing one of these latent sources, adding noise, andthen introducing a random time shift. The true unobserved label for the time series isthe same as that of whichever latent source the time series is generated from. The goalis to infer what this label is, given the time series observed at time steps 1, 2, . . . , T .We relate weighted majority voting and nearest-neighbor classification to an oracleMAP classifier that knows what the true latent sources are, and we provide theoreticalperformance guarantees for both nonparametric classifiers. Our guarantees depend onan intuitive “gap” condition that asks that any two training time series of opposite labelsbe sufficiently separated by squared Euclidean distance Ω(σ2T ) so as to not confuseclassification, where σ is a noise scale parameter. Squared Euclidean distance comesinto play because we use a variant of it to define similarity between time series. If thisgap condition does not hold, then the closest two training time series of opposite labelsare within noise of each other! We informally summarize our theoretical guarantees inthe theorem below.
Theorem 1.2.1 (Informal statement of Theorem 3.4.1). Under the latent source model for
time series classification and with the gap condition satisfied, if we have n = Θ(k log k)
labeled training time series, then weighted majority voting and nearest-neighbor classi-
fication each correctly classify a time series with high probability after observing its firstΩ(log k) time steps.As our analysis accounts for how much of the time series we observe, our resultsreadily apply to the “online” setting in which a time series is to be classified while itstreams in, as is the case for forecasting which ongoing news topics go viral, along withthe “offline” setting where we have access to the entire time series.Why not just learn the latent sources? We answer this question by looking at aspecific instantiation of our model that leads to a spherical Gaussian mixture model,
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with each latent source corresponding to a mixture component. We show that existingperformance guarantees on learning spherical Gaussian mixture models require morestringent conditions than what our results require, suggesting that learning the latentsources is a harder problem than the ultimate goal of classification.Finally, we assess how good our theoretical guarantees are on nearest-neighborand weighted majority voting time series classification. To do so, we establish a newlower bound on the probability of misclassification for any classifier. In other words, noclassifier can achieve better misclassification rate than this lower bound. Our performanceguarantees on nearest-neighbor and weighted majority voting classification are stated interms of upper bounds on misclassification rate, and by comparing these upper boundswith our lower bound, we see when the decay rates of misclassification are similar. Wealso discuss a change in the nonparametric inference methods that could potentially leadto better performance both in theory and practice.
Online Recommendation Systems (Chapter 4)Our second case study examines online recommendation systems like Netflix and Pan-dora, where by “online” we mean that items are recommended to users over time. Forsuch systems, a widely used approach is collaborative filtering, which capitalizes on thebasic idea that if Alice is similar to Bob and Bob likes oranges, then Alice probably likesoranges too. Despite the prevalence of collaborative filtering methods in recommendationsystems, there has been little theoretical development on when, why, and how well theywork as a function of system quantities including the number of users n, the number ofitems m, and how much time has elapsed T . Here, the training data are the ratings re-vealed so far. At each time step, we make recommendations to users, effectively choosingwhat the training data look like at the next time step. Thus, recommendations we makenow can affect recommendations we make later! From this dynamical process in whichthe classical tradeoff between exploration and exploitation emerges, we aim to simulta-neously learn about users while giving them good item recommendations. To tame thiscomplex problem, we study a variant of a specific commonly used collaborative filteringmethod and anchor our analysis to a toy model of an online recommendation system.We focus on cosine-similarity collaborative filtering, which measures how similarusers are by the cosine similarity of their revealed item preferences so far. To decidewhat item to recommend to a user, the method finds nearest neighbors to the user in termsof cosine similarity, and computes votes for items based on revealed item ratings of thenearest neighbors. Weighted plurality voting then selects an item for recommendation.This procedure inherently exploits what we currently know about users. Before we haveseen enough ratings though, exploitation may not work well. We include two types ofexploration, one to explore the space of items, and one to explore the space of users. Wecall the resulting recommendation algorithm Collaborative-Greedy.To analyze Collaborative-Greedy, we introduce a simple model of an online recom-mendation system in which at each time step, for each of the n users, we recommendexactly one item. We assume every user then immediately consumes and rates the item
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that we recommended with one of two ratings: +1 (like) or −1 (dislike). Once a userconsumes an item (e.g., watches a movie), we disallow the item to be recommended tothe same user again. Initially, none of the users have consumed any items, and so up totime T , each user will have consumed and rated exactly T items. For simplicity, we donot assume structure over items, so the rating for each item gives us no information aboutthe rating for any other item. We also assume item preferences to be static, i.e., a user’srating for an item does not change over time. We remark that while our setup clearlyoversimplifies the rich, complex temporal dynamics in a real online recommendation sys-tem, it offers a clean baseline framework for theoretically evaluating recommendationalgorithms and, despite its simplicity, highlights the crucial role collaboration plays inrecommendation.To see why collaboration is essential in our model, consider when there’s only a singleuser. Then to learn anything about an item, we have to ask the user to rate the item, butupon doing so, we can’t recommend that item again! Moreover, because the rating for anitem is assumed to not provide us any information about other items (so we don’t knowwhich items are similar), we can’t hope to find what the good items are except throughexhaustive trial and error. However, with a pool of users, and with structure over users,we should be able to make good recommendations. A complimentary approach beyondthe scope of this thesis is to exploit item similarity and recommend similar items to whata user already liked. Theoretical analysis for this alternative setup is in (Voloch, 2015).For our setup, we impose a simple structure over users by assuming that they comefrom a relatively small number k of latent sources, where k � n. This assumption issimilar to the structure we imposed on time series in our first case study. We remarkthat although our model of an online recommendation system is overly simplistic, theassumptions we place on what the actual rating data look like are quite weak as wewill assume very little about the different underlying item preferences for the k differentlatent sources. Under this latent source model for online recommendation systems, weestablish a theoretical guarantee for Collaborative-Greedy.
Theorem 1.2.2 (Informal statement of Theorem 4.4.1). Under the above latent source
model, a low noise condition, and a notion of separation between the k user types, with
number of users n = Θ(km), the expected fraction of likeable items that Collaborative-Greedy recommends is essentially optimal after some initial number of time steps scaling
as nearly log(km), where m is the total number of items.We supplement our theory with experimental results, where we simulate an onlinerecommendation system and show that Collaborative-Greedy outperforms existing base-line online recommendation methods.
Patch-Based Image Segmentation (Chapter 5)Lastly, given an image, we look at how to separate a foreground object of interest fromthe background, a problem referred to in computer vision as image segmentation. Ourmotivating application is delineating anatomical organs in medical images. Here, nearest-neighbor-like methods are, again, widely used in practice and are often very successful.
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Specifically, there has been a proliferation of methods operating on small patches ofimages. For example, to determine whether a pixel is foreground or background, considerthe patch centered at that pixel — is this patch similar to patches we have seen in trainingdata for which we know whether their center pixels are foreground or background? If so,we can transfer labels over from these “nearest-neighbor” patches found in training data.Naturally, as patches provide only local context, one would expect a local theory toexplain when these nearest-neighbor-like patch-based image segmentation methods towork. We show that this is indeed the case. Specifically, we build on existing work thathas shown that natural image patches could be very accurately modeled as a Gaussianmixture model (Zoran and Weiss, 2011, 2012) by now asking that patches centered atnearby pixels satisfy a certain local smoothness property that we introduce and that wecall a jigsaw condition. The basic idea is that nearby patches are like puzzle piecesthat need to fit to properly form an overall plausible image. Our probabilistic model,which we call a latent source model for patch-based image segmentation, thus has twokey components: patches appear to be generated from mixture models, and that nearbymixture models are in some sense similar.For nearest-neighbor-like methods to succeed when searching for nearby patches, weagain ask for a gap condition to hold so that the closest training patches with different la-bels are well-separated. However, we only need to consider training patches centered atpixels that are close by, where how close by depends on the jigsaw condition. We specif-ically ask for this gap to be at least squared Euclidean distance Ω(σ2 log(|N|k log(|I|))),where σ is a noise parameter, k refers to the maximum number of mixture componentsneeded in representing an image patch, |N| is the maximum size of neighboring pixelsthat relates to the jigsaw condition, and |I| is the number of pixels. We now informallystate our main result.
Theorem 1.2.3 (Informal statement of Theorem 5.1.1). Under the latent source model
for patch-based image segmentation and with the gap condition satisfied, if we have
n = Θ(k log(|I|k)) labeled training images, then weighted majority voting and nearest-
neighbor segmentation each achieve average pixel mislabeling rate that can be made
arbitrarily small (but in general nonzero).

The jigsaw condition imposes local structure and enables us to borrow the analysistechniques for the time series classification case. Going beyond this local condition, weintroduce global structure to produce a more general probabilistic model for which wederive an iterative, easily parallelizable inference algorithm. Special cases of our newalgorithm recover various existing patch-based segmentation algorithms. We empiricallyshow that our new algorithm substantially outperforms the two algorithms we providetheoretical guarantees for. Establishing a theoretical performance guarantee for this newalgorithm that exploits global structure is a topic for future research.
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� 1.3 Summary of Results
Qualitatively, our theoretical performance guarantees for all three case studies rely on
separation. For time series classification, we ask that time series corresponding to dif-ferent labels be well-separated. For online collaborative filtering, we ask that usershave item preferences that are well-separated across different types of users. For patch-based image segmentation, we ask that patches corresponding to different labels be well-separated. This idea of separation arises naturally since a nearest-neighbor method canbe confused and make an error when two data points of different types are too closetogether and the nearest neighbor found is of the wrong type.Using such a separation (also called a margin) condition is not new and has, for in-stance, led to fast learning rates for nonparametric classifiers in general settings (Mam-men and Tsybakov, 1999; Tsybakov, 2004; Audibert and Tsybakov, 2007) and to resultson how many training data are sufficient for learning Gaussian mixture models (Dasguptaand Schulman, 2007). We emphasize that we ground our analysis in three case studiesand do not aim for as general a setting as possible since our goal is to justify the per-formance of nearest-neighbor-like methods resembling what’s already used in practicefor the three applications of interest. As such, certain structural elements specific tothese applications appear in our results. Our analysis could help practitioners for theseapplications better understand specific structure in data that enable nearest-neighbormethods to succeed, while hinting at new algorithms with potentially better performanceguarantees, such as our new iterative patch-based image segmentation algorithm.
� 1.4 Bibliographic Note
Preliminary versions of the time series classification results (Chapter 3) and online col-laborative filtering results (Chapter 4) appeared in (Chen et al., 2013) and (Bresler et al.,2014), respectively. The image segmentation work (Chapter 5) will appear in (Chen et al.,2015).



Chapter 2

Preliminaries

We review relevant probability results in this chapter, most of which are used in analyzingall three case studies. A recurring theme is that data appear to come from differentclusters. The nonparametric inference methods we examine work well when there areenough training data from every cluster and, moreover, the inference can distinguishbetween different clusters. The main machinery ensuring that these two events holdcomprises concentration inequalities that provide precise statements for how fast randomempirical quantities converge to deterministic population quantities, such as how fast asample average approaches the population mean that it estimates. In turn, we can thenderive rates at which probabilities of various “bad” events go to zero.We present some concentration inequalities in Section 2.1, and then apply one suchinequality to determine how many training data to collect in Section 2.2. To keep theexposition reasonably self-contained as well as to entertain the interested reader, weinclude proofs for all results in this chapter, relying only on elementary probability,calculus, and big O notation from introductory computer science.
� 2.1 Concentration Inequalities
Consider a random variable X with finite mean E[X ]. With different additional assump-tions on X , we can bound the probability that X deviates significantly from E[X ]:
• Markov inequality. Suppose that X is nonnegative. Then for any s > 0,

P(X ≥ s) ≤ E[X ]
s .

Proof. Fix s > 0. Note that X ≥ s1{X ≥ s}, where 1{·} is the indicator function:
1{A} = 1 if statement A holds, and 1{A} = 0 otherwise. Taking the expectationof both sides, E[X ] ≥ E[s1{X ≥ s}] = sE[1{X ≥ s}] = sP(X ≥ s). �

• Chebyshev inequality. Suppose that X has finite variance var(X ). Then for any
s > 0,

P(|X − E[X ]| ≥ s) ≤ var(X )
s2 .

21
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Proof. Apply Markov’s inequality to (X −E[X ])2, which has expectation var(X ). �
• Chernoff bounds. Let φ > 0. If the expectation E[exp(φX )] is finite, then for any
s ∈ R, we have the upper tail bound

P(X ≥ s) ≤ exp(−φs)E[exp(φX )].
Proof. Apply Markov’s inequality to exp(φX ) with s replaced by exp(φs). �

The expectation E[exp(φX )] being finite is a strong assumption on X . In particular,note that the moment generating function MX (z) , E[exp(zX )] of X , if it is finite,tells us all the moments of X : E[X ` ] = d`MX
dz` (0) for all ` ∈ {0, 1, . . . }, from whichwe could compute, for example, the mean and variance of X . Where the momentgenerating function MX (z) of X is finite also tells us how fast a tail of the distributionof X decays. As suggested by the bound above, asking that MX (z) be finite for

z = φ > 0 leads to a bound on the probability of X being large, i.e., the upper tailof the distribution of X .To bound the probability of X being small, we ask that the moment generatingfunction MX (z) be finite for z = −φ < 0. Specifically, if E[exp(−φX )] is finite, thenfor any s > 0, we have the lower tail bound
P(X ≤ s) ≤ exp(φs)E[exp(−φX )].

Proof. Apply Markov’s inequality to exp(−φX ) with s replaced by exp(−φs). �

• Binomial concentration. Let X be distributed as a binomial distribution with ntrials and probability of success p, which we denote X ∼ Binomial(n, p). Then for0 < s ≤ np,
P(X ≤ s) ≤ exp(− 12np (np− s)2).

Proof. We use the lower tail Chernoff bound: P(X ≤ s) ≤ exp(φs)E[exp(−φX )].To get a handle on E[exp(−φX )], first note that the moment generating function of
X ∼ Binomial(n, p) is MX (z) = E[exp(zX )] = (1 + p(ez − 1))n. Then
E[exp(−φX )] = MX (−φ) = (1+p(e−φ−1))n ≤ [ exp (p(e−φ−1))]n = exp(np(e−φ−1)),
where the inequality uses the fact that 1 + x ≤ ex for all x ∈ R. Hence,

P(X ≤ s) ≤ exp(φs) exp(np(e−φ − 1)) = exp(φs+ np(e−φ − 1)).
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We choose φ to make the right-hand side as small as possible. This is a calculusexericse of setting the derivative (with respect to φ) of the exponent in the right-hand side to 0. Doing so, we find the optimal choice to be φ = log(nps ). Substitutingthis back into the above bound,
P(X ≤ s) ≤ exp(s log nps − np+ s

) = (nps )s exp(−(np− s)) = exp(−(np− s))( snp ) s
np ·np

.

Next, noting that xx ≥ exp(−(1− x)+ (1− x)2/2) for x ∈ (0, 1), and that s
np ∈ (0, 1),

P(X ≤ s) ≤ exp(−(np− s))( snp ) s
np ·np

≤ exp(−(np− s))(exp(−(1− s
np ) + (1− s

np )2/2))np
= exp(− 12np (np− s)2),

where the last step is due to a bit of algebra. �

• Sub-Gaussian concentration. If the distribution of X has tails that decay at least asfast as that of a Gaussian, then it is called sub-Gaussian (Buldygin and Kozachenko,1980). For example, any Gaussian random variable is sub-Gaussian. Any randomvariable with finite support, such as a uniform distribution over a finite interval, isalso sub-Gaussian. Formally, X is sub-Gaussian with parameter σ > 0 if for every
φ ∈ R,

E
[ exp (φ(X − E[X ]))] ≤ exp(φ2σ22 )

.

In other words, the centered random variable X − E[X ] has moment generatingfunction E[exp(φ(X−E[X ])] that is always upper-bounded by the moment generatingfunction of a zero-mean Gaussian with variance σ2. As discussed previously, themoment generating function relates to how fast the tails of a distribution decay.Before presenting tail probability bounds for sub-Gaussian random variables, wenote an important property that summing two independent sub-Gaussian randomvariables W1 and W2 with parameters σ1 and σ2 results in another sub-Gaussianrandom variable, now with parameter √σ21 + σ22 . This property follows from inde-pendence and the definition of a sub-Gaussian random variable:
E
[ exp (φ(W1 +W2 − E[W1 −W2]))]= E
[ exp (φ(W1 − E[W1]))]E[ exp (φ(W2 − E[W2]))]

≤ exp(φ2σ212 ) exp(φ2σ222 ) = exp(φ2(σ21 + σ22 )2 )
.

From this result, one can readily show that if W1, . . . ,Wn are independent and eachis sub-Gaussian with parameter σ , then defining random vector W = (W1, . . . ,Wn)and letting a = (a1, . . . , an) ∈ Rn be an arbitrary vector of deterministic constants,
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the dot product 〈a,W 〉 =∑n

u=1 auWu is sub-Gaussian with parameter ‖a‖σ , where
‖ · ‖ denotes the Euclidean norm of a vector.If X is sub-Gaussian with parameter σ , then for any s > 0, the following boundshold:

P(X ≥ E[X ] + s) ≤ exp(− s22σ2
)
,

P(X ≤ E[X ]− s) ≤ exp(− s22σ2
)
,

P(|X − E[X ]| ≥ s) ≤ 2 exp(− s22σ2
)
.

Proof. The first two inequalities use Chernoff bounds. Plugging in centered randomvariable X − E[X ] into the upper tail Chernoff bound, and using the definition of asub-Gaussian random variable, we obtain
P(X ≥ E[X ] + s) = P(X − E[X ] ≥ s)

≤ exp(−φs)E[exp(φ(X − E[X ]))]
≤ exp(−φs) exp(φ2σ22 ) = exp(− φs+ φ2σ22 )

.

We optimize φ to make the right-hand side as small as possible, amounting tosetting the derivative (with respect to φ) of the exponent in the right-hand sideto 0. Doing so, we find the optimal choice to be φ = s/σ2, which yields the firstinequality
P(X ≥ E[X ] + s) ≤ exp(− s22σ2

)
.

When X is sub-Gaussian with parameter σ , then so is −X , and by similar reasoningas above, one could establish the second inequality
P(X ≤ E[X ]− s) ≤ exp(− s22σ2

)
.

The last inequality follows from union-bounding the first two:
P(|X − E[X ]| ≥ s) = P

(
{X ≥ E[X ] + s} ∪ {X ≤ E[X ]− s})

≤ P(X ≥ E[X ] + s) + P(X ≤ E[X ]− s) ≤ 2 exp(− s22σ2
)
. �

A basic proof technique for analyzing an ensemble of random variables X1, . . . , Xn is tofirst show that the sum ∑n
u=1 Xu satisfies one of the above conditions, upon which we canbound the probability that it deviates from its expected value E[∑n

u=1 Xu]. For example,this approach enables us to examine how fast an empirical average 1
n
∑n

u=1 Xu convergesto the true population mean E[ 1n∑n
u=1 Xu].
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� 2.2 Collecting Enough Training Data
Suppose there are k clusters that occur with probabilities π1, . . . , πk . Thus, when dataare generated i.i.d. from these clusters, each data point belongs to cluster g ∈ {1, . . . , k}with probability πg. How many samples are needed before we see all k clusters?With equal cluster probabilities π1 = · · · = πk = 1/k , the question reduces to theclassical coupon collector’s problem, where the samples are thought of as coupons ofwhich there are k types. In this case, it turns out that after collecting O(k log k) coupons,a coupon collector will have seen all k coupon types with high probability. Of course, inthe settings we are interested in, each coupon is a training data point.We present the solution to the more general problem with potentially unequal clusterprobabilities in the form of two lemmas. The first lemma establishes how many samplesare sufficient so that we will, with high probability, draw a sample from a particularcluster.
Lemma 2.2.1. With n i.i.d. samples where each sample belongs to cluster g ∈ {1, . . . , k}
with probability πg,

P
(
cluster g has ≤ 12nπg occurrences

)
≤ exp(− nπg8 )

.

Proof. This result follows from a Chernoff bound applied to the binomial distribution,described in the previous section on concentration inequalities: Note that the g-th clusteroccurs A ∼ Binomial(n, πg) times, so
P
(
A ≤ 12nπg) ≤ exp(− 12nπg (nπg − 12nπg)2) = exp(− nπg8 )

. �

This lemma says that with n samples, then with probability at least 1 − exp(−nπg/8),there are more than nπg/2 samples from the g-th cluster.We next ensure that we see every cluster with high probability.
Lemma 2.2.2. With n i.i.d. samples where each sample belongs to cluster g ∈ {1, . . . , k}
with probability πg,

P
(
∃ a cluster with ≤ 12nπmin occurrences

)
≤ k exp(− nπmin8 )

,

where πmin , min{π1, . . . , πk}.
Proof. This result follows from a union bound:

P
( k⋃
g=1{cluster g has ≤ 12nπmin occurrences})

≤
k∑

g=1 P
(cluster g has ≤ 12nπmin occurrences)



26 CHAPTER 2. PRELIMINARIES

≤
k∑

g=1 P
(cluster g has ≤ 12nπg occurrences)

≤
k∑

g=1 exp(− nπg8 )
≤

k∑
g=1 exp(− nπmin8 ) = k exp(− nπmin8 )

. �

Hence, with probability at least 1−k exp(−nπmin/8), there are more than nπmin/2 samplesfrom every cluster. In particular, with any choice of δ ∈ (0, 1), if we have n ≥ 8
πmin log(k/δ)samples, then we will see nπmin/2 > 0 samples from every cluster with probability atleast 1 − δ . Returning to the coupon collector’s problem where πmin = 1/k , we seethat collecting n = d8k log(k/δ)e = O(k log k) coupons is sufficient to see all k types ofcoupons with high probability.



Chapter 3

Time Series Classification

A key task in mining temporal data is being able to identify anomalous events, oftenbefore they happen. As a running example used throughout this chapter, consider a timeseries that tracks how much activity there is for a particular news topic on Twitter. Giventhe time series up to present time, will this news topic go viral? Borrowing Twitter’sterminology, we label the time series a “trend” and call its corresponding news topic a“trending topic” if the news topic goes viral. Otherwise, the time series is labeled “nottrend”. We seek to forecast whether a news topic will become a trend before it is declareda trend (or not) by Twitter, amounting to what’s called a binary time series classificationproblem: can we correctly classify a time series as one of two labels?Importantly, we skirt the discussion of what makes a topic considered trending. Whileit is not public knowledge how Twitter defines a topic to be a trending topic, Twitter doesprovide information for which topics are trending topics. We take these labels to beground truth, effectively treating how a topic goes viral to be a black box supplied byTwitter. Thus, our goal of forecasting trending news topics could more generally bedescribed as predicting whether a news topic will be a trend before it is declared to be atrend by any third party that we can collect ground truth labels from. Existing work thatidentify trends on Twitter (Cataldi et al., 2010; Mathioudakis and Koudas, 2010; Beckeret al., 2011) instead, as part of their trend detection, define models for what trends are.The same could be said of previous work on novel document detection (Kasiviswanathanet al., 2011, 2012). In contrast, we neither define a model for what trends are nor dowe assume we know such a definition. Our only way of indirectly probing a definition isthrough collecting ground truth labels of news topics from a third party like Twitter.For this problem of forecasting news trends on Twitter, Nikolov (2012) has shown thatweighted majority voting can predict whether a news topic will be a trend in advance ofTwitter 79% of the time, with a mean early advantage of 1 hour and 26 minutes, a truepositive rate of 95%, and a false positive rate of 4%. We summarize this result later inthis chapter.The success of nearest-neighbor or nearest-neighbor-like methods in time series clas-sification is hardly limited to forecasting which news topics will go viral. Such methodshave also been used, for example, to detect abnormal brain activity in EEG recordings(Chaovalitwongse et al., 2007), classify protein sequences (Kaján et al., 2006), and pre-dict whether a cell phone subscriber will switch providers (Lee et al., 2012). In fact, whilenumerous standard classification methods have been tailored to classify time series, a
27
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simple nearest-neighbor approach has been found to be hard to beat in terms of classifi-cation performance on a variety of datasets (Xi et al., 2006), with results competitive to orbetter than various other more elaborate methods such as neural networks (Nanopouloset al., 2001), decision trees (Rodríguez and Alonso, 2004), and support vector machines(Wu and Chang, 2004). More recently, researchers have examined which distance to usewith nearest-neighbor classification (Batista et al., 2011; Ding et al., 2008; Weinbergerand Saul, 2009) or how to boost classification performance by applying different trans-formations to the time series before using nearest-neighbor classification (Bagnall et al.,2012). These existing results are mostly experimental, lacking theoretical justificationfor both when nearest-neighbor-like time series classifiers should be expected to performwell and how well.In this chapter, we establish theoretical performance guarantees for nearest-neighborand weighted majority voting time series classification in terms of available trainingdata. To focus the exposition on high-level ideas and intuition, we defer all proofs toSection 3.7. We begin in Section 3.1 by precisely stating the nonparametric inferencemethods we shall analyze. As we view data as random, our theoretical guarantees rely onan underlying probabilistic model for time series. We present such a model in Section 3.2,which we call a latent source model for time series classification. Our model is guidedby the hypothesis that there are only a small number of unknown latent sources fromwhich time series are generated.Turning toward analysis, in Section 3.3, we show how weighted majority voting ap-proximates an oracle maximum a posteriori (MAP) classifier that knows the latent sources.Naturally, we can’t hope to outperform this oracle MAP classifier. However, if the num-ber of training data grows large, we would expect weighted majority voting to betterapproximate the oracle classifier. With this high-level intuition in mind, we then presentour main theoretical result in Section 3.4, stating nonasymptotic performance guaranteesfor nearest-neighbor and weighted majority voting time series classification. Note thatneither method actually estimates what the latent sources are.To compare our work to existing results that can learn the latent sources, and alsoto examine how far our performance guarantees are from what is optimal, in Sections 3.5and 3.6, we consider a specific instantiation of our model that makes it into a spheri-cal Gaussian mixture model. In this special case, the latent sources are precisely themixture model components, so we can compare our guarantees to existing guarantees foralgorithms that learn spherical Gaussian mixture models. As we show in Section 3.5, thetheoretical guarantees for these existing learning algorithms either require more strin-gent conditions on the data or require more training data than what we show is sufficientfor time series classification. Then in Section 3.5, we establish a lower bound on the mis-classification rate for any classifier and compare this bound with our upper bounds on themisclassification rates of nearest-neighbor and weighted majority voting classification.Finally, we present experimental results in Section 3.8. Using synthetic data, we findweighted majority voting to outperform nearest-neighbor classification early on when weobserve very little of the time series to be classified. This suggests weighted majorityvoting to be better suited for forecasting anomalous events than nearest-neighbor clas-
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sification. Returning to our running example of forecasting news trends on Twitter, wesummarize the weighted majority voting results by Nikolov (2012) and show that the realtime series data in this case do exhibit clustering behavior. The cluster centers could bethought of as the underlying latent sources.
� 3.1 Nonparametric Time Series Classifiers
We represent each time series as a function mapping Z to R. Given time series Y observedat time steps 1, 2, . . . , T , we want to classify it as having either label +1 (“trend”) or
−1 (“not trend”). To do so, we have access to labeled training data consisting of timeseries Y1, . . . , Yn with corresponding labels L1, . . . , Ln ∈ {+1,−1}. We now presentthree simple nonparametric inference methods for time series classification.
Nearest-neighbor classifier. Let û = argminu∈{1,...,n}d(T )(Yu, Y ) be the index of thenearest training data point to Y , where d(T )(Yu, Y ) is some “distance” between timeseries Yu and Y , superscript (T ) indicates that we are only allowed to look at the first Ttime steps (i.e., time steps 1, 2, . . . , T ) of Y (but we’re allowed to look outside of thesetime steps for each training time series Yu for u ∈ {1, . . . , n}). Then we declare the labelfor Y to be the same as that of the û-th (i.e., the nearest) training data point:

L̂(T )NN(Y ) = Lû. (3.1)
Distance d(T )(·, ·) could, for example, be squared Euclidean distance: d(T )(Yu, Y ) =∑T

t=1(Yu(t) − Y (t))2 , ‖Yu − Y ‖2
T . However, this distance only looks at the first Ttime steps of training time series Yu. Since time series in our training data are fullyknown, we need not restrict our attention to their first T time steps. Thus, we insteaduse the following distance function throughout the rest of this chapter:

d(T )(Yu, Y ) = min∆∈{−∆max,...,0,...,∆max}
T∑
t=1 (Yu(t+∆)−Y (t))2 = min∆∈{−∆max,...,0,...,∆max} ‖Yu~∆−Y ‖2

T ,

where we minimize over integer time shifts with a pre-specified maximum allowed shift∆max ≥ 0, and we use A ~ ∆ to denote time series A advanced by ∆ time steps, i.e.,(A~ ∆)(t) = A(t + ∆).
Weighted majority voting. Each training time series Yu casts a weighted vote e−θd(T )(Yu,Y )for whether time series Y has label Lu, where constant θ ≥ 0 is a scaling parameter thatdetermines the “sphere of influence” of each training data point. The total votes for label+1 and −1 are given by

V+1(Y ;θ) = n∑
u=1 exp (− θd(T )(Yu, Y ))1{Lu = +1},

V−1(Y ;θ) = n∑
u=1 exp (− θd(T )(Yu, Y ))1{Lu = −1}.
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The label with the majority of overall weighted votes is declared as the label for Y :

L̂(T )WMV(Y ;θ) = {+1 if V+1(Y ;θ) ≥ V−1(Y ;θ),
−1 otherwise. (3.2)

Using a larger time window size T corresponds to waiting longer before we make aprediction. We need to trade off how long we wait and how accurate we want ourprediction. When θ →∞, we obtain nearest-neighbor classification.
Generalized weighted majority voting. Lastly, applications may call for trading off trueand false positive rates. One way to do this is to bias the prediction toward one of thelabels, such as scaling the total vote for label −1 by factor τ > 0. The resulting decisionrule, which we refer to as generalized weighted majority voting, is thus:

L̂(T )
τ (Y ;θ) = {+1 if V+1(Y ;θ) ≥ τV−1(Y ;θ),

−1 otherwise, (3.3)
where setting τ = 1 recovers the usual weighted majority voting (3.2). This modificationto the classifier can be thought of as adjusting the priors on the relative sizes of the twoclasses. Our theoretical results to follow actually cover this more general case ratherthan only that of τ = 1.
� 3.2 A Latent Source Model
We assume there to be k distinct prototypical time series µ1, . . . , µk with correspondinglabels λ1, . . . , λk ∈ {+1,−1} that are not all the same. These labeled time series occurwith strictly positive probabilities π1, . . . , πk and are referred to as latent sources. Forinference, we will not know what the prototypical time series are, how many there are ofthem, or what probabilities they occur with. A new time series is generated as follows:1. Sample latent source index G ∈ {1, . . . , k} so that G = g with probability πg.2. Sample integer time shift ∆ uniformly from {0, 1, . . . ,∆max}. (For a technical reason,we restrict to nonnegative shifts here, whereas in our distance function d(T ) frombefore, we allow for negative shifts as well. As we discuss in Section 3.7.1, thegenerative model could indeed allow for shifts from {−∆max, . . . ,∆max}, in whichcase for our proof techniques to work, the distance function we use needs to look atshifts up to magnitude 2∆max.)3. Output time series Y to be latent source µG advanced by ∆ time steps, followed byadding noise time series W , i.e., Y (t) = µG(t + ∆) +W (t). Entries of noise W arei.i.d. zero-mean sub-Gaussian with parameter σ . The true label for Y is assignedto be L = λG .The above generative process defines our latent source model for time series classification.Importantly, we make no assumptions about what the latent sources actually are asidefrom them being distinct and that there is at least one latent source per label.
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� 3.3 Approximating an Oracle Classifier
If we knew the latent sources and if noise entries W (t) were i.i.d. N (0, 12θ ) across timeindices t, then the maximum a posteriori (MAP) estimate for label L given the first Ttime steps of time series Y is

L̂(T )MAP(Y ;θ) = {+1 if R (T )MAP(Y ;θ) ≥ 1,
−1 otherwise, (3.4)

where
R (T )MAP(Y ;θ) , ∑g∈{1,...,k} s.t. λg=+1 πg∑∆∈D+ exp (− θ‖µg ~ ∆ − Y ‖2

T
)∑

g∈{1,...,k} s.t. λg=−1 πg∑∆∈D+ exp (− θ‖µg ~ ∆ − Y ‖2
T
) , (3.5)

and D+ , {0, . . . ,∆max}. Note that in the ratio above, the numerator is a sum of weightedvotes for label +1, and the denominator is a sum of weighted votes for label −1.However, we do not know the latent sources, nor do we know if the noise is i.i.d. Gaus-sian. We assume that we have access to n training data sampled i.i.d. from the latentsource model, where we have access to all time steps of each training time series, aswell as every training time series’ label. Denote D , {−∆max, . . . , 0, . . . ,∆max}. Then weapproximate the MAP classifier by using training data as proxies for the latent sources.Specifically, we take ratio (3.5), replace the inner sum by a minimum in the exponent,replace each latent source time series with training time series, drop the proportions
π1, . . . , πk that we do not know, and replace D+ by D to obtain the ratio
R (T )(Y ;θ) , ∑u∈{1,...,n} s.t. Lu=+1 exp (− θ(min∆∈D ‖Yu ~ ∆ − Y ‖2

T
))∑

u∈{1,...,n} s.t. Lu=−1 exp (− θ(min∆∈D ‖Yu ~ ∆ − Y ‖2
T
)) = V+1(Y ;θ)

V−1(Y ;θ) .(3.6)Plugging R (T ) in place of R (T )MAP in classification rule (3.4) yields weighted majority vot-ing (3.2), which as we have already discussed becomes nearest-neighbor classificationwhen θ → ∞. That nearest-neighbor classification and weighted majority voting ap-proximate the oracle MAP classifier suggest that they should perform better when thisapproximation improves, which should happen with more training data and not too muchnoise as to muddle where the true decision boundaries are between labels +1 and −1.Also, note that measuring similarity between time series in terms of squared Euclideandistances naturally comes out of using Gaussian noise. Squared Euclidean distance willthus appear in how we define the separation gap between time series of opposite labels.Using different noise model would change this gap condition.As a technical remark, if we didn’t replace the summations over time shifts withminimums in the exponent, then we have a kernel density estimate in the numeratorand in the denominator (Fukunaga, 1990, Chapter 7), where the kernel is Gaussian, andour main theoretical result for weighted majority voting to follow would still hold usingthe same proof. We use a minimum rather a summation over time shifts to make themethod more similar to existing time series classification work (e.g., Xi et al. (2006)),which minimize over nonlinear time warpings rather than simple shifts.
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� 3.4 Theoretical Performance Guarantees
We now present our main theoretical result of this chapter which provides performanceguarantees for nearest-neighbor classification (3.1) and generalized weighted majorityvoting (3.3), accounting for the number of training data n and the number of time steps Tthat we observe of the time series to be classified. This result depends on the followingseparation gap, which depends on time horizon T :

G(T ) , min
u,v∈{1,...,n} s.t. Lu 6=Lv ,∆,∆′∈D

‖Yu ~ ∆ − Yv ~ ∆′‖2
T .

This quantity measures how far apart the two different label classes +1 and −1 are ifwe only look at length-T chunks of each time series and allow all shifts of at most ∆maxtime steps in either direction. We’re now in a position to state this chapter’s main result.
Theorem 3.4.1. Let πmin , min{π1, . . . , πk}, π+1 , P(L = +1) = ∑k

g=1 πg1{λg = +1},
and π−1 , P(L = −1) = ∑k

g=1 πg1{λg = −1}. Under the latent source model for time
series classification with n training data points:

(a) The probability that nearest-neighbor classification misclassifies time series Y with
label L satisfies the bound

P(L̂(T )
NN(Y ) 6= L) ≤ k exp(− nπmin8 )+ (2∆max + 1)n exp(− 116σ2G(T )).

(b) The probability that generalized weighted majority voting (with parameter θ) mis-
classifies time series Y with label L satisfies the bound

P(L̂(T )
τ (Y ;θ) 6= L)

≤ k exp(− nπmin8 )+ (τπ+1 + 1
τ π−1)(2∆max + 1)n exp (− (θ − 4σ2θ2)G(T )).

To interpret this theorem, first note that the two upper bounds actually match when,for generalized weighted majority voting, we choose τ = 1 (corresponding to regularweighted majority voting) and θ = 18σ2 . This suggests the two methods to have similarbehavior when the gap grows with the number of time steps T that we see of time series Y .Thus, we shall just examine the upper bound for nearest-neighbor classification.We consider sufficient conditions that ensure that the nearest-neighbor classificationupper bound is at most δ ∈ (0, 1). Specifically, we look at when each of the two terms onthe right-hand side is at most δ/2. For the first term, the number of training data n shouldbe sufficiently large so that we see all the different latent sources: n ≥ 8
πmin log(2k/δ).For the second term, the gap G(T ) should be sufficiently large so that the nearest trainingtime series found has the correct label: G(T ) ≥ 16σ2 log (2(2∆max + 1)n/δ). There aredifferent ways to change the gap, such as increasing how many time steps T we get toobserve of time series Y , and changing what quantity the time series are tracking.
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The linear dependence in the second term for both upper bounds in the Theoremresult from a worst-case analysis in which only one training time series comes from thesame latent source as the time series to be classified, and the other n− 1 ≤ n trainingtime series have the wrong label. If we have some estimates or bounds on k , πmin, ∆max,and σ2, then one way to prevent the linear scaling with n is to randomly subsample ourtraining data. Specifically, if we have access to a large enough pool of labeled time series,i.e., the pool has Ω( 8
πmin log k

δ ) time series, then we can subsample n = Θ( 8
πmin log k

δ ) ofthem to use as training data, in which case nearest-neighbor classification (3.1) correctlyclassifies a new time series Y with probability at least 1− δ if the gap grows as
G(T ) = Ω(σ2( log(2∆max + 1) + log( 1

δπmin log kδ ))).For example, consider when the latent sources occur with equal probability, so πmin = 1/k .Then so long as the gap grows as
G(T ) = Ω(σ2( log(2∆max + 1) + log(kδ log kδ ))) = Ω(σ2( log(2∆max + 1) + log kδ )),i.e., logarithmic in the number of latent sources k , then nearest-neighbor classification iscorrect with probability at least 1−δ . If, furthermore, the gap grows as Ω(σ2T ) (which isa reasonable growth rate since otherwise, the closest two training time series of oppositelabels are within noise of each other), then observing the first T = Ω(log(2∆max + 1) +log k

δ ) time steps from the time series is sufficient to classify it correctly with probabilityat least 1− δ . This corresponds to the informal statement of Theorem 1.2.1.Although our performance guarantees for the two nonparametric methods are com-parable, in our experimental results in Section 3.8, we find weighted majority voting tooutperform nearest-neighbor classification when T is small, and then as T grows large,the two methods exhibit similar performance in agreement with our theoretical analysis.For small T , it could still be fairly likely that the nearest neighbor found has the wronglabel, dooming the nearest-neighbor classifier to failure. Weighted majority voting, onthe other hand, can recover from this situation as there may be enough correctly labeledtraining time series close by that contribute to a higher overall vote for the correct class.This robustness of weighted majority voting makes it favorable in the online setting wherewe want to make a prediction as early as possible.
� 3.5 Learning the Latent Sources
If we can estimate the latent sources accurately, then we could plug these estimates inplace of the true latent sources in the MAP classifier and achieve classification perfor-mance close to optimal. If we restrict the noise to be Gaussian and assume ∆max = 0,then the latent source model corresponds to a spherical Gaussian mixture model. Tosimplify discussion in this section, we assume latent sources to occur with equal prob-ability 1/k . We could learn a spherical Gaussian mixture model using Dasgupta and
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Schulman’s modified EM algorithm (Dasgupta and Schulman, 2007). Their theoreticalguarantee depends on the true separation between the closest two latent sources, namely

G(T )∗ , min
g,h∈{1,...,k} s.t. g6=h ‖µg − µh‖2

T ,

which needs to satisfy G(T )∗ � σ2√T . Then with number of training time series n =Ω(max{1, σ2T
G(T )∗ }k log k

δ ), gap G(T )∗ = Ω(σ2 log k
ε ), and number of initial time steps observed

T = Ω(max{1, σ4T 2(G(T )∗)2
} log [kδ max{1, σ4T 2(G(T )∗)2

}])
,

their algorithm achieves, with probability at least 1 − δ , an additive εσ
√
T error (inEuclidean distance) close to optimal in estimating every latent source. In contrast, ourresult is in terms of gap G(T ) that depends not on the true separation between two latentsources but instead on the minimum observed separation in the training data betweentwo time series of opposite labels. In fact, our gap, in their setting, grows as Ω(σ2T )even when their gap G(T )∗ grows sublinear in T .In particular, while their result cannot handle the regime where O(σ2 log k
δ ) ≤ G(T )∗ ≤

σ2√T , ours can, using n = Θ(k log k
δ ) training time series and observing the first T =Ω(log k

δ ) time steps to classify a time series correctly with probability at least 1−δ . Thisfollows from our theorem below, which specializes Theorem 3.4.1 to the Gaussian settingwith no time shifts and uses gap G(T )∗ instead of G(T ). We also present an accompanyingcorollary to interpret the theorem. Both our theorem and corollary to follow still hold ifgap G(T )∗ were instead replaced by the squared Euclidean distance between the closesttwo latent sources with opposite labels:
G(T )† , min

g,h∈{1,...,k} s.t. λg 6=λh ‖µg − µh‖2
T .

Intuitively, if latent sources of the same label are extremely close by (so that G(T )∗ issmall) yet latent sources of opposite labels are far away (so that G(T )† is large), then weshould expect the classification problem to be relatively easy compared to learning thelatent sources because the latter still needs to tease apart the different latent sourcesthat are extremely close by.
Theorem 3.5.1. Let s1 > 0 and s2 > 0. Suppose that G(T )∗ ≥ s21. Under the latent source
model for time series with Gaussian noise, no time shifts, and n training data points:

(a) The probability that nearest-neighbor classification misclassifies time series Y with
label L satisfies the bound

P(L̂(T )
NN(Y ) 6= L) ≤ k exp(− nπmin8 )+ n24 exp(− s214σ2

)+ n24 exp(−s2)
+ n exp(− 116σ2 (G(T )∗ − 2s1√G(T )∗ + 2σ2T − 4σ2√Ts2))
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(b) The probability that generalized weighted majority voting misclassifies time series
Y with label L satisfies the bound

P(L̂(T )
τ (Y ;θ) 6= L)

≤ k exp(− nπmin8 )+ n24 exp(− s214σ2
)+ n24 exp(−s2)

+ (τπ+1 + 1
τ π−1)n exp(− (θ − 4σ2θ)2(G(T )∗ − 2s1√G(T )∗ + 2σ2T − 4σ2√Ts2)).

Both of these guarantees still hold with G(T )∗ replaced by G(T )† .As with Theorem 3.4.1, the two upper bounds are comparable and can be made to matchby choosing τ = 1 and θ = 18σ2 for generalized weighted majority voting. To interpret thistheorem, we choose specific values for s1 and s2 and consider the worst case toleratedby the theorem in which G(T )∗ = s21, arriving at the following corollary.
Corollary 3.5.1. Let δ ∈ (0, 1). Under the latent source model for time series classifica-
tion with Gaussian noise, no time shifts, and n ≥ 8

πmin log 4k
δ training data points, if

G(T )∗ ≥ 4σ2 log n2
δ ,

T ≥ 4 log n2
δ + 8 log 4n

δ + 2√(3 log n2
δ + 8 log 4n

δ

) log n2
δ ,

then nearest-neighbor classification and generalized weighted majority voting (with τ =1, θ = 18σ2 ) each classify a new time series correctly with probability at least 1− δ . This
statement still holds if G(T )∗ is replaced by G(T )† .Hence, when the latent sources occur with equal probability (so πmin = 1/k), then with
n = Θ(σ2 log k

δ ) training data and so long as the gap grows as G(T )∗ = Ω(σ2 log k
δ ),after observing T = Ω(log k

δ ) time steps of Y , the two nonparametric inference algorithmscorrectly classify Y with probability at least 1− δ .Vempala and Wang (2004) have a spectral method for learning Gaussian mixture mod-els that can handle smaller G(T )∗ than Dasgupta and Schulman’s approach but requires
n = Ω̃(T 3k2) training data, where we’ve hidden the dependence on σ2 and other variablesof interest for clarity of presentation. Hsu and Kakade (2013) have a moment-based es-timator that doesn’t use a gap condition but, under a different non-degeneracy condition,requires substantially more samples for our problem setup, i.e., n = Ω((k14 +Tk11)/ε2) toachieve an ε approximation of the mixture components. These results need substantiallymore training data than what we’ve shown is sufficient for classification.To fit a Gaussian mixture model to massive training datasets, in practice, using all thetraining data could be prohibitively expensive. In such scenarios, one could instead non-uniformly subsample O(Tk3/ε2) time series from the training data using the proceduregiven in (Feldman et al., 2011) and then feed the resulting smaller dataset, referred to asa (k, ε)-coreset, to the EM algorithm for learning the latent sources. This procedure stillrequires more training time series than needed for classification and lacks a guaranteethat the estimated latent sources will be close to the true latent sources.
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� 3.6 Lower Bound on Misclassification Rate
To understand how good our theoretical performance guarantees for nearest-neighborand weighted majority voting time series classification are, we establish a lower boundon the misclassification rate for any classifier under the Gaussian noise setting with notime shifts as in the previous section. This lower bound depends on the true gap betweenlatent sources of opposite labels, namely G(T )† .
Theorem 3.6.1. Under the latent source model for time series classification with Gaussian
noise and no time shifts, the probability of misclassifying time series using any classifier
satisfies the bound

P(misclassify) ≥ π+1π−1π2min exp(− 12σ2G(T )† − Γ((T + 1)/2)
σΓ(T /2) √2G(T )† − T2 ),

where Γ is the Gamma function: Γ(z) , ∫∞0 xz−1e−xdx defined for z > 0. Note thatΓ((T+1)/2)Γ(T /2) grows sublinear in T .We can compare this result to the misclassification rate upper bound of nearest-neighborclassification in Theorem 3.5.1. While this upper bound does not match the lower bound,its fourth and final term decays exponentially with gap G(T )† as well as time horizon T ,similar to the only term in our lower bound. The other three terms in the upper boundcould be made arbitrarily small but in doing so slows down how fast the fourth termdecays. We suspect our upper bound to be loose as our analysis is worst-case. Even so,it’s possible that nearest-neighbor and weighted majority voting simply aren’t optimal.
� 3.7 Proofs
We now present the proofs of Theorems 3.4.1, 3.5.1, and 3.6.1, along with Corollary 3.5.1.Since we look at time series in length-T windows, we equivalently view these windowsas T -dimensional vectors.
� 3.7.1 Proof of Theorem 3.4.1Let Eall-sources denote the event that the training data consists of more than nπmin/2 pointsfrom every latent source. By Lemma 2.2.2, this event happens with probability at least1− k exp(−nπmin/8). For the remainder of the proof, we assume event Eall-sources to hold.Under the latent source model, the observed time series Y is generated from somelatent source λg∗ for g∗ ∈ {1, . . . , k}, with time shift ∆1 ∈ D+ = {0, 1, . . . ,∆max} andnoise signal W1:

Y = µg∗ ~ ∆1 +W1.Since event Eall-sources holds, there exists some training time series Yu∗ , for u∗ ∈ {1, . . . , n},that is also generated from latent source λg∗ , but with different shift ∆2 ∈ D+ and noisesignal W2:
Yu∗ = µg∗ ~ ∆2 +W2.



Sec. 3.7. Proofs 37

Therefore, we can rewrite Y in terms of Yu∗ as follows:
Y = µg∗ ~ ∆1 +W1= ((Yu∗ −W2)~ (−∆2))~ ∆1 +W1= Yu∗ ~ (∆1 − ∆2) + (W1 −W2 ~ (∆1 − ∆2))= Yu∗ ~ ∆∗ +W, (3.7)

where ∆∗ , ∆1 − ∆2 ∈ D = {−∆max, . . . ,−1, 0, 1, . . . ,∆max} (note the change from D+to D ) and W = W1 −W2 ~ ∆. Since noise signals W1 and W2 are i.i.d. over time andsub-Gaussian with parameter σ , noise signal W is also i.i.d. over time and sub-Gaussian,now with parameter √2σ .We remark that the generative model could allow for time shifts sampled uniformly atrandom from some arbitrary finite set D ′ ⊂ Z that need not equal D+, but our analysis tofollow will require nearest-neighbor classification to look at training time series shiftedby amount ∆∗ of the form ∆1 − ∆2 with ∆1,∆2 ∈ D ′. When D ′ = D+, then ∆∗ ∈ D .
Performance Guarantee for Nearest-Neighbor ClassificationGiven event Eall-sources, the probability of error for nearest-neighbor classification is

P(L̂(T )NN(Y ) 6= L | Eall-sources)= P(L = +1 | Eall-sources)P(L̂(T )NN(Y ) = −1 | Eall-sources, L = +1)+ P(L = −1 | Eall-sources)P(L̂(T )NN(Y ) = +1 | Eall-sources, L = −1). (3.8)
The rest of the proof is mainly on upper-bounding P(L̂(T )NN(Y ) = −1 | Eall-sources, L = +1).Bounding P(L̂(T )NN(Y ) = +1 | Eall-sources, L = −1) is similar. Suppose L = +1. Nearest-neighbor classification makes an error and declares L̂(T )NN(Y ) = −1 when the nearestneighbor Yû found has label Lû = −1, where

(û, ∆̂) = argmin
u∈{1,...,n},∆∈D ‖Yu ~ ∆ − Y ‖2

T = argmin
u∈{1,...,n},∆∈D ‖Yu ~ ∆ − (Yu∗ ~ ∆∗ +W )‖2

T ,

where the second equality uses equation (3.7). By optimality of (û, ∆̂) for the aboveoptimization problem, we have
‖Yu~∆−(Yu∗~∆∗+W )‖2

T ≥ ‖Yû~∆̂−(Yu∗~∆∗+W )‖2
T for all u ∈ {1, . . . , n},∆ ∈ D .

Plugging in u = u∗ and ∆ = ∆∗, we obtain
‖W ‖2

T ≥ ‖Yû ~ ∆̂ − (Yu∗ ~ ∆∗ +W )‖2
T= ‖(Yû ~ ∆̂ − Yu∗ ~ ∆∗)−W ‖2
T= ‖Yû ~ ∆̂ − Yu∗ ~ ∆∗‖2

T − 2〈Yû ~ ∆̂ − Yu∗ ~ ∆∗,W 〉T + ‖W ‖2
T ,
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where 〈Q,Q′〉T ,∑T

t=1Q(t)Q′(t) for time series Q and Q′. The above inequality can beequivalently written as
2〈Yû ~ ∆̂ − Yu∗ ~ ∆∗,W 〉T ≥ ‖Yû ~ ∆̂ − Yu∗ ~ ∆∗‖2

T (3.9)
Since the true label is L = +1, which is the same label as training time series Yu∗ , thennearest-neighbor classification making an error implies the existence of a training timeseries Yû with label Lû = −1 that satisfies optimality condition (3.9). Therefore,
P(L̂(T )NN(Y ) = −1 | Eall-sources, L = +1)
≤ P

( ⋃
û∈{1,...,n} s.t. Lû=−1,∆̂∈D

{2〈Yû ~ ∆̂ − Yu∗ ~ ∆∗,W 〉T ≥ ‖Yû ~ ∆̂ − Yu∗ ~ ∆∗‖2
T }
)

(1)
≤

∑
û∈{1,...,n} s.t. Lû=−1,∆̂∈D

P
(2〈Yû ~ ∆̂ − Yu∗ ~ ∆∗,W 〉T ≥ ‖Yû ~ ∆̂ − Yu∗ ~ ∆∗‖2

T
)

= ∑
û∈{1,...,n} s.t. Lû=−1,∆̂∈D

P
( exp(2φ〈Yû ~ ∆̂ − Yu∗ ~ ∆∗,W 〉T ) ≥ exp(φ‖Yû ~ ∆̂ − Yu∗ ~ ∆∗‖2

T ))
(2)
≤

∑
û∈{1,...,n} s.t. Lû=−1,∆̂∈D

exp(−φ‖Yû ~ ∆̂ − Yu∗ ~ ∆∗‖2
T )E[ exp(2φ〈Yû ~ ∆̂ − Yu∗ ~ ∆∗,W 〉T )]

(3)
≤

∑
û∈{1,...,n} s.t. Lû=−1,∆̂∈D

exp(−φ‖Yû ~ ∆̂ − Yu∗ ~ ∆∗‖2
T ) exp(4φ2σ2‖Yû ~ ∆̂ − Yu∗ ~ ∆∗‖2

T )
= ∑

û∈{1,...,n} s.t. Lû=−1,∆̂∈D
exp (− (φ − 4φ2σ2)‖Yû ~ ∆̂ − Yu∗ ~ ∆∗‖2

T
)

≤
∑

û∈{1,...,n} s.t. Lû=−1,∆̂∈D
exp (− (φ − 4φ2σ2)G(T ))

≤ n|D | exp (− (φ − 4φ2σ2)G(T ))
= n(2∆max + 1) exp (− (φ − 4φ2σ2)G(T ))
(4)= n(2∆max + 1) exp (− 116σ2G(T )), (3.10)
where step (1) is by a union bound, step (2) is by Markov’s inequality for φ > 0, step (3)is by sub-Gaussianity, and step (4) is by choosing φ = 18σ2 .A similar calculation shows that

P(L̂(T )NN(Y ) = −1|L = +1) ≤ n(2∆max + 1) exp (− 116σ2G(T )), (3.11)
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Plugging in bounds (3.10) and (3.11) into equation (3.8) yields
P(L̂(T )NN(Y ) 6= L | Eall-sources) ≤ (2∆max + 1)n exp(− 116σ2G(T )).

Finally,
P(L̂(T )NN(Y ) 6= L) = P(Eall-sources)P(L̂(T )NN(Y ) 6= L | Eall-sources)+ P(E call-sources)P(L̂(T )NN(Y ) 6= L | E call-sources)

≤ P(L̂(T )NN(Y ) 6= L | Eall-sources) + P(E call-sources)
≤ (2∆max + 1)n exp(− 116σ2G(T ))+ k exp(− nπmin8 )

.

Performance Guarantee for Generalized Weighted Majority VotingGiven event Eall-sources, the probability of error for generalized weighted majority voting is
P(L̂(T )

τ (Y ;θ) 6= L | Eall-sources)= P(L = +1 | Eall-sources)P(L̂(T )
τ (Y ;θ) = −1 | Eall-sources, L = +1)+ P(L = −1 | Eall-sources)P(L̂(T )
τ (Y ;θ) = +1 | Eall-sources, L = −1)= P(L = +1)P(L̂(T )

τ (Y ;θ) = −1 | Eall-sources, L = +1)+ P(L = −1)P(L̂(T )
τ (Y ;θ) = +1 | Eall-sources, L = −1), (3.12)

where the second equality holds since the training data are independent of the labelof a new time series generated. The rest of the proof primarily shows how to bound
P(L̂(T )

τ (Y ;θ) = −1 | Eall-sources, L = +1). Bounding P(L̂(T )
τ (Y ;θ) = +1 | Eall-sources, L = −1)is almost identical. By Markov’s inequality,

P(L̂(T )
τ (Y ;θ) = −1 | Eall-sources, L = +1)

= P
( 1
R (T )(Y ;θ) > 1

τ

∣∣∣∣ Eall-sources, L = +1)
≤ τE

[ 1
R (T )(Y ;θ)

∣∣∣∣ Eall-sources, L = +1].
= τE

[ 1
R (T )(Yu∗ ~ ∆∗ +W ;θ)

∣∣∣∣ Eall-sources, L = +1], (3.13)
where the last step uses equation (3.7), which, as a reminder, relied on event Eall-sourcesholding.To proceed further, we begin by upper-bounding the term within the expectation,namely 1/R (T )(Yu∗~∆∗+W ;θ). Note that for any ũ ∈ {1, . . . , n}, shift ∆̃ ∈ D , and timeseries Q,

1
R (T )(Q;θ) ≤

∑
u∈{1,...,n} s.t. Lu=−1,∆∈D exp(−θ‖Yu ~ ∆ −Q‖2

T )exp(−θ‖Yũ ~ ∆̃ −Q‖2
T ) .



40 CHAPTER 3. TIME SERIES CLASSIFICATION
In particular, we can choose ũ = u∗ and ∆̃ = ∆∗, so

1
R (T )(Q;θ) ≤

∑
u∈{1,...,n} s.t. Lu=−1,∆∈D exp(−θ‖Yu ~ ∆ −Q‖2

T )exp(−θ‖Yu∗ ~ ∆∗ −Q‖2
T ) .

Recall that we’re upper-bounding 1/R (T )(Yu∗ ~ ∆∗ + W ;θ), corresponding to setting
Q = Yu∗ ~ ∆∗ +W . Doing this substitution, we get1
R (T )(Yu∗ ~ ∆∗ +W ;θ)
≤
∑

u∈{1,...,n} s.t. Lu=−1,∆∈D exp(−θ‖Yu ~ ∆ − (Yu∗ ~ ∆∗ +W )‖2
T )exp(−θ‖Yu∗ ~ ∆∗ − (Yu∗ ~ ∆∗ +W )‖2

T )
= ∑

u∈{1,...,n} s.t. Lu=−1,∆∈D exp(−θ‖(Yu ~ ∆ − Yu∗ ~ ∆∗)−W ‖2
T )exp(−θ‖W ‖2

T )
= ∑

u∈{1,...,n} s.t. Lu=−1,∆∈D e−θ(‖Yu~∆−Yu∗~∆∗‖2
T−2〈Yu~∆−Yu∗~∆∗,W 〉T+‖W‖2

T )exp(−θ‖W ‖2
T )= ∑

u∈{1,...,n} s.t. Lu=−1,∆∈D exp (− θ(‖Yu ~ ∆ − Yu∗ ~ ∆∗‖2
T − 2〈Yu ~ ∆ − Yu∗ ~ ∆∗,W 〉T ))

= ∑
u∈{1,...,n} s.t. Lu=−1,∆∈D exp(−θ‖Yu ~ ∆ − Yu∗ ~ ∆∗‖2

T ) exp(2θ〈Yu ~ ∆ − Yu∗ ~ ∆∗,W 〉T ).
What we actually want to bound is the expectation of the left-hand side, given event
Eall-sources holding and L = +1. Taking this expectation for both sides above,
E
[ 1
R (T )(Yu∗ ~ ∆∗ +W ;θ)

∣∣∣∣ Eall-sources, L = +1]
≤ E

[ ∑
u∈{1,...,n} s.t. Lu=−1,∆∈D

e−θ‖Yu~∆−Yu∗~∆∗‖2
T e2θ〈Yu~∆−Yu∗~∆∗,W 〉T ∣∣∣∣ Eall-sources, L = +1]

= ∑
u∈{1,...,n} s.t. Lu=−1,∆∈D

exp(−θ‖Yu ~ ∆ − Yu∗ ~ ∆∗‖2
T )EW [ exp(2θ〈Yu ~ ∆ − Yu∗ ~ ∆∗,W 〉T )]

≤
∑

u∈{1,...,n} s.t. Lu=−1,∆∈D
exp(−θ‖Yu ~ ∆ − Yu∗ ~ ∆∗‖2

T ) exp(4θ2σ2‖Yu ~ ∆ − Yu∗ ~ ∆∗‖2
T )

= ∑
u∈{1,...,n} s.t. Lu=−1,∆∈D

exp (− (θ − 4θ2σ2)‖Yu ~ ∆ − Yu∗ ~ ∆∗‖2
T
)

≤
∑

u∈{1,...,n} s.t. Lu=−1,∆∈D
exp (− (θ − 4θ2σ2)G(T ))

≤ n|D | exp (− (θ − 4θ2σ2)G(T ))
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= n(2∆max + 1) exp (− (θ − 4θ2σ2)G(T )),where the second inequality uses the fact that W consists of entries that are i.i.d. zero-mean sub-Gaussian with parameter √2σ . Plugging the above into inequality (3.13), weget
P(L̂(T )

τ (Y ;θ) = −1 | Eall-sources, L = +1) ≤ τn(2∆max +1) exp (− (θ− 4θ2σ2)G(T )). (3.14)A similar calculation yields
P(L̂(T )

τ (Y ;θ) = +1 | Eall-sources, L = −1) ≤ 1
τ n(2∆max +1) exp (− (θ−4θ2σ2)G(T )). (3.15)

Plugging inequalities (3.14) and (3.15) into equation (3.12) gives
P(L̂(T )

τ (Y ;θ) 6= L | Eall-sources)
≤ P(L = +1)τn(2∆max + 1) exp (− (θ − 4θ2σ2)G(T ))

+ P(L = −1)1τ n(2∆max + 1) exp (− (θ − 4θ2σ2)G(T ))
= (P(L = +1)τ + P(L = −1)1τ )n(2∆max + 1) exp (− (θ − 4θ2σ2)G(T )).

Finally,
P(L̂(T )

τ (Y ;θ) 6= L) = P(Eall-sources)P(L̂(T )
τ (Y ;θ) 6= L | Eall-sources)+ P(E call-sources)P(L̂(T )
τ (Y ;θ) 6= L | E call-sources)

≤ P(L̂(T )
τ (Y ;θ) 6= L | Eall-sources) + P(E call-sources)

≤
(
P(L = +1)τ + P(L = −1)1τ )n(2∆max + 1) exp (− (θ − 4θ2σ2)G(T ))

+ k exp(− nπmin8 )
. �

� 3.7.2 Proof of Theorem 3.5.1We prove Theorem 3.5.1 using gap G(T )† , which gives a stronger result than with gap G(T )∗that disregards the labels of the latent sources. The proof using gap G(T )∗ is the same.As with the proof of Theorem 3.4.1, we begin by assuming that there are more than
nπmin/2 training time series from every latent source, i.e, that event Eall-sources holds. ByLemma 2.2.2, this happens with probability at least 1− k exp(−nπmin/8).Let Y+1 and Y−1 be two training time series with labels +1 and −1. These time seriesexist since event Eall-sources holds and, moreover, the latent source model assumes that theunderlying latent sources don’t all have the same label. Under the latent source model,
Y+1 = X (Y+1) + W (Y+1) and Y−1 = X (Y−1) + W (Y−1), where X (Y+1), X (Y−) ∈ {µ1, . . . , µk}denote the true latent sources corresponding to Y+1 and Y−1, and W (Y+1) and W (Y−1) arethe noise signals corresponding to Y+1 and Y−1 that consist of i.i.d. N (0, σ2) entries.Thus,

‖Y+1 − Y−1‖2
T
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= ‖(X (Y+1) +W (Y+1))− (X (Y−1) +W (Y−1))‖2

T= ‖(X (Y+1) − X (Y−1)) + (W (Y+1) −W (Y−1))‖2
T= ‖X (Y+1) − X (Y−1)‖2

T + 2〈X (Y+1) − X (Y−1),W (Y+1) −W (Y−1)〉T + ‖W (Y+1) −W (Y−1)‖2
T .We next want to analyze how far ‖Y+1−Y−1‖2

T deviates from ‖X (Y+1)−X (Y−1)‖2
T . With s1and s2 as fixed positive constants, define Eall-distances-good to be the event where for everypair of training time series Y+1 and Y−1 with labels +1 and −1 respectively, we haveboth

〈X (Y+1) − X (Y−1),W (Y+1) −W (Y−1)〉T > −‖W (Y+1) −W (Y−1)‖T s1, (3.16)
‖W (Y+1) −W (Y−1)‖2

T > 2σ2T − 4σ2√Ts2. (3.17)
We show when event Eall-distances-good holds with sufficiently high probability:
• Bound (3.16): Note that 〈X (Y+1) − X (Y−1),W (Y+1) − W (Y−1)〉T is zero-mean sub-Gaussian with parameter √2σ‖X (Y+1) − X (Y−1)‖T , so

P
(
〈X (Y+1) − X (Y−1),W (Y+1) −W (Y−1)〉T ≤ −‖X (Y+1) − X (Y−1)‖T s1) ≤ exp(− s214σ2

)
.

A union bound over all pairs of training time series with opposite labels gives
P
( ⋃
Y+1,Y−1

{
〈X (Y+1) − X (Y−1),W (Y+1) −W (Y−1)〉T ≤ −‖X (Y+1) − X (Y−1)‖T s1})

≤
∑

Y+1,Y−1
P
(
〈X (Y+1) − X (Y−1),W (Y+1) −W (Y−1)〉T ≤ −‖X (Y+1) − X (Y−1)‖T s1)

≤
∑

Y+1,Y−1
exp(− s214σ2

) = n+1n−1 exp(− s214σ2
)
≤ n24 exp(− s214σ2

)
,

where n+1 is the number of training time series with labels +1, and n−1 = n−n+1is the number of training time series with label −1.
• Bound (3.17): Due to a result by Laurent and Massart (2000, Lemma 1), we have

P
(
‖W (Y+1) −W (Y−1)‖2

T ≤ 2σ2T − 4σ2√Tb) ≤ e−s2 .
A union bound gives

P
( ⋃
Y+1,Y−1

{
‖W (Y+1) −W (Y−1)‖2

T ≤ 2σ2T − 4σ2√Ts2})
≤

∑
Y+1,Y−1

P
(
‖W (Y+1) −W (Y−1)‖2

T ≤ 2σ2T − 4σ2√Ts2)
≤

∑
Y+1,Y−1

e−s2 = n+1n−1e−s2 ≤ n24 e−s2 .
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By a union bound, the “good” event Egood , Eall-sources ∩ Eall-distances-good happens withprobability at least 1− k exp(−nπmin8 )− n24 exp(− s214σ2 )− n24 e−s2 .Assuming that event Egood holds and G(T )† ≥ s21,
‖Y+1 − Y−1‖2

T= ‖X (Y+1) − X (Y−1)‖2
T + 2〈X (Y+1) − X (Y−1),W (Y+1) −W (Y−1)〉T + ‖W (Y+1) −W (Y−1)‖2

T

> ‖X (Y+1) − X (Y−1)‖2
T − 2‖X (Y+1) − X (Y−1)‖2

T s1 + 2σ2T − 4σ2√Ts2= (‖X (Y+1) − X (Y−1)‖T − s1)2 − s21 + 2σ2T − 4σ2√Ts2
≥ (√G(T )† − s1)2 − s21 + 2σ2T − 4σ2√Ts2= G(T )† − 2s1√G(T )† + 2σ2T − 4σ2√Ts2.Minimizing both sides over training time series Y+1 and Y−1 with labels +1 and −1,

G(T ) ≥ G(T )† − 2s1√G(T )† + 2σ2T − 4σ2√Ts2. (3.18)Using the same proof as for Theorem 3.4.1 except where now instead of only asking
Eall-sources to hold, we ask that event Egood to hold, and we use the bound above relating
G(T ) to G(T )† , nearest-neighbor classification has probability of error

P(L̂(T )NN(Y ) 6= L) ≤ k exp(− nπmin8 )+ n24 exp(− s214σ2
)+ n24 exp(−s2)

+ n exp(− 116σ2 (G(T )† − 2s1√G(T )† + 2σ2T − 4σ2√Ts2)),
and generalized weighted majority voting has probability of error
P(L̂(T )

τ (Y ;θ) 6= L)
≤ k exp(− nπmin8 )+ n24 exp(− s214σ2

)+ n24 exp(−s2)
+ (τπ+1 + 1

τ π−1)n exp (− (θ − 4σ2θ)2(G(T )† − 2s1√G(T )† + 2σ2T − 4σ2√Ts2)).
�

� 3.7.3 Proof of Corollary 3.5.1Again, here we can replace G(T )† with G(T )∗, and the proof would still go through. Let
δ ∈ (0, 1). For the nearest-neighbor classification upper bound in Theorem 3.4.1, weask that each of the four right-hand side terms be at most δ/4. Specifically, we set
s1 = 2σ√log n2

δ and s2 = log n2
δ , which makes the second and third terms each exactlyequal to δ/4. For the first term, we ask that n ≥ 8

πmin log 4k
δ . Finally, for the fourth term,we do a worst-case analysis. Specifically, with our choices for s1 and s2, by completingthe square, we have

G(T )† − 2s1√G(T )† + 2σ2T − 4σ2√Ts2
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= G(T )† − 4σ√G(T )† log n2
δ + 2σ2T − 4σ2√T log n2

δ

= (√G(T )† − 2σ√log n2
δ

)2
− 4σ2 log n2

δ + 2σ2T − 4σ2√T log n2
δ

≥ −4σ2 log n2
δ + 2σ2T − 4σ2√T log n2

δ .Hence,
n exp(− 116σ2 (G(T )† − 2s1√G(T )† + 2σ2T − 4σ2√Ts2))
≤ n exp(− 116σ2

(
− 4σ2 log n2

δ + 2σ2T − 4σ2√T log n2
δ

))
≤ δ4where the second inequality holds when

T ≥ 2 log n2
δ + 2√T log n2

δ + 8 log 4n
δ .This happens when

T ≥ 4 log n2
δ + 8 log 4n

δ + 2√(3 log n2
δ + 8 log 4n

δ

) log n2
δ . �

� 3.7.4 Proof of Theorem 3.6.1Let L̂ denote the predicted label for L using any classifier. Due to a result by Santhi andVardy (2006, equation (4)), for binary classification,
P(L̂ 6= L) ≥ ∫ P(L = +1)p(Y |L = +1)P(L = −1)p(Y |L = −1)

p(Y ) dY , (3.19)
where the right-hand side is referred to as the harmonic lower bound. We lower-boundthis harmonic lower bound. For any two latent sources X+1, X−1 ∈ {µ1, . . . , µk} withlabels +1 and −1 respectively,∫

P(L = +1)p(Y |L = +1)P(L = −1)p(Y |L = −1)
p(Y ) dY

= ∫ π+1π−1(∑g∈{1,...,k}s.t. λg=+1 πgN (Y ; µg, σ2IT×T )) · (∑g∈{1,...,k}s.t. λg=−1 πgN (Y ; µg, σ2IT×T ))
p(Y ) dY

(1)
≥
∫ (2π)T /2σTπ+1π−1( ∑

g∈{1,...,k}s.t. λg=+1
πgN (Y ;X+1, σ2IT×T ))( ∑

g∈{1,...,k}s.t. λg=−1
πgN (Y ;X−1, σ2IT×T ))dY



Sec. 3.7. Proofs 45

≥
∫ (2π)T /2σTπ+1π−1π2minN (Y ;X+1, σ2IT×T )N (Y ;X−1, σ2IT×T )dY

= (2π)T /2σTπ+1π−1π2min
∫
N (Y ;X−1, σ2IT×T )(N (Y ;X+1, σ2IT×T )dY )

= (2π)T /2σTπ+1π−1π2minEY∼N (X+1,σ2IT×T )[N (Y ;X−1, σ2IT×T )]
= π+1π−1π2minEY∼N (X+1,σ2IT×T )[ exp(− 12σ2 ‖Y − X−1‖2

T

)]
(2)
≥ π+1π−1π2minEY∼N (X+1,σ2IT×T )[ exp(− 12σ2 (‖Y − X+1‖T + ‖X+1 − X−1‖T )2)]
= π+1π−1π2mine− 12σ2 ‖X+1−X−1‖2

TEY∼N (X+1,σ2IT×T )[e− 12σ2 (‖Y−X+1‖2
T+2‖Y−X+1‖T ‖X+1−X−1‖T )],(3.20)where step (1) uses the fact that

p(Y ) = k∑
g=1 πgN (Y ; µg, σ2IT×T ) ≤ k∑

g=1 πgN (µg; µg, σ2IT×T ) = k∑
g=1

πg(2π)T /2σT = 1(2π)T /2σT ,
and step (2) uses the triangle inequality

‖Y − X−1‖T = ‖(Y − X+1) + (X+1 − X−1)‖T ≤ ‖Y − X+1‖T + ‖X+1 − X−1‖T .Let’s bound the expectation in the last line of inequality (3.20). With Y treated asa random sample from N (X+1, σ2IT×T ), then Y = X+1 +W , where W ∼ N (0, σ2IT×T ).Therefore
EY∼N (X+1,σ2IT×T )[ exp(− 12σ2 (‖Y − X+1‖2

T + 2‖Y − X+1‖T ‖X+1 − X−1‖T ))]
= EW∼N (0,σ2IT×T )[ exp(− 12σ2 (‖W ‖2

T + 2‖W ‖T ‖X+1 − X−1‖T ))]
(1)
≥ exp(− 12σ2EW∼N (0,σ2IT×T )[‖W ‖2

T + 2‖W ‖T ‖X+1 − X−1‖T ])
= exp(− 12σ2 (EW∼N (0,σ2IT×T )[‖W ‖2

T ] + 2‖X+1 − X−1‖TEW∼N (0,σ2IT×T )[‖W ‖T ]))
(2)= exp(− 12σ2

(
σ2T + 2‖X+1 − X−1‖T σ√2Γ((T + 1)/2)Γ(T /2) ))

= exp(− T2 − ‖X+1 − X−1‖T
√2Γ((T + 1)/2)

σΓ(T /2) )
, (3.21)

where step (1) is by Jensen’s inequality, and step (2) uses the fact that 1
σ2 ‖W ‖2

T isdistributed as a χ2 random variable with T degrees of freedom, so E[‖W ‖2
T ] = σ2T , while1

σ ‖W ‖T is a χ random variable with T degrees of freedom, so E[‖W ‖T ] = σ
√2Γ((T+1)/2)Γ(T /2) .Stringing together inequalities (3.19), (3.20), and (3.21), we get

P(L̂ 6= L) ≥ π+1π−1π2min exp(− 12σ2 ‖X+1−X−1‖2
T −

T2 −‖X+1−X−1‖T
√2Γ((T + 1)/2)

σΓ(T /2) )
.
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Since the above holds for all latent sources X+1 and X−1 with labels +1 and −1, wehave

P(L̂ 6= L) ≥ π+1π−1π2min exp(− 12σ2G(T )† − T2 −√G(T )†√2Γ((T + 1)/2)
σΓ(T /2) )

. �

� 3.8 Experimental Results
Synthetic data. We generate k = 200 latent sources that occur with equal probability,where each latent source is constructed by first sampling i.i.d. N (0, 100) entries pertime step and then applying a 1D Gaussian smoothing filter with scale parameter 30.Half of the latent sources are labeled +1 and the other half −1. Then n = βk log ktraining time series are sampled, for various values of β, as per the latent source modelwhere the noise added is i.i.d. N (0, 1), and the maximum time shift is ∆max = 100. Wesimilarly generate 1000 time series to use as test data. We set θ = 1/8 for weightedmajority voting. For β = 8, we compare the classification error rates on test data forweighted majority voting, nearest-neighbor classification, and the MAP classifier withoracle access to the true latent sources as shown in Figure 3.1(a). We see that weightedmajority voting outperforms nearest-neighbor classification but as T grows large, thetwo methods’ performances converge to that of the MAP classifier. Fixing T = 100, wethen compare the classification error rates of the three methods using varying amountsof training data, as shown in Figure 3.1(b); the oracle MAP classifier is also shown butdoes not actually depend on training data. We see that as β increases, both weightedmajority voting and nearest-neighbor classification steadily improve in performance.
Forecasting trending topics on twitter. We now summarize experimental results reportedin (Nikolov, 2012) and subsequently in (Chen et al., 2013). From June 2012 user posts onTwitter, 500 examples of trends were sampled at random from a list of news trends, and
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Figure 3.1: Results on synthetic data. (a) Classification error rate vs. number of initialtime steps T used; training set size: n = βk log k where β = 8. (b) Classification errorrate at T = 100 vs. β. All experiments were repeated 20 times with newly generatedlatent sources, training data, and test data each time. Error bars denote one standarddeviation above and below the mean value.
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Figure 3.2: How news topics become trends on Twitter. The top left shows some timeseries of activity leading up to a news topic becoming trending. These time seriessuperimposed look like clutter, but we can separate them into different clusters, as shownin the next five plots. Each cluster represents a “way” that a news topic becomes trending.
500 examples of non-trends were sampled based on phrases appearing in posts. As it’sunknown to the public how Twitter chooses what phrases are considered as candidatephrases for trending topics, it’s unclear what the size of the non-trend category is incomparison to the size of the trend category. Thus, for simplicity, the label class sizeswere controlled to be equal, and standard weighted majority voting (3.2) was used toclassify time series, where ∆max is set to the maximum possible (all shifts are considered).In practice, one could assemble the training data to have uneven label class sizes andthen tune τ for generalized weighted majority voting (3.3).Per topic, Nikolov (2012) created a time series based on a pre-processed versionof the rate of how often the topic was shared by users on Twitter. Chen et al. (2013)empirically found that the time series for news topics that become trends tend to followa finite number of patterns; a few examples of these patterns are shown in Figure 3.2.These few patterns could be thought of as latent sources. The trends and non-trendswere randomly divided into two halves, one to use as training data and one to use as testdata. Nikolov (2012) applied weighted majority voting, sweeping over θ, T , and datapre-processing parameters. As shown in Figure 3.3(a), with one choice of parameters,weighted majority voting detected trending topics in advance of Twitter 79% of the time,and on average 1.43 hours earlier, with a true positive rate (TPR) of 95% and a falsepositive rate (FPR) of 4%. Naturally, there are tradeoffs between TPR, FPR, and howearly one wants to make a prediction (i.e., how small time horizon T is). As shown inFigure 3.3(c), an “aggressive” parameter setting yields early detection and high TPR buthigh FPR, and a “conservative” parameter setting yields low FPR but late detection andlow TPR. An “in-between” setting can strike the right balance.
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Figure 3.3: Results from Nikolov (2012) on Twitter data. (a) Weighted majority votingachieves a low error rate (FPR of 4%, TPR of 95%) and detects trending topics in advanceof Twitter 79% of the time, with a mean of 1.43 hours when it does for a particular choiceof parameters. (b) Envelope of all ROC curves shows the tradeoff between TPR andFPR. (c) Distribution of detection times for “aggressive” (top), “conservative” (bottom)and “in-between” (center) parameter settings.
� 3.9 Discussion
Having to subsample the training data to keep the misclassification rate upper boundsfrom scaling with n seems strange. Shouldn’t more data only help us? Or is it that byseeing more data, due to noise, as we get more and more samples, we’re bound to getunlucky and encounter a training time series with the wrong label that is close to thetime series we want to classify, causing nearest-neighbor classification to get confusedand buckle? In fact, our later results in this thesis will also involve some training datasubsampling, yet it’s unclear whether this is really necessary for the nearest-neighbor-like inference methods we consider.
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When the number of training data n is large, a more clever strategy that still involvessubsampling but now uses all the training data is to randomly partition the training datainto groups of size Θ( 1
πmin log k

δ ) each. Then we can apply weighted majority voting withineach group. A final prediction can be made by a “meta” majority vote: choose the mostpopular label across the different groups’ label predictions. This meta-voting strategyreadily lends itself to analysis. In particular, since the training data in different groupsare independent, weighted majority voting’s predictions across the different groups arealso independent and we know when we can ensure each of these predictions to be correctwith probability at least 1− δ . Then among the Θ( nπminlog(k/δ) ) groups, the number of correctlabel predictions stochastically dominates a Binomial(Θ( nπminlog(k/δ) ), 1−δ) random variable.We can then apply a binomial concentration inequality to lower-bound this meta-votingstrategy’s probability of success.We end this chapter by relating separation gap G(T )† in Sections 3.5 and 3.6 tothe margin condition of Mammen and Tsybakov (1999) and Tsybakov (2004) (recall thatseparation gap G(T )† between the true latent sources relates to the separation gap G(T )in the training data via inequality (3.18)). The basic idea is that classification should bechallenging if for observed time series Y , the posterior probability P(L = +1 | Y ) is closeto 1/2. When this happens, it means that Y is close to the decision boundary and couldplausibly be explained by both labels. Thus, if the probability that Y lands close to thedecision boundary is sufficiently low, then an inference algorithm that, either explicitlyor implicitly, estimates the decision boundary well should achieve a low misclassificationrate. Mammen and Tsybakov (1999) and Tsybakov (2004) formalize this margin conditionas follows:
P
(∣∣∣P(L = +1 | Y )− 12 ∣∣∣ ≤ s) ≤ Csφ, (3.22)

for some finite C > 0, φ > 0, and all 0 < s ≤ s∗ for some s∗ ≤ 1/2. Note thatthe randomness is over Y . With additional assumptions on the behavior of the decisionboundary, Tsybakov (2004) and Audibert and Tsybakov (2007) showed that nonparametricclassifiers can have misclassification rates that exceed the optimal Bayes error rate byas low as O(n−1) or even lower under a far more restrictive assumption on how label Lrelates to observation Y .To sketch how separation gap G(T )† relates to the above margin condition, we considerthe one-dimensional Gaussian case with no time shifts where we have two latent sources:if Y has label L = +1 then it is generated from N (µ, σ2) and if Y has label L = −1 thenit is generated from N (−µ, σ2) for constants µ > 0, and σ > 0, and where P(L = +1) =
P(L = −1) = 1/2. For this example, an optimal MAP decision rule classifies Y to havelabel +1 if Y ≥ 0, and to have label −1 otherwise. Thus, the decision boundary is at
Y = 0. Meanwhile, the separation gap is given by G(T )† = µ − (−µ) = 2µ. To relate tomargin condition (3.22), note that for s ∈ [0, 1/2),∣∣∣P(L = +1 | Y )− 12 ∣∣∣ ≤ s ⇔ Y ∈

[
− σ22µ log(1 + 2s1− 2s), σ22µ log(1 + 2s1− 2s)],

where log(1+2s1−2s ) = 0 when s = 0, and log(1+2s1−2s )→∞ when s→ 1/2. The right-hand side
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interval corresponds to the decision boundary Y = 0 up to some closeness parameter s.For this interval to be far away enough from the two latent source means −µ and µ,henceforth, we assume that s is small enough so that

σ22µ log(1 + 2s1− 2s) < µ.

In other words, the interval doesn’t contain the latent source means −µ and µ. Then
P
(∣∣∣P(L = +1 | Y )− 12 ∣∣∣ ≤ s)= P
(
Y ∈

[
− σ22µ log(1 + 2s1− 2s), σ22µ log(1 + 2s1− 2s)]

)
= P(L = +1)P(Y ∈ [− σ22µ log(1 + 2s1− 2s), σ22µ log(1 + 2s1− 2s)]

∣∣∣∣ L = +1)
+ P(L = −1)P(Y ∈ [− σ22µ log(1 + 2s1− 2s), σ22µ log(1 + 2s1− 2s)]

∣∣∣∣ L = −1)
(by symmetry) = P

(
Y ∈

[
− σ22µ log(1 + 2s1− 2s), σ22µ log(1 + 2s1− 2s)]

∣∣∣∣ L = +1)
= P

(
N (µ, σ2) ∈ [− σ22µ log(1 + 2s1− 2s), σ22µ log(1 + 2s1− 2s)]

)
≤
[σ22µ log(1 + 2s1− 2s)− (− σ22µ log(1 + 2s1− 2s))]N(σ22µ log(1 + 2s1− 2s); µ, σ2)

= σ2
µ log(1 + 2s1− 2s)N(σ22µ log(1 + 2s1− 2s); µ, σ2)

= σ√2πµ log(1 + 2s1− 2s) exp(− 1
σ2
(
µ − σ22µ log(1 + 2s1− 2s))2)

, (3.23)
where the inequality uses the fact that since σ22µ log(1+2s1−2s ) < µ, the largest value of thedensity of N (µ, σ2) within interval [−σ22µ log(1+2s1−2s ), σ22µ log(1+2s1−2s )] is N (σ22µ log(1+2s1−2s ); µ, σ2).Examining the Taylor expansion of (3.23), one can then derive an upper bound of theform P

(
|P(L = +1 | Y )− 12 | ≤ s) ≤ Csφ by choosing φ to be the (positive integer) orderof the Taylor expansion, and then choosing constant C large enough. For example, if wewant a linear bound (φ = 1), note that the right-hand side of inequality (3.23) has Taylorexpansion √ 8

π
σ2e−µ2/σ2

µ s +O(s2). Choosing C to be sufficiently larger than √ 8
π
σ2e−µ2/σ2

µresults in a bound for small enough s, thus satisfying margin condition (3.22).We note that bound (3.23) decays exponentially with the separation gap G(T )† = 2µ.One way to intuit this result is that since our noise is sub-Gaussian, the probabilitythat Y deviates significantly from its generating latent source decays exponentially asa function of how far Y is from this latent source. When the separation gap betweenlatent sources of opposite labels is large, then it means that to land close to the decisionboundary, Y would have to be quite far from even the two closest latent sources withopposite labels. This event’s probability goes to 0 as the separation gap grows large.



Chapter 4

Online Collaborative Filtering

Recommendation systems have become ubiquitous in our lives, helping us filter the vastexpanse of information we encounter into small selections tailored to our personal tastes.Prominent examples include Amazon recommending items to buy, Netflix recommend-ing movies, and LinkedIn recommending jobs. In practice, recommendations are oftenmade via collaborative filtering, which boils down to recommending an item to a userby considering items that other similar or “nearby” users liked. Collaborative filteringhas been used extensively for decades now including in the GroupLens news recom-mendation system (Resnick et al., 1994), Amazon’s item recommendation system (Lindenet al., 2003), the Netflix $1 million grand prize winning algorithm by BellKor’s PragmaticChaos (Koren, 2009; Töscher and Jahrer, 2009; Piotte and Chabbert, 2009), and a recentsong recommendation system (Aiolli, 2013) that won the Million Song Dataset Challenge(Bertin-Mahieux et al., 2011).Most such systems operate in the “online” setting, where items are constantly rec-ommended to users over time. In many scenarios, it does not make sense to recommendan item that is already consumed. For example, once Alice watches a movie, there’s littlepoint to recommending the same movie to her again, at least not immediately, and onecould argue that recommending unwatched movies and already watched movies could behandled as separate cases. Finally, what matters is whether a likable item is recom-mended to a user rather than an unlikable one. In short, a good online recommendationsystem should recommend different likable items continually over time.Despite the success of collaborative filtering, there has been little theoretical devel-opment to justify its effectiveness in the online setting. Instead, most work (e.g., Cai et al.(2010); Candès and Recht (2009); Keshavan et al. (2010a,b); Recht (2011)) has been inthe “offline” setting, where we freeze time, have access to all “revealed” ratings usershave provided so far, and predict all “missing” ratings for items users haven’t yet rated.This offline problem setup perhaps gained enormous popularity amongst both academicsand practitioners after Netflix offered a $1 million dollar grand prize for a solution to theproblem that outperformed theirs by a pre-specified performance metric. The setup itselfis a matrix completion problem, where we consider a matrix of ratings where rows indexusers and columns index items (e.g., movies), and the (u, i)-th entry is either the ratingthat user u gave item i, or marked as missing. The goal then is to fill in these missingratings, typically by imposing a low-rank constraint on the ratings matrix. The theoreticalguarantees for such methods usually assume that the items that users view are uniform
51
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at random, which is not the case in reality and also doesn’t account for the fact that realrecommendation systems should and are biasing users into rating certain items, hope-fully items that they like. Only recently has this assumption been lifted for theoreticalanalysis of the offline setting (Lee and Shraibman, 2013). Of course, none of these modelthe true online nature of recommendation systems with time marching forward and thesystem continuously providing recommendations and receiving user feedback.Moving to this online setting, most work has been phrased in the context of theclassical so-called multi-armed bandit problem, first introduced by Thompson (1933).The name of the problem originates from the “one-armed bandit” slot machine found incasinos in which a gambler pulls the arm of the machine and receives a random reward.Naturally, the m-armed bandit problem refers to when the gambler has m such machinesto play and seeks to maximize her or his cumulative reward over time, playing one machineat each time step. Translated to the context of online recommendation systems, the mmachines are items, and playing a machine refers to recommending an item. We remarkthat in this standard setup of the multi-armed bandit problem, there is only a single userand hence no concept of collaboration between users, and only recently has there beenwork on incorporating a pool of users (Bui et al., 2012; Gentile et al., 2014).Even so, there hasn’t been a justification for why existing commonly used collaborative
filtering methods work in this online setting, with the closest related work analyzing theasymptotic consistency of cosine-similarity collaborative filtering in predicting the ratingof the next unseen item (Biau et al., 2010), or examining the ability of a collaborativefiltering method to predict ratings in an asymptotic information-theoretic setting (Barmanand Dabeer, 2012). Dabeer (2013) uses a similar model as ours but analyzes an algorithmthe knows the number of user and item types, which we won’t assume we have access to.In this chapter, we justify when, why, and how well a variant of cosine-similaritycollaborative filtering works. This main result relies on an underlying model for an onlinerecommendation system as well as a clear objective of what a recommendation methodshould be optimizing, both of which are presented in Section 4.1. Our setup imposesthe constraint that once an item is consumed by a user, the system can’t recommend theitem to the same user again. In the context of the multi-armed bandit problem, once agambler pulls the arm of a machine, the machine breaks and is no longer available!For analysis, similar to the time series classification setting, we begin with an oracleMAP inference algorithm that knows the underlying model parameters in Section 4.2. Weshow how to approximate this oracle recommendation algorithm with cosine-similarity col-laborative filtering, where it becomes apparent when we should expect cosine-similarityfiltering to work well. Before the approximation works well though, there should be suffi-cient exploration upfront. We include two types of exploration, one to probe the space ofitems and the other to probe the space of users. This leads to a simple cosine-similaritycollaborative filtering algorithm described in Section 4.3, which we modify slightly toobtain a more readily analyzable algorithm called Collaborative-Greedy. This sets upthe stage for our main result of this chapter in Section 4.4, which provides a theoreticalperformance guarantee for Collaborative-Greedy. Its proof is in Section 4.5.We present experimental results in Section 4.6. First, we provide evidence that



Sec. 4.1. A Latent Source Model and a Learning Problem 53

real movie recommendation data do exhibit clustering behavior across users. In fact,items cluster as well, which we do not account for in our model. Then, to test ouralgorithm Collaborative-Greedy, we simulate an online recommendation system thatuses ratings from real movie recommendation datasets and show that Collaborative-Greedy outperforms several existing collaborative filtering methods.
� 4.1 A Latent Source Model and a Learning Problem
We consider a system with n users and m items. At each time step, each user is rec-ommended an item that she or he hasn’t consumed yet, upon which, for simplicity, weassume that the user immediately consumes the item and rates it +1 (like) or −1 (dis-like).1 The reward earned by the recommendation system up to any time step is the totalnumber of liked items that have been recommended so far across all users. Formally,index time by t ∈ {1, 2, . . . }, and users by u ∈ {1, . . . , n}. Let ψut ∈ {1, . . . , m} be theitem recommended to user u at time t. Let Y (t)

ui ∈ {−1, 0,+1} be the rating provided byuser u for item i up to and including time t, where 0 indicates that no rating has beengiven yet. A reasonable objective is to maximize the expected reward r(T ) up to time T :
r(T ) , T∑

t=1
n∑
u=1 E[Y (T )

uψut ] = m∑
i=1

n∑
u=1 E[Y (T )

ui ].
The ratings are noisy: the latent item preferences for user u are represented by a length-
m vector pu ∈ [0, 1]m, where user u likes item i with probability pui, independentlyacross items. For a user u, we say that item i is likable if pui > 1/2 and unlikableotherwise. To maximize the expected reward r(T ), clearly likable items for the user shouldbe recommended before unlikable ones.In this chapter, we focus on recommending likable items. Thus, instead of maximizingthe expected reward r(T ), we aim to maximize the expected number of likable itemsrecommended up to time T :

r(T )+ ,
T∑
t=1

n∑
u=1 E[Xut ] , (4.1)

where Xut is the indicator random variable for whether the item recommended to user uat time t is likable, i.e., Xut = +1 if puψut > 1/2 and Xut = 0 otherwise. Maximizing r(T )and r(T )+ differ since the former asks that we prioritize items according to their probabilityof being liked.Recommending likable items for a user in an arbitrary order is sufficient for manyreal recommendation systems such as for movies and music. For example, we suspectthat users wouldn’t actually prefer to listen to music starting from the songs that their
1In practice, a user could ignore the recommendation. To keep our exposition simple, however, we stick tothis setting that resembles song recommendation systems like Pandora that per user continually recommendsa single item at a time. For example, if a user rates a song as “thumbs down” then we assign a rating of

−1 (dislike), and any other action corresponds to +1 (like).
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user type would like with highest probability to the ones their user type would likewith lowest probability; instead, each user would listen to songs that she or he findslikable, ordered such that there is sufficient diversity in the playlist to keep the userexperience interesting. We target the modest goal of merely recommending likable items,in any order. Of course, if all likable items have the same probability of being liked andsimilarly for all unlikable items, then maximizing r(T ) and r(T )+ are equivalent.The fundamental challenge is that to learn about a user’s preference for an item, weneed the user to rate (and thus consume) the item. But then we cannot recommend thatitem to the user again! Thus, the only way to learn about a user’s preferences is throughcollaboration, or inferring from other users’ ratings. Broadly, such inference is possibleif the users’ preferences are somehow related.In this chapter, we assume a simple structure for shared user preferences. We positthat there are k � n different types of users, where users of the same type have identicalitem preference vectors. Specifically, we denote the k underlying item preference vectorsas µ1, . . . , µk ∈ [0, 1]m. If users u and v are of the same type g ∈ {1, . . . , k}, then
pu = pv = µg. The number of user types k represents the heterogeneity in the population.For ease of exposition, in this chapter we assume that a user belongs to each user typewith probability 1/k . We refer to the overall model as a latent source model for online
collaborative filtering, where each user type corresponds to a latent source of users. Weremark that there is evidence suggesting real movie recommendation data to be wellmodeled by clustering of both users and items (Sutskever et al., 2009). Our model onlyassumes clustering over users.Our problem setup relates to some versions of the multi-armed bandit problem. Afundamental difference between our setup and that of the standard stochastic multi-armedbandit problem (Thompson, 1933; Bubeck and Cesa-Bianchi, 2012) is that the latterallows each item to be recommended an infinite number of times. Thus, the solutionconcept for the stochastic multi-armed bandit problem is to determine the best item (arm)and keep choosing it (Auer et al., 2002). This observation applies also to “clusteredbandits” (Bui et al., 2012), which like our work seeks to capture collaboration betweenusers. On the other hand, “sleeping bandits” (Kleinberg et al., 2010) allow for theavailable items at each time step to vary, but the analysis is worst-case in terms of whichitems are available over time. In our setup, the sequence of items that are available isnot adversarial. Our model combines the collaborative aspect of clustered bandits withdynamic item availability from sleeping bandits, where we impose a strict structure onhow items become unavailable.
� 4.2 Approximating an Oracle Algorithm
We begin with an algorithm that has oracle access to the true item preference vectors
µ1, . . . , µk ∈ [0, 1]m of the k user types, but does not know which type each user belongsto. One could show that at time t + 1, the MAP recommendation given the past ratings
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for user u is to choose item i that user u has not consumed that maximizes
k∑

g=1 µgi exp
{
−

∑
j∈supp(Y (t)

u )D
(Ber((Y (t)

uj + 1)/2)∥∥Ber(µgj ))}, (4.2)
where supp(·) denotes the support of a vector (its set of nonzero entries), Ber(·) denotesthe Bernoulli distribution, and D(·‖·) denotes KL divergence; as a reminder, Y (t)

u is therevealed ratings vector for user u up to and including time t. Notice that the MAPrecommendation is a weighted plurality vote. Each user type g casts a vote with weight
µgi exp{ −∑j∈supp(Y (t)

u )D(Ber((Y (t)
uj + 1)/2)∥∥Ber(µgj ))} for item i. The weight is theprobability that user type g likes item i downweighted by how misaligned user u’srevealed ratings so far Y (t)

u are with µg. To obtain a recommendation, we sum all thevotes for each item that user u has not consumed yet, and choose the item with thehighest vote.In reality, we know neither the number of user types k nor the item preference vectors
µ1, . . . , µk . If these vectors are in some sense sufficiently well-separated, then afterenough revealed ratings for user u, the exponentially decaying weight in equation (4.2)should eliminate all the user types’ contributions except for that of user u’s type, andfurthermore, if the revealed ratings aren’t too noisy, then the exponentially decayingweight for user u’s type should be going to 1. In other words, if user u belongs to type
h, then for sufficiently large t,

k∑
g=1 µgi exp

{
−

∑
j∈supp(Y (t)

u )D
(Ber((Y (t)

uj + 1)/2)∥∥Ber(µgj ))}→ µhi as t →∞. (4.3)
Of course, we do not know µhi. We could estimate it using neighbors for user u, wherewe use cosine similarity to define the neighborhoods as it is widely used in collaborativefiltering. Specifically, we estimate µhi with:

p̂(t)
ui ,


∑

v∈N(t)
u
1{Y (t)

vi = +1}∑
v∈N(t)

u
1{Y (t)

vi 6= 0} if ∑v∈N(t)
u
1{Y (t)

vi 6= 0} > 0,
1/2 otherwise, (4.4)

where the user’s neighborhood N (t)
u is defined as

N (t)
u , {v ∈ {1, . . . , n} : 〈Y (t)

u , Y (t)
v 〉 ≥ θ|supp(Y (t)

u ) ∩ supp(Y (t)
v )|} .Here θ is a pre-specified parameter. In particular, user v is a neighbor of user u preciselyif the cosine similarity between their revealed ratings over items they have both rated isat least θ. To see this, let Ωuv , supp(Y (t)

u ) ∩ supp(Y (t)
v ) be the support overlap of Y (t)

uand Y (t)
v , and let 〈·, ·〉Ωuv be the dot product restricted to entries in Ωuv . Then

〈Y (t)
u , Y (t)

v 〉
|Ωuv |

= 〈Y (t)
u , Y (t)

v 〉Ωuv√
〈Y (t)

u , Y (t)
u 〉Ωuv

√
〈Y (t)

v , Y (t)
v 〉Ωuv

,
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is the cosine similarity of revealed rating vectors Y (t)

u and Y (t)
v restricted to the overlapof their supports.The above approximation assumed two conditions: low noise and user type separation.Both of these conditions turn up in our theoretical performance guarantee in Section 4.4,where the separation will be in terms of cosine similarity. With both conditions satisfied,after enough items are explored and revealed, approximation (4.3) should work well andcould be thought of as exploiting what we’ve learned thus far about the users’ preferences.However, in the initial transition period in which we have not seen enough ratings foruser u, we shouldn’t just be exploiting. Whereas the oracle MAP recommender neatlyhandles this transition period, we’ll opt for the simpler action of randomized explorationto develop two collaborative filtering algorithms in the next section. We remark thatif instead of cosine similarity, we used another similarity measure between users, wesuspect that our main theoretical result to follow could still work with a different usertype separation condition.

� 4.3 Collaborative Filtering with Two Exploration Types
For clarity of presentation, we begin by describing a simpler recommendation algorithmSimple-Collaborative-Greedy. To make Simple-Collaborative-Greedy more amenableto analysis, we modify it slightly to obtain Collaborative-Greedy. Both algorithms aresyntactically similar to an algorithm called ε-Greedy for the standard multi-armed banditsetting, which explores items with probability ε and otherwise greedily chooses the bestitem seen so far based on a plurality vote (Sutton and Barto, 1998). The explorationprobability ε is allowed to decay with time: as we learn more about the different banditmachines, or items in our setting, we should be able to explore less and exploit more.The standard multi-armed bandit setting does not have user collaboration, and onecould interpret asking each user to randomly explore an item as probing the space ofitems. To explicitly encourage user collaboration, we could ask users to all explore thesame item, which probes the space of users. Accounting for the constraint in our settingthat an item can’t be recommended to the same user more than once, we thus have thetwo following exploration types:
• Random exploration. For every user, recommend an item that she or he hasn’tconsumed yet uniformly at random.
• Joint exploration. Ask every user to provide a rating for the next unseen item in ashared, randomly chosen sequence of the m items.

Our first algorithm Simple-Collaborative-Greedy thus does one of three actions at eachtime step t: With probability εR , we do the above random exploration step. With prob-ability εJ , we do the above joint exploration step. Finally, if we do do neither of theseexploration steps, then we do a greedy exploitation step for every user: recommendwhichever item i user u has not consumed yet that maximizes the plurality vote p̂(t)
ui givenby equation (4.4), which relied on cosine similarity to find nearby users.
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We choose the exploration probabilities εR and εJ as follows. For a pre-specified rate
α ∈ (0, 4/7], we set the probability of random exploration to be εR (n) = 1/nα (decayingwith the number of users), and the probability of joint exploration to be εJ (t) = 1/tα(decaying with time). For ease of presentation, we set the two explorations to have thesame decay rate α , but our proof easily extends to encompass different decay rates forthe two exploration types. Furthermore, the constant 4/7 ≥ α is not special. It could bedifferent and only affects another constant in our proof. The resulting algorithm is givenin Algorithm 1.

Algorithm 1: Simple-Collaborative-Greedy (and Collaborative-Greedy)
Input: Parameters θ ∈ [0, 1], α ∈ (0, 4/7].Select a random ordering ω of the items {1, . . . , m}. Define

εR (n) = 1
nα , and εJ (t) = 1

tα .

for time step t = 1, 2, . . . , T doWith prob. εR (n): (random exploration) for each user, recommend a randomitem that the user has not rated.With prob. εJ (t): (joint exploration) for each user, recommend the first item in
ω that the user has not rated.With prob. 1− εJ (t)− εR (n): (exploitation) for each user u, recommend anitem i that the user has not rated and that maximizes score p̂(t)

ui given byequation (4.4), which depends on threshold θ. (For Collaborative-Greedy, usescore p̃(t)
ui given by equation (4.5) instead.)

The main technical hurdle in analyzing Simple-Collaborative-Greedy is that it’s nottrivial reasoning about the items that two users have both rated, especially the itemsrecommended by cosine similarity exploitation. In other words, which items have revealedratings follows a nontrivial probability distribution. We can easily circumvent this issueby changing the definition of the neighborhood of a user u to only consider items that havebeen jointly explored. Specifically, if we denote tJ to be the number of joint explorationsteps up to time t, then we’re guaranteed that there’s a subset of tJ items chosen uniformlyat random that all users have consumed and rated (this is the first tJ items in randomitem sequence ω in Algorithm 1). The algorithm Collaborative-Greedy results from thisslight change. Formally, we replace a user’s item score p̂(t)
ui given in equation (4.4) with

p̃(t)
ui ,


∑

v∈Ñ(t)
u
1{Y (t)

vi = +1}∑
v∈Ñ(t)

u
1{Y (t)

vi 6= 0} if ∑v∈Ñ(t)
u
1{Y (t)

vi 6= 0} > 0,
1/2 otherwise, (4.5)

where the neighborhood of user u is given by
Ñ (t)
u , {v ∈ {1, . . . , n} : 〈Ỹ (t)

u , Ỹ (t)
v 〉 ≥ θ|supp(Ỹ (t)

u ) ∩ supp(Ỹ (t)
v )|},
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and Ỹ (t)

u consists of the revealed ratings of user u restricted to the first tJ jointly exploreditems up to time t. In other words,
Ỹ (t)
ui = {Y (t)

ui if item i is among the first tJ items in random sequence ω of Algorithm 1,0 otherwise.
We also give Collaborative-Greedy in Algorithm 1. Our experimental results in Sec-tion 4.6 suggest that the two algorithms have similar performance.
� 4.4 A Theoretical Performance Guarantee
We now present the main result of this chapter that characterizes the performance ofCollaborative-Greedy. This result depends on two conditions, hinted at earlier:
• Low noise. There exists a constant σ ∈ [0, 1/2) such that

min{1− µgi, µgi} ≤ σ
for all user types g ∈ {1, . . . , k} and items i ∈ {1, . . . , m}. In particular, σ mea-sures how far the probabilities of liking items are from 0 or 1. If σ = 0, then theprobabilities are all 0 or 1, so user ratings are deterministic and there is no noise.If σ = 1/2 (which is actually disallowed by the condition), then there is an itemwith probability 1/2 of being liked. We can’t hope to predict whether a user willlike this item better than chance.Note that this low noise condition holding with parameter σ implies that it alsoholds with parameter σ ′ ∈ (σ, 1/2).
• Cosine separation. There exists a constant G∗ ∈ (0, 1] such that for two differentuser types g and h, 1

m〈2µg − 1, 2µh − 1〉 ≤ (1− G∗)(1− 2σ )2.
where 1 is the all ones vector. The left-hand side is an expected cosine similarity. Tosee this, let Y ∗u and Y ∗v be fully-revealed rating vectors of users u and v from types gand h respectively. Then E[ 1

m〈Y
∗
u , Y ∗v 〉] = 1

m〈2µg−1, 2µh−1〉 is the expected cosinesimilarity between fully-revealed rating vectors Y ∗u and Y ∗v , where the expectation isover the random ratings of items. Constant G∗ can be thought of as a true gap: thelarger it is, the smaller the cosine similarities between different user types can be.To combat noise, when σ increases, the condition asks that the cosine similaritybetween different user types decrease, i.e., that user types become more separated.Note that this cosine separation condition holding with parameter G∗ implies thatit also holds with parameter G∗′ ∈ (0,G∗).
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The low noise condition ensures that with a finite number of samples, we can correctlyclassify each item as either likable or unlikable. The cosine separation condition ensuresthat using cosine similarity can tease apart users of different types over time. A worrymay be that the cosine separation condition is too stringent and might only hold in withexpected cosine similarity E[ 1
m〈Y

∗
u , Y ∗v 〉] scaling as o(1). We provide some examples afterthe statement of this chapter’s main result for which the cosine separation condition holdswith E[ 1

m〈Y
∗
u , Y ∗v 〉] scaling as Θ(1).We assume that the number of users satisfies n = O(mC ) for some constant C > 1.This is without loss of generality since otherwise, we can randomly divide the n usersinto separate population pools, each of size O(mC ) and run the recommendation algorithmindependently for each pool to achieve the same overall performance guarantee.Finally, we define ζ , the minimum proportion of likable items for any user (and thusany user type):

ζ , min
g∈{1,...,k}

∑m
i=1 1{µui > 1/2}

m .

We’re now ready to state this chapter’s main theorem.
Theorem 4.4.1. Let δ ∈ (0, 1) be a pre-specified tolerance. Suppose that the low noise
condition holds with parameter σ , and the cosine separation condition holds with param-
eter G∗. Take as input to Collaborative-Greedy θ = 12 (1 − 2σ )2G∗ where G∗ ∈ (0, 1],
and α ∈ (0, 4/7]. Under the latent source model for online collaborative filtering, if the
number of users n = O(mC ) satisfies

n = Ω(km log 1
δ + (4

δ

)1/α)
,

then for any Tlearn ≤ T ≤ ζm, the expected proportion of likable items recommended byCollaborative-Greedy up until time T satisfies

r(T )+
Tn ≥

(1− Tlearn
T

)(1− δ),
where

Tlearn = Θ(( log km(1−2σ )δ(1− 2σ )4(G∗)2
)1/(1−α) + (4

δ

)1/α)
.

The precise conditions (without using big O notation) on the number of users n andlearning duration Tlearn are provided in Lemma 4.5.3 for which no attempt has been madeto optimize the many large constants.The above theorem says that there are Tlearn initial time steps for which Collaborative-Greedy may be giving poor recommendations. Afterward, for Tlearn < T < ζm, the al-gorithm becomes near-optimal, recommending a fraction of likable items 1 − δ close towhat an optimal oracle algorithm (that recommends all likable items first) would achieve.(Note that this oracle algorithm is different from the MAP oracle algorithm presented
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earlier, which does not get to know which user is assigned to which latent source.) Thenfor time horizon T > ζm, we can no longer guarantee that there are likable items leftto recommend. Indeed, if the user types each have the same fraction of likable items,then even an oracle recommender would use up the ζm likable items by this time. Togive a sense of how long the learning period Tlearn is, note that when α = 1/2, we have
Tlearn scaling as log2(km), and if we choose α close to 0, then Tlearn becomes nearlylog(km). In summary, after Tlearn initial time steps, which could be made nearly log(km),and with number of users scaling as km, Collaborative-Greedy is essentially optimal.This recovers the informal statement of Theorem 1.2.2.To provide intuition for the cosine separation condition, we calculate parameter G∗for three examples that build on top of each other.
Example 4.4.1. Consider when there is no noise, i.e., σ = 0. Then users’ ratings are
deterministic given their user type. We construct the true underlying item preference vec-
tors µ1, . . . , µk ∈ [0, 1]m by sampling every entry µgi (g ∈ {1, . . . , k} and i ∈ {1, . . . , m})
to be i.i.d. Bernoulli(1/2). In this case, the cosine separation condition, with true gap
G∗ = 1−√ logm

m , holds with probability at least 1− k2
m .

To show this, note that for any item i and pair of distinct user types g and h, the
product (2µgi − 1)(2µhi − 1) is a Rademacher random variable (+1 or −1 each with
probability 12 ), and thus the dot product 〈2µg − 1, 2µh − 1〉 is equal to the sum of m
i.i.d. Rademacher random variables, each of which is sub-Gaussian with parameter 1.
Hence, the sum is zero-mean sub-Gaussian with parameter

√
m, implying that

P
(
〈2µg − 1, 2µh − 1〉 ≥ s

)
≤ exp(− s22m).

Plugging in s = m
√ logm

m , we see that

P
( 1
m〈2µg − 1, 2µh − 1〉 ≥

√ logm
m

)
≤ 1
m.

Union-bounding over all distinct pairs of user types,

P

( ⋃
g,h∈{1,...,k} s.t. g6=h

{ 1
m〈2µg − 1, 2µh − 1〉 ≥

√ logm
m

})
≤
(
k2
) 1
m ≤

k2
m .

Hence, with probability at least 1− k2
m , we have

1
m〈2µg − 1, 2µh − 1〉 <

√ logm
m

for every distinct pair of user types g and h. Noting that σ = 0, the cosine separation
condition holds with parameter G∗ to be 1−√ logm

m .
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Example 4.4.2. We expand on the previous example by introducing noise with parameter
σ ∈ (0, 1/2). Now let the item preference vectors µ1, . . . , µk ∈ [0, 1]m have i.i.d. entries
that are 1 − σ (likable) or σ (unlikable) with probability 12 each. Then for a distinct
pair of user types g and h, if µgi = µhi (which happens with probability 1/2), then
E[(2µg−1)·(2µh−1)] = (1−σ )2+σ2−2σ (1−σ ) = (1−2σ )2, and if µgi 6= µhi (so µgi = 1−µhi
in this example, also occurring with probability 1/2), then E[(2µg − 1) · (2µh − 1)] =2σ (1 − σ ) − (1 − σ )2 − σ2 = −(1 − 2σ )2. This means that 〈2µg − 1, 2µh − 1〉 is again
a sum of Rademacher random variables, except now scaled by (1 − 2σ )2. This sum is
sub-Gaussian with parameter

√
m(1 − 2σ )2. By a similar calculation as the previous

example, with probability at least 1− k2/m,

1
m〈2µg − 1, 2µh − 1〉 < (1− 2σ )2√ logm

m
for every distinct pair of user types g and h. Thus, the cosine separation condition holds
with parameter G∗ = 1−√ logm

m .

Example 4.4.3. Building off our second example, we now suppose that entries in the
item preference vectors µ1, . . . , µk ∈ [0, 1]m have entries that are 1 − σ (likable) with
probability ζ ∈ (0, 1/2), and σ (unlikable) with probability 1 − ζ . Then for item i and
different user types g and h, µgi = µhi with probability ζ + (1 − ζ)2. This implies that
E[〈2µg − 1, 2µh − 1〉] = m(1 − 2σ )2(1 − 2ζ)2, and one can verify that the dot product
〈2µg − 1, 2µh − 1〉 is still sub-Gaussian with parameter

√
m(1 − 2σ )2. Using a similar

calculation as before but now accounting for the mean of the dot product no longer being
0, with probability at least 1− k2/m,

1
m〈2µg − 1, 2µh − 1〉 < (1− 2σ )2((1− 2ζ)2 +√ logm

m

)
for every distinct pair of user types g and h. Then the cosine separation condition holds
with parameter G∗ = 1− (1− 2ζ)2 −√ logm

m .

� 4.5 Proof of Theorem 4.4.1
Recall that Xut is the indicator random variable for whether the item ψut recommendedto user u at time t is likable, i.e., puψut > 1/2. This is equivalent to the event that
puψut ≥ 1 − σ , under the low noise condition (with parameter σ ) holding. Then theexpected proportion of likable items is

r(T )+
Tn = 1

Tn

T∑
t=1

n∑
u=1 E[Xut ] = 1

Tn

T∑
t=1

n∑
u=1 P(Xut = 1).

Our proof focuses on lower-bounding P(Xut = 1). The key idea is to condition on whatwe call the “good neighborhood” event Egood(u, t):
Egood(u, t)
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= { at time t, user u has ≥ n5k neighbors from the same user type (“good neighbors”),

and ≤ (1− 2σ )tn1−α20km neighbors from other user types (“bad neighbors”)}.
This good neighborhood event will enable us to argue that after an initial learning time,with high probability there are at most (12 − σ ) as many ratings from bad neighbors asthere are from good neighbors.The proof of Theorem 4.4.1 consists of two parts. The first part uses joint explorationto show that after a sufficient amount of time, the good neighborhood event Egood(u, t)holds with high probability.
Lemma 4.5.1. For user u, after

t ≥
(32 log(20kmnα /(1− 2σ ))(1− 2σ )4(G∗)2

)1/(1−α)

time steps,

P(Egood(u, t)) ≥ 1− exp(− n8k )− 12 exp(− (1− 2σ )4(G∗)2t1−α320 )
.

In the above lower bound, the first exponentially decaying term could be thought of asthe penalty for not having enough users from the k user types, and the second decayingterm could be thought of as the penalty for not yet clustering the users correctly.The second part of our proof to Theorem 4.4.1 shows that, with high probability, thegood neighborhoods have, through random exploration, accurately estimated the proba-bility of liking each item. Thus, we correctly classify each item as likable or not withhigh probability, which leads to a lower bound on P(Xut = 1).
Lemma 4.5.2. For user u at time t, if the good neighborhood event Egood(u, t) holds and
t ≤ ζm, then

P(Xut = 1) ≥ 1− 2m exp(− (1− 2σ )2tn1−α160km )
− 1
tα −

1
nα .Here, the first exponentially decaying term could be thought of as the cost of notclassifying items correctly as likable or unlikable, and the last two decaying termstogether could be thought of as the cost of exploration (we explore with probability

εJ (t) + εR (n) = 1/tα + 1/nα ).We defer the proofs of Lemmas 4.5.1 and 4.5.2 to Sections 4.5.1 and 4.5.2. Combiningthese lemmas and choosing appropriate constraints on the numbers of users and items,we produce the following lemma.
Lemma 4.5.3. Let δ ∈ (0, 1) be a pre-specified tolerance. If the number of users n and
items m satisfy

n ≥ max{8k log 4
δ ,
(4
δ

)1/α}
,
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ζm ≥ t ≥ max{(32 log(20kmnα /(1− 2σ ))(1− 2σ )4(G∗)2
)1/(1−α)

,
( 320 log(96/δ)(1− 2σ )4(G∗)2

)1/(1−α)
,
(4
δ

)1/α}
,

nt1−α ≥ 160km(1− 2σ )2 log(16m
δ

)
,

then P(Xut = 1) ≥ 1− δ.
Proof. With the above conditions on n and t satisfied, we combine Lemmas 4.5.1 and4.5.2 to obtain

P(Xut = 1) ≥ 1− exp(− n8k )− 12 exp(− (1− 2σ )4(G∗)2t1−α320 )
− 2m exp(− (1− 2σ )2tn1−α160km )

− 1
tα −

1
nα

≥ 1− δ4 − δ8 − δ8 − δ4 − δ4 = 1− δ. �

Theorem 4.4.1 follows as a corollary to Lemma 4.5.3. As previously mentioned, we take thenumber of users to satisfy n = O(mC ), separating users into separate pools as necessary.Then with number of users n satisfying
O(mC ) = n = Ω(km log 1

δ + (4
δ

)1/α)
,

and for any time step t satisfying
ζm ≥ t ≥ Θ(( log km(1−2σ )δ(1− 2σ )4(G∗)2

)1/(1−α) + (4
δ

)1/α)
, Tlearn ,

we simultaneously meet all of the conditions of Lemma 4.5.3. Note that the upper boundon number of users n appears since without it, Tlearn would depend on n (observe thatin Lemma 4.5.3, we ask that t be greater than a quantity that depends on n). Providedthat the time horizon satisfies T ≤ ζm, then
r(T )+
Tn ≥

1
Tn

T∑
t=Tlearn

n∑
u=1 P(Xut = 1) ≥ 1

Tn

T∑
t=Tlearn

n∑
u=1(1− δ) = (T − Tlearn)(1− δ)

T ,

yielding the theorem statement. �

We present the proofs of Lemmas 4.5.1 and 4.5.2 next. In our derivations, if it is clearfrom context, we omit argument (t) indexing time, for example writing Yu instead of Yu(t).
� 4.5.1 Proof of Lemma 4.5.1We reproduce Lemma 4.5.1 below for ease of presentation.
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Lemma 4.5.1. For user u, after

t ≥
(32 log(20kmnα /(1− 2σ ))(1− 2σ )4(G∗)2

)1/(1−α)

time steps,

P(Egood(u, t)) ≥ 1− exp(− n8k )− 12 exp(− (1− 2σ )4(1− (1− G∗))2t1−α320 )
.

To derive this lower bound on the probability that the good neighborhood event Egood(u, t)occurs, we prove four lemmas (Lemmas 4.5.4, 4.5.5, 4.5.6, and 4.5.7). We begin by ensuringthat enough users from each of the k user types are in the system.
Lemma 4.5.4. For a user u,

P
(

user u’s type has ≤ n2k users
)
≤ exp(− n8k ).

Proof. This is simply Lemma 2.2.1 with every cluster occurring with probability 1/k . �
Next, we ensure in Lemma 4.5.5 that sufficiently many items have been jointly exploredacross all users. This will subsequently be used for bounding both the number of goodneighbors and the number of bad neighbors. To prove Lemma 4.5.5, we will use thefollowing fact.
Fact 4.5.1 (Bernstein’s inequality). Suppose X1, . . . , Xn are independent with finite ex-
pectations, and that there exists a constant C such that |Xu − E[Xu]| ≤ C for all
u ∈ {1, . . . , n}. Then for any s > 0,

P
( n∑
u=1 Xu ≥ E

[ n∑
u=1 Xu

]+ s
)
≤ exp(− 12s2∑n

u=1 var(Xu) + 13Cs
)
.

Lemma 4.5.5. After t time steps,

P(fewer than t1−α /2 jointly explored items) ≤ exp(−t1−α /20).
Proof. Let Zs be the indicator random variable for the event that the algorithm jointlyexplores at time s. Thus, the number of jointly explored items up to time t is ∑t

s=1 Zs.By our choice for the time-varying joint exploration probability εJ , we have P(Zs =1) = εJ (s) = 1
sα and P(Zs = 0) = 1 − 1

sα . Note that the centered random variable
Z s = E[Zs]− Zs = 1

sα − Zs has zero mean, and |Z s| ≤ 1 with probability 1. Then,
P
( t∑

s=1 Zs <
12 t1−α

) = P
( t∑

s=1 Z s >
t∑

s=1 E[Zs]− 12 t1−α
) (1)
≤ P

( t∑
s=1 Z s >

12 t1−α
)

(2)
≤ exp(− 18 t2(1−α)∑t

s=1 E[Z 2
s ] + 16 t1−α

) (3)
≤ exp(− 18 t2(1−α)

t1−α1−α + 16 t1−α
)
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= exp(− 3(1− α)t1−α4(7− α)
) (4)
≤ exp(−t1−α /20),

where step (1) uses the fact that∑t
s=1 E[Zs] =∑t

s=1 1/sα ≥ t/tα = t1−α , step (2) is Bern-stein’s inequality, step (3) uses the fact that ∑t
s=1 E[Z 2

s ] ≤ ∑t
s=1 E[Z 2

s ] = ∑t
s=1 1/sα ≤

t1−α /(1 − α), and step (4) uses the fact that α ≤ 4/7. (We remark that the choice ofconstant 4/7 isn’t special; changing it would simply modify the constant in the decayingexponentially to potentially no longer be 1/20). �

Assuming that the bad events for the previous two lemmas do not occur, we now providea lower bound on the number of good neighbors that holds with high probability. In whatfollows, the following function that decays with time appears numerous times, so we giveit a name:
ξ , exp(− 116(1− 2σ )4(G∗)2t1−α). (4.6)

Lemma 4.5.6. Suppose that the low noise condition holds with parameter σ , that there
are more than n2k users of user u’s type, and that all users have rated at least t1−α /2
items as part of joint exploration. For user u, let ngood be the number of “good” neighbors
of user u. If ξ ≤ 110 , then

P
(
ngood ≤ (1− ξ) n4k ) ≤ 10ξ.

We defer the proof of Lemma 4.5.6 to Section 4.5.3.Finally, we verify that the number of bad neighbors for any user is not too large,again conditioned on there being enough jointly explored items.
Lemma 4.5.7. Suppose that the minimum number of rated items in common between
any pair of users is t1−α /2 and suppose that the cosine separation condition holds with
parameter G∗. For user u, let nbad be the number of “bad” neighbors of user u. Then

P(nbad ≥ n
√
ξ) ≤√ξ.

We defer the proof of Lemma 4.5.7 to Section 4.5.4.We now prove Lemma 4.5.1, which union bounds over the four bad events of Lemmas4.5.4, 4.5.5, 4.5.6, and 4.5.7. Recall that the good neighborhood event Egood(u, t) holdsif at time t, user u has more than n5k good neighbors and fewer than (1−2σ )tn1−α20km badneighbors. By assuming that the four bad events don’t happen, then Lemma 4.5.6 tellsus that there are more than (1 − ξ) n4k good neighbors provided that ξ ≤ 110 . Thus, toensure that there are more than n5k good neighbors, it suffices to have (1 − ξ) n4k ≥ n5k ,which happens when ξ ≤ 15 , but we already require that ξ ≤ 110 . Similarly, Lemma 4.5.7tells us that there are fewer than n√ξ bad neighbors, so to ensure that there are fewerthan (1−2σ )tn1−α20km bad neighbors it suffices to have n√ξ ≤ (1−2σ )tn1−α20km , which happens when
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ξ ≤ ( (1−2σ )t20kmnα )2. We can satisfy all constraints on ξ by asking that ξ ≤ ( 1−2σ20kmnα )2, whichis tantamount to asking that

t ≥
(32 log(20kmnα /(1− 2σ ))(1− 2σ )4(G∗)2

)1/(1−α)

since ξ = exp(− 116 (1− 2σ )4(G∗)2t1−α ).Finally, with t satisfying the inequality above, the union bound over the four badevents can be further bounded to complete the proof:
P(Egood(u, t)) ≥ 1− exp(− n8k )− exp(−t1−α /20)− 10ξ −√ξ

≥ 1− exp(− n8k )− 12 exp(− (1− 2σ )4(G∗)2t1−α320 )
. �

� 4.5.2 Proof of Lemma 4.5.2We reproduce Lemma 4.5.2 below.
Lemma 4.5.2. For user u at time t, if the good neighborhood event Egood(u, t) holds and
t ≤ ζm, then

P(Xut = 1) ≥ 1− 2m exp(− (1− 2σ )2tn1−α160km )
− 1
tα −

1
nα .To prove this, we will use the following fact multiple times.

Fact 4.5.2 (Hoeffding’s inequality). Suppose X1, . . . , Xn are independent random vari-
ables, and Xu takes on a value in the interval [au, bu]. Then for any s > 0,

P
(1
n

n∑
u=1 Xu ≥ E

[1
n

n∑
u=1 Xu

]+ s
)
≤ exp(− 2n2s2∑n

u=1(bu − au)2
)
.

We begin by checking that when the good neighborhood event Egood(u, t) holds for user
u, the items have been rated enough times by the good neighbors.
Lemma 4.5.8. For user u at time t, suppose that the good neighborhood event Egood(u, t)
holds. Then for a given item i,

P
(

item i has ≤ tn1−α10km ratings from good neighbors of u
)
≤ exp(− tn1−α40km).

Proof. The number of user u’s good neighbors who have rated item i stochastically domi-nates a Binomial( n5k , εR (n)t
m ) random variable, where εR (n)t

m = t
mnα (here, we have criticallyused the lower bound on the number of good neighbors user u has when the good neigh-borhood event Egood(u, t) holds). By a Chernoff bound for the binomial distribution,

P
(Binomial( n5k , t

mnα
)
≤ tn1−α10km

)
≤ exp(− 12 ( tn1−α5km − tn1−α10km )2

tn1−α5km
)
≤ exp(− tn1−α40km). �
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Next, we show a sufficient condition for which the algorithm correctly classifies everyitem as likable or unlikable for user u.
Lemma 4.5.9. Suppose that the low noise condition holds with parameter σ . For user u
at time t, suppose that the good neighborhood event Egood(u, t) holds. Provided that every
item i ∈ {1, . . . , m} has more than tn1−α10km ratings from good neighbors of user u, then with
probability at least 1−m exp(− (1−2σ )2tn1−α80km ), we have that for every item i ∈ {1, . . . , m},

p̃ui >
12 if item i is likable by user u,

p̃ui <
12 if item i is unlikable by user u.

Proof. Let A be the number of ratings that good neighbors of user u have provided.Suppose item i is likable by user u. Then when we condition on A = a0 , d tn1−α10km e, p̃uistochastically dominates
qui ,

Binomial(a0, pui)
a0 + (12 − σ )a0 = Binomial(a0, pui)(1 + (12 − σ ))a0 ,

which is the worst-case variant of p̃ui that insists that all (12 − σ )a0 bad neighborsprovided rating “−1” for likable item i (here, we have critically used the upper bound onthe number of bad neighbors user u has when the good neighborhood event Egood(u, t)holds). Then
P(qui ≤ 12 | A = a0) = P

(Binomial(a0, pui) ≤ (1 + (12 − σ ))a02
∣∣∣∣ A = a0

)
= P

(
a0pui − Binomial(a0, pui) ≥ a0(pui − 12 − (12 − σ )2 ) ∣∣∣∣ A = a0

)
(1)
≤ exp(− 2a0(pui − 12 − (12 − σ )2 )2)
(2)
≤ exp(− 12a0(12 − σ)2)
(3)
≤ exp(− (12 − σ )2tn1−α20km )

,

where step (1) is Hoeffding’s inequality, step (2) follows from item i being likable by user
u (i.e., pui ≥ 1− σ ), and step (3) is by our choice of a0. Conclude then that

P(p̃ui ≤ 12 | A = a0) ≤ exp(− (12 − σ )2tn1−α20km ) = exp(− (1− 2σ )2tn1−α80km )
.

Finally,
P
(
p̃ui ≤

12 ∣∣∣ A ≥ tn1−α10km) = ∑∞
a=a0 P(A = a)P(p̃ui ≤ 12 | A = a)

P(A ≥ tn1−α10km )
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≤
∑∞

a=a0 P(A = a) exp(− (1−2σ )2tn1−α80km )
P(A ≥ tn1−α10km )

= exp(− (1− 2σ )2tn1−α80km )
.

A similar argument holds for when item i is unlikable. Union-bounding over all m itemsyields the claim. �

We now prove Lemma 4.5.2. First off, provided that t ≤ ζm, we know that there muststill exist an item likable by user u that user u has yet to consume. For user u at time
t, supposing that event Egood(u, t) holds, then every item has been rated more than tn1−α10kmtimes by the good neighbors of user u with probability at least 1−m exp(− tn1−α40km ). Thisfollows from union-bounding over the m items with Lemma 4.5.8. Applying Lemma 4.5.9,and noting that we only exploit with probability 1− εJ (t)− εR (n) = 1− 1/tα − 1/nα , wefinish the proof:

P(Xut = 1) ≥ 1−m exp(− tn1−α40km)−m exp(− (1− 2σ )2tn1−α80km )
− 1
tα −

1
nα

≥ 1− 2m exp(− (1− 2σ )2tn1−α160km )
− 1
tα −

1
nα . �

� 4.5.3 Proof of Lemma 4.5.6We begin with a preliminary lemma that upper-bounds the probability of two users ofthe same type not being declared as neighbors.
Lemma 4.5.10. Suppose that the low noise condition holds with parameter σ . Let users
u and v be of the same type, and suppose that they have rated at least Γ0 items in
common (explored jointly). Then for θ ∈ (0, (1− 2σ )2),

P(users u and v are not declared as neighbors) ≤ exp(− ((1− 2σ )2 − θ)22 Γ0).
Proof. Let us first suppose that users u and v have rated exactly Γ0 items in common.The two users are not declared to be neighbors if 〈Ỹu, Ỹv〉 < θΓ0. Let Ω ⊆ {1, . . . , m}such that |Ω| = Γ0. We have

E
[
〈Ỹu, Ỹv〉

∣∣supp(Ỹu) ∩ supp(Ỹv ) = Ω] =∑
i∈Ω E[ỸuiỸvi | Ỹui 6= 0, Ỹvi 6= 0]

=∑
i∈Ω(p2

ui + (1− pui)2 − 2pui(1− pui))
= 4∑

i∈Ω
(
pui −

12)2
. (4.7)
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Since 〈Ỹu, Ỹv〉 = ∑
i∈Ω ỸuiỸvi is the sum of terms {ỸuiỸvi}i∈Ω that are each boundedwithin [−1, 1], Hoeffding’s inequality yields

P
(
〈Ỹu, Ỹv〉 ≤ θΓ0 ∣∣ supp(Ỹu) ∩ supp(Ỹv ) = Ω) ≤ exp(− [

equation (4.7)︷ ︸︸ ︷4∑i∈Ω(pgi − 12)2−θΓ0]22Γ0
)
.(4.8)Under the low noise condition with parameter σ , we have (12 − σ ) ≤ |pui − 1/2| for allusers u and items i. Thus, our choice of θ guarantees that

4∑
i∈Ω
(
pui −

12)2
− θΓ0 ≥ 4Γ0(12 − σ)2

− θΓ0 = ((1− 2σ )2 − θ)Γ0 ≥ 0. (4.9)
Combining inequalities (4.8) and (4.9), and observing that the above holds for all subsetsΩ of cardinality Γ0, we obtain the desired bound on the probability that users u and vare not declared as neighbors:
P(〈Ỹu, Ỹv〉 ≤ θΓ0 | |supp(Ỹu) ∩ supp(Ỹv )| = Γ0) ≤ exp(− ((1− 2σ )2 − θ)22 Γ0). (4.10)

Now to handle the case that users u and v have jointly rated more than Γ0 items, observethat, with shorthand Γuv , |supp(Ỹu) ∩ supp(Ỹv )|,
P(u and v not declared neighbors |pu = pv ,Γuv ≥ Γ0)= P(〈Ỹu, Ỹv〉 < θΓuv | pu = pv , Γuv ≥ Γ0)
= P(〈Ỹu, Ỹv〉 ≤ θΓuv ,Γuv ≥ Γ0 | pu = pv )

P(Γuv ≥ Γ0 | pu = pv )
= ∑m

`=Γ0 P(〈Ỹu, Ỹv〉 ≤ θ`,Γuv = ` | pu = pv )
P(Γuv ≥ Γ0 | pu = pv )

=
∑m

`=Γ0
[
P(Γuv = ` | pu = pv )
·P(〈Ỹu, Ỹv〉 ≤ θ` | pu = pv ,Γuv = `)]

P(Γuv ≥ Γ0 | pu = pv )
≤
∑m

`=Γ0 P(Γuv = ` | pu = pv ) exp (− ((1−2σ )2−θ)22 Γ0)
P(Γuv ≥ Γ0 | pu = pv )by inequality (4.10)

= exp(− ((1− 2σ )2 − θ)22 Γ0). �

We now prove Lemma 4.5.6. Suppose that the event in Lemma 4.5.4 holds. Let G be n2kusers from the same user type as user u; there could be more than n2k such users but itsuffices to consider n2k of them. We define an indicator random variable
Gv , 1{users u and v are neighbors} = 1{〈Ỹ (t)

u , Ỹ (t)
v 〉 ≥ θt1−α /2}.
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Thus, the number of good neighbors of user u is lower-bounded by W =∑v∈GGv . Notethat the Gv ’s are not independent. To arrive at a lower bound for W that holds with highprobability, we use Chebyshev’s inequality:

P(W − E[W ] ≤ −E[W ]/2) ≤ 4Var(W )(E[W ])2 . (4.11)
Let ξ = exp(−((1− 2σ )2− θ)2Γ0/2) be the probability bound from Lemma 4.5.10. By ourchoice of θ = 12 (1−2σ )2G∗ and with Γ0 = t1−α2 , we have ξ = exp(− 116 (1− 2σ )4(G∗)2t1−α ),which turns out to be equal to what ξ was defined as in Section 4.5.1.Applying Lemma 4.5.10, we have E[W ] ≥ (1− ξ) n2k , and hence

(E[W ])2 ≥ (1− 2ξ) n24k2 . (4.12)
We now upper-bound

Var(W ) =∑
v∈G

Var(Gv ) +∑
v 6=w Cov(Gv , Gw ).

Since Gv = G2
v ,

Var(Gv ) = E[Gv ]− E[Gv ]2 = E[Gv ]︸ ︷︷ ︸
≤1

(1− E[Gv ]) ≤ ξ,
where the last step uses Lemma 4.5.10.Meanwhile,

Cov(Gv , Gw ) = E[GvGw ]− E[Gv ]E[Gw ] ≤ 1− (1− ξ)2 ≤ 2ξ.
Putting together the pieces,

Var(W ) ≤ n2k · ξ + n2k · ( n2k − 1) · 2ξ ≤ n22k2 · ξ. (4.13)
Plugging (4.12) and (4.13) into (4.11) gives

P(W − E[W ] ≤ −E[W ]/2) ≤ 8ξ1− 2ξ ≤ 10ξ,
provided that ξ ≤ 110 . Thus, ngood ≥ W ≥ E[W ]/2 ≥ (1 − ξ) n4k with probability at least1− 10ξ . �

� 4.5.4 Proof of Lemma 4.5.7We begin with a preliminary lemma that upper-bounds the probability of two users ofdifferent types being declared as neighbors.
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Lemma 4.5.11. Let users u and v be of different types, and suppose that they have
rated at least Γ0 items in common via joint exploration. Further suppose that the cosine
separation condition holds with parameter G∗. If θ ≥ (1− G∗)(1− 2σ )2, then

P(users u and v are declared to be neighbors) ≤ exp(− (θ − (1− G∗)(1− 2σ )2)22 Γ0).
Proof. As with the proof of Lemma 4.5.10, we first analyze the case where users u and
v have rated exactly Γ0 items in common. Users u and v are declared to be neighborsif 〈Ỹu, Ỹv〉 ≥ θΓ0. We now crucially use the fact that joint exploration chooses these Γ0items as a random subset of the m items. For our random permutation ω of m items,we have 〈Ỹu, Ỹv〉 = ∑Γ0

i=1 Ỹu,ω(i)Ỹv,ω(i) = ∑Γ0
i=1 Yu,ω(i)Yv,ω(i), which is the sum of terms

{Yu,ω(i)Yv,ω(i)}Γ0
i=1 that are each bounded within [−1, 1] and drawn without replacementfrom a population of all possible items. Hoeffding’s inequality (which also applies to thecurrent scenario of sampling without replacement (Hoeffding, 1963)) yields

P
(
〈Ỹu, Ỹv〉 ≥ θΓ0 | pu 6= pv

)
≤ exp(−(θΓ0 − E[〈Ỹu, Ỹv〉 | pu 6= pv ])22Γ0

)
. (4.14)

By the cosine separation condition (with parameter G∗) and our choice of θ,
θΓ0−E

[
〈Ỹu, Ỹv〉 | pu 6= pv

]
≥ θΓ0− (1−G∗)(1−2σ )2Γ0 = (θ− (1−G∗)(1−2σ )2)Γ0 ≥ 0.(4.15)Above, we used the fact that Γ0 randomly explored items are a random subset of m items,and hence
E
[ 1Γ0〈Ỹu, Ỹv〉] = E

[ 1
m〈Y

∗
u , Y ∗v 〉

]
,

with Y ∗u , Y ∗v representing the fully-revealed (random) vector of ratings of users u and vrespectively.Combining inequalities (4.14) and (4.15) yields
P
(
〈Ỹu, Ỹv〉 ≥ θΓ0 | pu 6= pv

)
≤ exp(− (θ − (1− G∗)(1− 2σ )2)22 Γ0).

A similar argument as the ending of Lemma 4.5.10’s proof establishes that the boundholds even if users u and v have jointly explored more than Γ0 items. �

We now prove Lemma 4.5.7. Let ξ = exp(−(θ− (1−G∗)(1−2σ )2)2Γ0/2) be the probabilitybound from Lemma 4.5.11. By our choice of θ = 12 (1 − 2σ )2G∗ and with Γ0 = t1−α2 , wehave ξ = exp(− 116 (1− 2σ )4(G∗)2t1−α ), which turns out to be equal to what ξ was definedas in Section 4.5.1.By Lemma 4.5.11, for a pair of users u and v with at least t1−α /2 items jointlyexplored, the probability that they are erroneously declared neighbors is upper-boundedby ξ .
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Denote the set of users of type different from u by B , and write

nbad =∑
v∈B

1{u and v are declared to be neighbors},
whence E[nbad] ≤ nξ . Markov’s inequality gives

P(nbad ≥ n√ξ) ≤ E[nbad]
n
√
ξ
≤ nξ
n
√
ξ

=√ξ . �

� 4.6 Experimental Results
We demonstrate our algorithms Simple-Collaborative-Greedy and Collaborative-Greedyon two datasets, showing that they have comparable performance and that they bothoutperform two existing recommendation algorithms Popularity Amongst Friends (PAF)(Barman and Dabeer, 2012) and Deshpande and Montanari’s method (DM) (Deshpandeand Montanari, 2013). At each time step, PAF finds nearest neighbors (“friends”) forevery user and recommends to a user the “most popular” item, i.e., the one with themost number of +1 ratings, among the user’s friends. DM doesn’t do any collaborationbeyond a preprocessing step that computes item feature vectors via matrix completion.Then during online recommendation, DM learns user feature vectors over time with thehelp of item feature vectors and recommends an item to each user based on whether italigns well with the user’s feature vector.We simulate an online recommendation system based on movie ratings from theMovielens10m and Netflix datasets, each of which provides a sparsely filled user-by-movie rating matrix with ratings out of 5 stars. Unfortunately, existing collaborativefiltering datasets such as the two we consider don’t offer the interactivity of a real onlinerecommendation system, nor do they allow us to reveal the rating for an item that a userdidn’t actually rate. For simulating an online system, the former issue can be dealt withby simply revealing entries in the user-by-item rating matrix over time. We address thelatter issue by only considering a dense “top users vs. top items” subset of each dataset.In particular, we consider only the “top” users who have rated the most number of items,and the “top” items that have received the most number of ratings. While this dense partof the dataset is unrepresentative of the rest of the dataset, it does allow us to use actualratings provided by users without synthesizing any ratings. A rigorous validation wouldrequire an implementation of an actual interactive online recommendation system, whichis beyond the scope of this thesis.An initial question to ask is whether the dense movie ratings matrices we considercould be reasonably explained by our latent source model. We automatically learn thestructure of these matrices using the method by Grosse et al. (2012) and find Bayesianclustered tensor factorization (BCTF) to accurately model the data. This finding isn’tsurprising as BCTF has previously been used to model movie ratings data (Sutskeveret al., 2009). BCTF effectively clusters both users and movies so that we get structuresuch as that shown in Figure 4.1 for the Movielens10m “top users vs. top items” matrix.
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Figure 4.1: Top users by top movies ratings matrix with rows and columns reordered toshow clustering of users and items for the Movielens10m dataset.
Our latent source model could reasonably model movie ratings data as it only assumesclustering of users.Following the experimental setup of Barman and Dabeer (2012), we quantize a ratingof 4 stars or more to be +1 (likeable), and a rating of 3 stars or less to be −1 (unlikeable).While we look at a dense subset of each dataset, there are still missing entries. If a user uhasn’t rated item j in the dataset, then we set the corresponding true rating to 0, meaningthat in our simulation, upon recommending item j to user u, we receive 0 reward, but westill mark that user u has consumed item j ; thus, item j can no longer be recommended touser u. For both Movielens10m and Netflix datasets, we consider the top n = 200 usersand the top m = 500 movies. For Movielens10m, the resulting user-by-rating matrix has80.7% nonzero entries. For Netflix, the resulting matrix has 86.0% nonzero entries. Foran algorithm that recommends item ψut to user u at time t, we measure the algorithm’saverage cumulative reward up to time T as

1
n

T∑
t=1

n∑
u=1 Y

(T )
uψut ,

where we average over users.For all methods, we recommend items until we reach time T = 500, i.e., we makemovie recommendations until each user has seen all m = 500 movies. We disallow thematrix completion step for DM to see the users that we actually test on, but we allow itto see the the same items as what is in the simulated online recommendation system inorder to compute these items’ feature vectors (using the rest of the users in the dataset).Furthermore, when a rating is revealed, we provide DM both the thresholded and non-thresholded ratings, the latter of which DM uses to estimate user feature vectors.Parameters θ and α for Simple-Collaborative-Greedy and Collaborative-Greedyare chosen using training data: We sweep over the two parameters on training dataconsisting of 200 users that are the “next top” 200 users, i.e., ranked 201 to 400 innumber movie ratings they provided. For simplicity, we discretize our search space to
θ ∈ {0.0, 0.1, . . . , 1.0} and α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We choose the parameter settingachieving the highest area under the cumulative reward curve. For both Movielens10mand Netflix datasets, this corresponded to setting θ = 0.1 and α = 0.5 for Simple-Collaborative-Greedy, and θ = 0.0 and α = 0.5 for Collaborative-Greedy. In contrast,
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Figure 4.2: Average cumulative rewards over time: (a) Movielens10m, (b) Netflix.

the parameters for PAF and DM are chosen to be the best parameters for the testdata among a wide range of parameters. The results are shown in Figure 4.2. Wefind that our algorithms Simple-Collaborative-Greedy and Collaborative-Greedy havesimilar performance, and both outperform PAF and DM. We remark that the curves areroughly concave, which is expected since once we’ve finished recommending likeableitems (roughly around time step 300), we end up recommending mostly unlikeable itemsuntil we’ve exhausted all the items.
� 4.7 Discussion
Our model for online recommendation systems clearly oversimplifies how any such realsystem would work but enables one to analyze the performance of recommendation al-gorithms. Moreover, it could provide a benchmark: a good recommendation algorithmshould at least be able to perform well under our model. We highlight four aspectsunaccounted for by our model that are promising future directions for exploration:
• Item similarity. First, for the actual revealed user ratings, we make very few as-sumptions, mainly just assuming clustering of ratings across users, but item ratingsalso cluster, which is incredibly important for making recommendations. For exam-ple, if Alice likes the movie Star Wars: A New Hope, then she probably also likesthe other two movies in the original Star Wars trilogy. Incorporating item similarityleads to what is called item-item collaborative filtering (in contrast to the user-usercollaborative filtering we have analyzed, which looks at user similarity). Theory foritem-item collaborative filtering is discussed in (Voloch, 2015).
• Item diversification. Disallowing an item from being recommended a second time tothe same user is a hard diversifying constraint. One could consider a soft constraintthat penalizes recommending an item multiple times to the same user, at which pointit becomes apparent that some items should be penalized more than others. For
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example, if Alice buys a rice cooker, she probably does not want to buy anotherrice cooker, at least not in the near future. So if there are multiple rice cookers, allof them should be downweighted for being recommended to Alice again. What is agood way to model this item diversity?
• User experience. One could ask why we slowly decay the probabilities of explorationinitially rather than just doing a phase of only random exploration and only jointexploration. Nearly all of our proof would remain identical. The issue is thatsuch an algorithm fundamentally would give bad user experience, especially sincethe initial number of exploration steps would, from the theoretical analysis, be a bitconservative. In reality, if a user were forced to explore initially for many time steps,they would just leave the system! How do we incorporate this user experience aspart of the recommendation objective?
• Temporal dynamics. Users come and go. Items come and go. User preferenceschange. These are the realities encountered by a real online recommendation sys-tem. How do we model all of these dynamics yet retain ease of analyzing recom-mendation algorithms under the model? What would an optimal algorithm be underthis setting, and could a nonparametric approach be optimal?

We end by relating our problem setup to that of learning mixture distributions (c.f., Chaud-huri and Rao (2008); Belkin and Sinha (2010); Moitra and Valiant (2010); Anandkumaret al. (2012)), where one observes samples from a mixture distribution and the goal is tolearn the mixture components and weights. Existing results assume that one has accessto the entire high-dimensional sample or that the samples are produced in an exogenousmanner (not chosen by the algorithm). Neither assumption holds in our setting, as weonly see each user’s revealed ratings thus far and not the user’s entire preference vec-tor, and the recommendation algorithm affects which samples are observed (by choosingwhich item ratings are revealed for each user). These two aspects make our setting morechallenging than the standard setting for learning mixture distributions. However, ourgoal is more modest. Rather than learning the k item preference vectors, we settle forclassifying them as likable or unlikable. Despite this, we suspect having two types ofexploration to be useful in general for efficiently learning mixture distributions in theactive learning setting.
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Chapter 5

Patch-Based Image Segmentation

Delineating objects in an image is a fundamental inference task that feeds into a flurry ofanalyses downstream, from parsing what is happening in a scene to discovering indicatorsfor disease in the case of medical image analysis. To learn what a particular object lookslike, whether a cat or a tumor, we rely on seeing examples of the object. Luckily, we nowhave access to enormous, ever-growing repositories of images of virtually everything, forexample, on photo sharing websites like Flickr, contained within videos on YouTube, orprivately stored in hospitals in the case of medical images. Often we could easily procurein excess of thousands of training images for a particular object, perhaps with the helpof crowdsourcing manual labeling via Amazon Mechanical Turk.At the outset though, thousands or even millions of images might seem small since thespace of possible images is enormous. Consider a two-dimensional image of 100-by-100pixels, where at each pixel, we store one of two values. The number of such images is210000, which happens to be larger than the estimated number of atoms in the observableuniverse (≈ 1080). Nearly all of these possible images would be completely implausibleto us as naturally occurring based on what we see with our eyes day-to-day. Whatstructure is present in an image that makes it “plausible”, and how do we exploit thisstructure for inference?In this chapter, we focus on the simple setting of segmenting out where a foregroundobject of interest is from the background, a problem referred to as binary image segmen-tation. Our running example is the task of finding a human organ in a medical image.Specifically for medical image segmentation, nearest-neighbor and weighted majorityvoting methods have been widely used, originally at the pixel (or voxel, for 3D images)level (Depa et al., 2010; Sabuncu et al., 2010) and more recently for image patches(Bai et al., 2013; Coupé et al., 2011; Rousseau et al., 2011; Wachinger et al., 2014). Ofcourse, in the extreme case, a patch can just be a single pixel, so patch-based approachessubsume pixel-based approaches.We specifically study patch-based binary image segmentation, which sits at a middleground between other patch-based inference tasks and our earlier nonparametric timeseries classification case study. To relate to patch-based inference tasks beyond binaryimage segmentation, note that rather than predicting a binary label per pixel, we couldpredict real-valued labels or patches of such labels leading to patch-based methods forimage denoising, reconstruction, restoration, and synthesis (e.g., Buades et al. (2005);Rousseau and Studholme (2013); Konukoglu et al. (2013); Iglesias et al. (2013)). As
77
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these patch-based methods are all syntactically similar, analysis of the binary imagesegmentation setting could possibly be extended to handle these more sophisticatedtasks as well. To relate to the earlier time series classification work, consider a myopicapproach to patch-based segmentation, where we predict the label of each pixel usingonly the observed image patch centered at that pixel. This patch could be viewed asa time series! Thus, our main result for times series classification could help explainthe performance of myopic nearest-neighbor-like segmentation. In doing so, we wantto account for image structure: pixels nearby, as well as their associated patches, aresimilar. One of our key contributions in this chapter is to introduce such a structuralproperty.For medical image segmentation in particular, perhaps the primary reason for the pop-ularity of nonparametric patch-based methods is that the main competing approach to theproblem, called label fusion, requires robust alignment of images, whereas patch-basedmethods do not. Specifically, standard label fusion techniques begin by first aligningall the images into a common coordinate frame and henceforth effectively assuming thealignment to be perfect. Because alignment quality substantially affects label fusion’ssegmentation performance, alignments are typically computed by so-called nonrigid reg-
istration that estimates a highly nonlinear transformation between two images. Whennonrigid registration works well, then label fusion also works well. The main issue isthat nonrigid registration often fails when the images exhibit large anatomical variablityas in whole body CT scans, or when the images have other quality problems commonlyfound in clinical scans taken at hospitals, such as low resolution and insufficient contrast(Sridharan, 2015). Unlike standard label fusion, patch-based methods do not require in-put images to be aligned perfectly, making them a promising alternative when the imageswe encounter present significant alignment challenges.Of course, another reason for patch-based methods’ growing popularity is their effi-ciency of computation, due to increasing availability of fast approximate nearest-neighborsearch algorithms both for general high-dimensional spaces (as discussed back in Sec-tion 1.1) and tailored specifically for image patches (Barnes et al., 2009; Ta et al., 2014).Thus, if the end goal is segmentation or a decision based on segmentation, for manyproblems solving numerous nonrigid registration subproblems required for standard labelfusion could be a computationally expensive detour that, even if successful, might notproduce better solutions than a patch-based approach.Many patch-based image segmentation methods are precisely variants of the nearest-neighbor-like inference methods we have seen throughout the rest of this thesis. In thesimplest case, to determine whether a pixel in an input image should be labeled as theforeground object of interest or background, we consider the patch centered at that pixel.We compare this image patch to patches in a training database that are labeled labeledeither foreground or background depending on the pixel at the center of the trainingpatch. We transfer the label from the closest patch in the training database to the pixelof interest in the new image. A plethora of embellishments improve this algorithm, suchas, but not limited to, using K nearest neighbors or weighted majority voting instead ofonly the nearest neighbor (Coupé et al., 2011; Rousseau et al., 2011; Wachinger et al.,
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2014), incorporating hand-engineered or learned feature descriptors (Wachinger et al.,2014), cleverly choosing the shape of a patch (Wachinger et al., 2014), and enforcingconsistency among adjacent pixels by assigning each training intensity image patch to alabel patch rather than a single label (Rousseau et al., 2011; Wachinger et al., 2014) orby employing a Markov random field (Freeman and Liu, 2011).Despite the broad popularity and success of nonparametric patch-based image seg-mentation and the smorgasbord of tricks to enhance its performance, the existing work hasbeen empirical with no theoretical justification for when and why such methods shouldwork and, if so, how well and with how much training data. In this chapter, we providethis theoretical justification for several patch-based nearest-neighbor-like segmentationalgorithms. As with the other case studies, our theoretical guarantees depend on anunderlying probabilistic model. We build up our model in two stages, first incorporatinglocal structure and then modeling global structure.We begin in Section 5.1 with a simple case of our model that corresponds to inferringeach pixel’s label separately from other pixels. For this special case of so-called pointwisesegmentation, we provide theoretical performance guarantees for patch-based nearest-neighbor and weighted majority voting segmentation in terms of the available trainingdata. Our analysis borrows heavily from the time series classification work in Chapter 3,and crucially relies on the newly introduced local structural property called the jigsaw
condition, which holds when neighboring patches are sufficiently similar.We present our full model in Section 5.2 and derive a new iterative patch-basedimage segmentation algorithm that combines ideas from patch-based image restoration(Zoran and Weiss, 2011) and distributed optimization (Boyd et al., 2011). This algorithmalternates between inferring label patches separately and merging these local estimatesto form a globally consistent segmentation. We show how various existing patch-basedalgorithms can be viewed as special cases of this new algorithm, and present experimentalresults showing that it significantly outperforms the pointwise segmentation algorithmsthat we provide theoretical guarantees for.
� 5.1 Pointwise Segmentation
For an image A, we use A(i) to denote the value of image A at pixel i, and A[i] to denotethe patch of image A centered at pixel i based on a pre-specified patch shape; A[i] caninclude feature descriptors in addition to raw intensity values. Each pixel i belongs to afinite, uniformly sampled lattice I .Given an intensity image Y , we aim to infer its label image L that delineates an objectof interest in image Y . In particular, for each pixel i ∈ I , we infer label L(i) ∈ {+1,−1},where +1 corresponds to foreground (object of interest) and −1 to background. To makethis inference, we use patches of image Y , each patch of dimensionality d. For example,for a 2D image, if we use 5x5 patches, then d = 25, and for a 3D image, if we use 5x5x5patches, then d = 125.We model the joint distribution p(L(i), Y [i]) of label L(i) and image patch Y [i] as ageneralization of a Gaussian mixture model with diagonal covariances, where each mixture
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component corresponds to either L(i) = +1 or L(i) = −1. We call this generalizationa diagonal sub-Gaussian mixture model, to be described shortly. First, we provide aconcrete example where label L(i) and patch Y [i] are related through a Gaussian mixturemodel with ki mixture components. Mixture component c ∈ {1, . . . , ki} occurs withprobability πic ∈ (0, 1] and has mean vector µic ∈ Rd and label λic ∈ {+1,−1}. Inthis example, we assume that all covariance matrices are σ2Id×d, and that there existsconstant πmin > 0 such that πic ≥ πmin for all i, c. Thus, image patch Y [i] belongs tomixture component c with probability πic , in which case Y [i] = µic + Wi, where vector
Wi ∈ Rd consists of white Gaussian noise with variance σ2, and L(i) = λic . Formally,

p(L(i), Y [i]) = ki∑
c=1 πicN (Y [i]; µic, σ2Id×d)1{L(i) = λic},

where N (·; µ,Σ) is a Gaussian density with mean µ and covariance Σ, and 1{·} is theindicator function. Each pixel i has its own mixture model with parameters (πic, µic, λic) for
c = 1, . . . , ki. The diagonal sub-Gaussian mixture model refers to a simple generalizationwhere noise vector Wi consists of entries that are i.i.d. zero-mean sub-Gaussian withparameter σ . This generalization precisely corresponds to our latent source model fortime series classification where we disallow time shifts (so ∆max = 0) and the time horizon
T is replaced by the patch dimensionality d.We assume that every pixel is associated with its own diagonal sub-Gaussian mixturemodel whose parameters are fixed but unknown. Similar to recent work on modelingnatural imagery patches (Zoran and Weiss, 2011, 2012), we do not model how differentoverlapping patches behave jointly and instead only model how each individual patch,viewed alone, behaves. In natural imagery, image patches turn out to very accuratelybehave like samples from a Gaussian mixture model (Zoran and Weiss, 2012).As with our other case studies, rather than learning the mixture model components,we instead take a nonparametric approach, using available training data in nearest-neighbor or weighted majority voting schemes to infer label L(i) from image patch Y [i].To this end, we assume we have access to n i.i.d. training intensity-label image pairs(Y1, L1), . . . , (Yn, Ln) that obey our probabilistic model above.
� 5.1.1 InferenceWe translate the three nonparametric time series classifiers from Section 3.1 to thepatch-based image segmentation setting. The resulting methods operate on each pixel iseparately, inferring label L(i) only based on image patch Y [i]:
• Pointwise nearest-neighbor segmentation first finds which training intensity image
Yu has a patch centered at pixel j that is closest to observed intensity patch Y [i].This amounts to solving

(û, ĵ) = arg min
u∈{1,2,...,n},j∈N(i)‖Yu[j ]− Y [i]‖2,
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where ‖ · ‖ denotes Euclidean norm, and N(i) refers to a user-specified finite set ofpixels that are neighbors of pixel i. Label L(i) is estimated to be the same as theclosest training patch’s label:
L̂NN(i|Y [i]) = Lû( ĵ ).

• Pointwise weighted majority voting segmentation first computes the following weightedvotes for labels +1 and −1:
V+1(i|Y [i];θ) = n∑

u=1
∑
j∈N(i) exp (− θ‖Yu[j ]− Y [i]‖2)1{Lu(j) = +1},

V−1(i|Y [i];θ) = n∑
u=1

∑
j∈N(i) exp (− θ‖Yu[j ]− Y [i]‖2)1{Lu(j) = −1},

where θ is a scale parameter, and N(i) again refers to user-specified neighboringpixels of pixel i. Label L(i) is estimated to be the label with the higher vote:
L̂WMV(i|Y [i];θ) = {+1 if V+1(i|Y [i];θ) ≥ V−1(i|Y [i];θ),

−1 otherwise.
We obtain pointwise nearest-neighbor segmentation with θ →∞. For an identicalreason as in the time series classification setting (c.f., Section 3.3), the predictionmade at each pixel i by pointwise weighted majority voting segmentation approx-imates an oracle MAP classifier that knows the parameters for the diagonal sub-Gaussian mixture model at pixel i. This oracle MAP classifier is myopic, inferringlabel L(i) only given patch Y [i].Pointwise weighted majority voting has been used extensively for patch-based seg-mentation (Bai et al., 2013; Coupé et al., 2011; Rousseau et al., 2011; Wachingeret al., 2014), where we note that our formulation readily allows for one to choosewhich training image patches are considered neighbors, what the patch shape is,and whether feature descriptors are part of the intensity patch vector Y [i]. For ex-ample, a simple choice of feature at pixel i is the coordinate for pixel i itself. Thus,we can encode as part of the exponentially decaying weight exp(−θ‖Yu[j ]− Y [i]‖2)how far apart pixels i and j ∈ N(i) are, yielding a weighted voting algorithm previ-ously derived from a Bayesian model that explicitly models this displacement (Baiet al., 2013).
• Pointwise generalized weighted majority voting segmentation biases the votes forlabel −1 by scaling it by τ > 0:

L̂τ (i|Y [i];θ) = {+1 if V+1(i|Y [i];θ) ≥ τV−1(i|Y [i];θ),
−1 otherwise,

where choosing τ = 1 yields pointwise weighted majority voting segmentation.
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� 5.1.2 Theoretical GuaranteesThe model above allows nearby pixels to be associated with dramatically different mixturemodels. However, real images are smooth, with patches centered at two adjacent pixelslikely similar. We incorporate this smoothness via a structural property on the sub-Gaussian mixture model parameters associated with nearby pixels.To build some intuition, we consider two extremes. First, it could be that the |I|mixture models (one per pixel) are actually all identical. This means that every intensitypatch comes from the same distribution. If we know this, then when we do pointwisenearest-neighbor or weighted majority voting segmentation, we could compare an ob-served intensity patch Y [i] with a training image patch centered anywhere in the trainingimage, since the patches all follow the same distribution. On the opposite extreme, the
|I| mixture models could have no commonalities, and so when we do pointwise nearest-neighbor or weighted majority voting segmentation, it only makes sense to compareintensity patch Y [i] with training image patches also centered at pixel i. We can inter-polate between these two extremes by saying how far away two pixels have to be whilestill sharing mixture component parameters, which we formalize as follows:

Jigsaw condition. For every mixture component (πic, µic, λic) of the diagonalsub-Gaussian mixture model associated with pixel i, there exists a neighbor
j ∈ N∗(i) such that the diagonal sub-Gaussian mixture model associated withpixel j also has a mixture component with mean µic , label λic , and mixtureweight at least πmin; this weight need not be equal to πic .The name of this structural property is inspired by a jigsaw puzzle, where the pieces ofthe puzzle somehow need to fit with nearby pieces to produce the final picture.The shape and size of neighborhood N∗(i), which is fixed and unknown like the mixturemodel parameters, control how similar the mixture models are across image pixels. Forthe two extremes discussed previously, the true neighborhood N∗(i) corresponds to thefull space of pixels in the first case, and N∗(i) = {i} in the second case. As we alreadyhinted at, what N∗(i) is affects how far from pixel i we should look for training patches, i.e.,how to choose neighborhood N(i) in pointwise nearest-neighbor and weighted majorityvoting segmentation, where ideally N(i) = N∗(i).As with our main result for time series classification, our main result here dependson the separation gap between training intensity image patches that correspond to thetwo different labels:

G , min
u,v∈{1,...,n},

i∈I ,j∈N(i) s.t. Lu(i) 6=Lv (j)
‖Yu[i]− Yv [j ]‖2.

Intuitively, a small separation gap corresponds to the case of two training intensityimage patches that are very similar but one corresponds to foreground and the other tobackground. In this case, a nearest-neighbor approach may easily select a patch withthe wrong label, resulting in an error.We now state our main theoretical result of this chapter. The proof is deferred toSection 5.4.
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Theorem 5.1.1. Let N(i) be the user-specified neighborhood of pixel i. Denote k ,maxi∈I ki, |N| , maxi∈I |N(i)|, π+1(i) , P(L(i) = +1) = ∑ki
c=1 πic1{λic = +1}, and

π−1(i) , P(L(i) = −1) = ∑ki
c=1 πic1{λic = −1}. Under the model above with n training

intensity-label image pairs and provided that the jigsaw condition holds with neighbor-
hood N∗ such that N∗(i) ⊆ N(i) for every pixel i:

(a) Pointwise nearest-neighbor segmentation has expected pixel labeling error rate

E
[ 1
|I|
∑
i∈I

1{L̂NN(i|Y [i]) 6= L(i)}] ≤ |I|k exp(− nπmin8 )+ |N|n exp(− G16σ2
)
.

(b) Pointwise generalized weighted majority voting segmentation has expected pixel
labeling error rate

E
[ 1
|I|
∑
i∈I

1{L̂τ (i|Y [i];θ) 6= L(i)}]
≤ |I|k exp(− nπmin8 )+ |N|n|I| exp (− (θ − 4σ2θ2)G)∑

i∈I

(
τπ+1(i) + 1

τ π−1(i)).
As with our time series classification result, these two upper bounds match when τ = 1(corresponding to regular pointwise weighted majority voting segmentation) and θ =18σ2 . Thus, to interpret this theorem, we just examine the pointwise nearest-neighborsegmentation bound, considering sufficient conditions for each term on the right-handside to be at most δ/2, for δ ∈ (0, 1). For the first term, the number of training intensity-label image pairs n should be sufficiently large so that we see enough of the differentmixture model components in our training data: n ≥ 8

πmin log (2|I|k/δ). For the secondterm, the gap G should be sufficiently large so that the nearest training intensity imagepatch found does not produce a segmentation error: G ≥ 16σ2 log (2|N|n/δ).There are different ways to change the gap, such as changing the shape of the patchand including hand-engineered or learned patch features. For example, if the mixturemodels are all Gaussian mixture models, then provided that no true mean vectors ofopposite labels are the same, then as shown in inequality (3.18), gap G turns out togrow as Ω(σ2d) (time horizon T in inequality (3.18) corresponds to dimensionality d).Intuitively, using larger patches d should widen the gap. But using larger patches alsomeans that the (maximum) number of mixture components k needed to represent a patchincreases, possibly quite dramatically.As with our main time series classification result, to prevent the second terms inthe upper bounds in Theorem 5.1.1 from scaling linearly with n, we could subsamplethe training data so that n is large enough to capture the diversity of mixture modelcomponents yet not so large that it overcomes the gap. In other words, with estimates orbounds on k , σ2, and πmin, then collecting n = Θ( 1
πmin log(|I|k/δ)) training image pairsand with a gap G = Ω(σ2 log ( |N|πminδ log ( |I|kδ ))), both algorithms achieve an expectederror rate of at most δ .
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� 5.2 Multipoint Segmentation
We generalize the basic model to infer label patches L[i] rather than just a single pixel’slabel L(i). Every label patch L[i] is assumed to have dimensionality d′, where d and d′need not be equal. For example, Y [i] could be a 5-by-5 patch, whereas L[i] could bea 3-by-3 patch. When d′ > 1, estimates of label patches must be merged to arrive ata globally consistent estimate of label image L. This case is referred to as multipointsegmentation.In this general case, we assume there to be K underlying latent label images Λ1, . . . ,ΛKthat occur with probabilities Π1, . . . ,ΠK . To generate intensity image Y , we first samplelabel image Λ ∈ {Λ1, . . . ,ΛK} according to probabilities Π1, . . . ,ΠK . Then we sam-ple label image L to be a perturbed version of Λ such that p(L|Λ) ∝ exp(−αd(L,Λ)) forsome constant α ≥ 0 and differentiable “distance” function d(·, ·). For example, d(L,Λ)could relate to volume overlap between the segmentations represented by label images
L and Λ with perfect overlap yielding distance 0. Finally, intensity image Y is generatedso that for each pixel i ∈ I , patch Y [i] is a sample from a mixture model patch prior
p(Y [i]|L[i]). If α = 0, d′ = 1, and the mixture model is diagonal sub-Gaussian, we obtainour earlier model. We remark that this generative model describes, for every pixel i, thejoint distribution between intensity image patch Y [i] and the full label image L. As withour pointwise segmentation model, we do not specify how overlapping intensity imagepatches are jointly distributed.We refer to this formulation as a latent source model since the intensity image patchescould be thought of as generated from the latent “prototypical” label images Λ1, . . . ,ΛKcombined with the latent mixture model clusters linking L[i] to Y [i]. This hierarchicalstructure enables local appearances around a given pixel to be shared across the proto-typical label images.
� 5.2.1 InferenceWe derive an iterative algorithm based on the expected patch log-likelihood (EPLL)framework (Zoran and Weiss, 2011). First, note that our full latent source model formultipoint segmentation prescribes a joint distribution for label image L and image patch
Y [i]. Thus, assuming that we know the model parameters, the MAP estimate for L given
Y [i] is

L̂ = arg max
L∈{+1,−1}|I|

{ log( K∑
g=1 Πg exp(−αd(L,Λg)))+ logp(Y [i]|L[i])}.

If we average the objective function above across all pixels i, then we obtain the EPLLobjective function, which we approximately maximize to segment an image:
L̂ = arg max

L∈{+1,−1}|I|
{log( K∑

g=1 Πg exp(−αd(L,Λg)))+ 1
|I|
∑
i∈I

logp(Y [i]|L[i])}.
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The first term in the objective function encourages label image L to be close to the truelabel images Λ1, . . . ,ΛK . The second term is the “expected patch log-likelihood”, whichfavors solutions whose local label patches agree well on average with the local intensitypatches according to the patch priors.Since latent label images Λ1, . . . ,ΛK are unknown, we use training label images
L1, . . . , Ln as proxies instead, replacing the first term in the objective function with
F (L;α) , log ( 1

n
∑n

u=1 exp(−αd(L, Lu))). Next, we approximate the unknown patch prior
p(Y [i]|L[i]) with a kernel density estimate

p̃(Y [i]|L[i]; γ) ∝ n∑
u=1

∑
j∈N(i)N

(
Y [i];Yu[j ], 12γ Id×d

)
1{L[i] = Lu[j ]},

where the user specifies a neighborhood N(i) of pixel i, and constant γ > 0 that controlsthe Gaussian kernel’s bandwidth. We group the pixels so that nearby pixels within asmall block all share the same kernel density estimate. This approximation essentiallyassumes a stronger version of the jigsaw condition from Section 5.1 since the algorithmoperates as if nearby pixels have the same mixture model as a patch prior. Hence, wemaximize objective F (L;α) + 1
|I|
∑

i∈I log p̃(Y [i]|L[i]; γ) to determine label image L.Similar to the original EPLL method (Zoran and Weiss, 2011), we introduce an aux-iliary variable ξi ∈ Rd′ for each patch L[i], where ξi acts as a local estimate for L[i].Whereas two patches L[i] and L[j ] that overlap in label image L must be consistent acrossthe overlapping pixels, there is no such requirement on their local estimates ξi and ξj .In summary, we solve
L̂ = argmin

L∈{+1,−1}|I|,(ξi∈Rd′ ,i∈I)s.t. L[i]=ξi for i∈I

{
− F (L;α)− 1

|I|
∑
i∈I

log p̃(Y [i]|ξi; γ) + β2 ∑
i∈I

‖L[i]− ξi‖2}, (5.1)
where β > 0 is a user-specified constant.The original EPLL method (Zoran and Weiss, 2011) progressively increases β and,for each choice of β, alternates between updating the label image L and the auxiliaryvariables ξi, ignoring the constraints L[i] = ξi for i ∈ I . The idea is that as β grows large,these constraints will eventually be satisfied. However, it is unclear how to increase βin a principled manner. While heuristics could be used, an alternative approach is tofix β and instead introduce a Lagrange multiplier ηi for each constraint L[i] = ξi anditeratively update these Lagrange multipliers. This can be achieved by the AlternatingDirection Method of Multipliers (ADMM) for distributed optimization (Boyd et al., 2011).Specifically, we form Lagrangian
Lβ(L, ξ, η) = −F (L;α)−∑

i∈I
log p̃(Y [i]|ξi; γ) + β2 ∑

i∈I
‖L[i]− ξi‖2 +∑

i∈I
ηTi (L[i]− ξi),

where η = (ηi ∈ Rd′ , i ∈ I) is the collection of Lagrange multipliers, and ξ = (ξi, i ∈ I)is the collection of auxiliary variables. Indexing iterations with superscripts, the ADMM
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update equations are given by:

ξ t+1 ← arg min
ξ
Lβ(Lt , ξ, ηt) (minimize Lagrangian along direction ξ),

Lt+1 ← arg min
L
Lβ(L, ξ t+1, ηt) (minimize Lagrangian along direction L),

ηt+1 ← ηt + β(ξ t+1 − Lt+1) (update Lagrange multipliers η).
By looking at what terms matter for each update equation, we can rewrite the abovethree steps as follows:

1. Update label patch estimates. We update estimate ξi for label patch L[i] givenobserved image patch Y [i] in parallel across i ∈ I :
ξ t+1
i ← arg min

ξi

{
− 1
|I| log p̃(Y [i]|ξi; γ) + β2 ‖Lt [i]− ξi‖2 + (ηti )T (Lt [i]− ξi)}.

This minimization only considers ξi among training label patches for which p̃ is de-fined. Thus, this minimization effectively scores different nearest-neighbor traininglabel patches found and chooses the one with the best score.
2. Merge label patch estimates. Fixing ξi, we update label image L:

Lt+1 ← arg min
L

{
− F (L;α) + β2 ∑

i∈I
‖L[i]− ξ t+1

i ‖2 +∑
i∈I

(ηti )T (L[i]− ξ t+1
i )}.

With the assumption that F is differentiable, gradient methods could be used tonumerically solve this subproblem.
3. Update Lagrange multipliers. Set ηt+1

i ← ηti + β(ξ t+1
i − Lt+1[i]). This penalizeslarge discrepancies between ξi and L[i].

Parameters α , β, and γ are chosen using held-out data or cross-validation.Step 2 above corresponds to merging local patch estimates to form a globally con-sistent segmentation. This is the only step that involves expression F (L;α). With α = 0and forcing the Lagrange multipliers to always be zero, the merging becomes a simpleaveraging of overlapping label patch estimates ξi. This algorithm corresponds to existingmultipoint patch-based segmentation algorithms (Coupé et al., 2011; Rousseau et al.,2011; Wachinger et al., 2014) and the in-painting technique achieved by the originalEPLL method. Setting α = β = 0 and d′ = 1 yields pointwise weighted majority votingwith parameter θ = γ. When α > 0, a global correction is applied, shifting the labelimage estimate closer to the training label images. This should produce better estimateswhen the full training label images can, with small perturbations as measured by d(·, ·),explain new intensity images.
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MV 1NN WMV ADMM
Liver

Spleen

Left kidney

Right kidney
Figure 5.1: Example image segmentation results. Green denotes the ground truth labeland red denotes the estimated label, where a good segmentation result has the greenand red overlaid on top of each other.
� 5.3 Experimental Results
We empirically explore the new iterative algorithm on 20 labeled thoracic-abdominalcontrast-enhanced CT scans from the Visceral anatomy3 dataset (Hanbury et al., 2012).We train the model on 15 scans and test on the remaining 5 scans. The training procedureamounted to using 10 of the 15 training scans to estimate the algorithm parameters inan exhaustive sweep, using the rest of the training scans to evaluate parameter settings.Finally, the entire training dataset of 15 scans is used to segment the test datasetof 5 scans using the best parameters found during training. For each test scan, wefirst use a fast affine registration to roughly align each training scan to the test scan.Then we apply five different algorithms: a baseline majority voting algorithm (denoted“MV”) that simply averages the training label images that are now roughly aligned tothe test scan, pointwise nearest neighbor (denoted “1NN”) and weighted majority voting(denoted “WMV”) segmentation that both use approximate nearest patches, and finallyour proposed iterative algorithm (denoted “ADMM”), setting distance d to one minus Diceoverlap. Dice overlap measures volume overlap between the true and estimated pixels ofan object, where 1 is perfect overlap and 0 is no overlap. It is not differentiable but byrelaxing our optimization to allow for each label taking on a value in [−1, 1], Dice overlapcan be written in terms of inner products. In particular, the Dice overlap of label images
L and Λ is given by 2〈L̃, Λ̃〉/(〈L̃, L̃〉+ 〈Λ̃, Λ̃〉), where L̃ = (L+ 1)/2 and Λ̃ = (Λ + 1)/2.
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We segmented the liver, spleen, left kidney, and right kidney. We show examplesegmentations in Fig. 5.1 and report the Dice overlap scores for in Fig. 5.2 using thefour algorithms. In all cases, the proposed algorithm outperforms pointwise weightedmajority voting, which outperforms both pointwise nearest-neighbor segmentation andthe baseline majority voting. For the organs we segmented, there was little benefit tohaving α > 0, suggesting that the local patch estimates were already quite consistentand required no global correction.
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(d) Right kidney
Figure 5.2: Dice volume overlap scores.

� 5.4 Proof of Theorem 5.1.1
The proof is nearly identical to that of our main time series classifcation result, Theorem3.4.1, except that it crucially relies on the jigsaw condition and has extra bookkeepingsince there are numerous pixels with associated patches that we are predicting labelsfor. Thus, we primarily detail the main changes, over sketching the parts of the proof thatare the same as that of Theorem 3.4.1.In what follows, we abbreviate “diagonal sub-Gaussian mixture model” by “MM”,
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letting MM(i) denote the diagonal sub-Gaussian mixture model associated with pixel i.For predicting the label for a single pixel, we interchangeably use the terms “segment”and “classify”.We begin with a lemma that establishes how many training intensity-label imagepairs are sufficient so that for every mixture model (associated with every pixel in I), wesee every mixture component enough times.
Lemma 5.4.1. For the pointwise segmentation model with n training image pairs,

P
(
∃ a pixel i for which a mixture component of MM(i) occurs ≤ nπmin2 times

)
≤ |I|k exp(− nπmin8 )

.

Proof. Fix pixel i ∈ I . For training intensity images Y1, . . . , Yn, note that patches
Y1[i], . . . , Yn[i] behave as if they were drawn from MM(i), which has at most k mixturecomponents each with weight at least πmin. Thus, by Lemma 2.2.2, we have

P
(
∃ mixture component of MM(i) occurring ≤ nπmin2 times)
≤ k exp(− nπmin8 )

.

Union-bounding over all |I| pixels yields the claim. �

Now let Eall-sources be the event that for every pixel i and for every mixture compo-nent (πic, µic, λic) in MM(i), there exists some training intensity image whose patch atpixel i is generated by mixture component (πic, µic, λic). By the result of Lemma 5.4.1,
P(Eall-sources) ≥ 1 − |I|kexp (− nπmin8 ). For the remainder of the proof, we assume thatevent Eall-sources holds.An important piece in the proof of Theorem 3.4.1 is writing the time series to beclassified in terms of one of the training data. We do the same here, writing patch Y [i]in terms of one of the training patches, for every pixel i ∈ I .Fix pixel i ∈ I . Under the pointwise segmentation model, there exists some mixturecomponent c ∈ {1, . . . , ki} of MM(i) that patch Y [i] is generated from. In particular,

Y [i] = µic +W1, (5.2)
where noise W1 ∈ Rd consists of i.i.d. zero-mean sub-Gaussian entries with parameter
σ . Moreover, the label of patch Y [i] is λic ∈ {+1,−1}.Using the jigsaw condition, there exists a neighbor j∗ ∈ N∗(i) such that MM(j∗) hasa mixture component that also has mean µic and label λic . Furthermore, since event
Eall-sources holds, we know that there exists some training intensity image Yu∗ for which
Yu∗ [j∗] is generated from a mixture component with mean µic and label λic . Hence,

Yu∗ [j∗] = µic +W2, (5.3)
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where noise W2 consists of i.i.d. zero-mean sub-Gaussian entries with parameter σ .Putting together equations (5.2) and (5.3),

Y [i] = µic +W1 = (Yu∗ [j∗]−W2) +W1 = Yu∗ [j∗] + (W1 −W2)︸ ︷︷ ︸
,W

, (5.4)
where W consists of i.i.d. zero-mean sub-Gaussian entries now with parameter √2σ .
Pointwise Nearest-Neighbor Segmentation GuaranteeThe probability that pointwise nearest-neighbor segmentation misclassifies pixel i is

P(L̂NN(i|Y [i]) 6= L(i) | Eall-sources)= P(L(i) = +1 | Eall-sources)P(L̂NN(i|Y [i]) 6= L(i) | Eall-sources, L(i) = +1)+ P(L(i) = −1 | Eall-sources)P(L̂NN(i|Y [i]) 6= L(i) | Eall-sources, L(i) = −1). (5.5)
We upper-bound P(L̂NN(i|Y [i]) 6= L(i) | Eall-sources, L(i) = +1). Suppose L(i) = +1. Thennearest-neighbor segmentation makes an error and declares L̂NN(i|Y [i]) = −1 when theclosest training intensity patch Yû[ ĵ ] to patch Y [i] has label Lû( ĵ ) = −1, where(û, ĵ) = arg min

u∈{1,2,...,n},j∈N(i)‖Yu[j ]− Y [i]‖2 = arg min
u∈{1,2,...,n},j∈N(i)‖Yu[j ]− (Yu∗ [j∗] +W )‖2,

and the last step above uses equation (5.4). By optimality of (û, ĵ) for the above opti-mization problem, we have
‖Yu[j ]− (Yu∗ [j∗] +W )‖2 ≥ ‖Yû[ ĵ ]− (Yu∗ [j∗] +W )‖2

for all u ∈ {1, 2, . . . , n} and j ∈ N(i). Setting u = u∗ and j = j∗ (the latter of which wecan do because N(i) ⊇ N∗(i)) and rearranging terms, we obtain2〈Yû[ ĵ ]− Yu∗ [j∗],W 〉 ≥ ‖Yû[ ĵ ]− Yu∗ [j∗]‖2. (5.6)Pointwise nearest-neighbor segmentation makes an error and declares L̂NN(i|Y [i]) = −1when there exists û ∈ {1, . . . , n} and ĵ ∈ N(i) with Lû( ĵ ) = −1 such that optimalitycondition (5.6) holds. Thus, using the same steps as in deriving inequality (3.10),
P(L̂NN(i|Y [i]) = −1 | Eall-sources, L(i) = +1)
≤ P

( ⋃
û∈{1,...,n},
ĵ∈N(i)s.t. Lû( ĵ )=−1

{2〈Yû[ ĵ ]− Yu∗ [j∗],W 〉 ≥ ‖Yû[ ĵ ]− Yu∗ [j∗]‖2}) ≤ n|N| exp(− 116σ2G
)
,

where instead of the number of possible time shifts 2∆max + 1 showing up, we havemaximum number of possible neighboring pixels |N|. A similar calculation shows that thesame bound holds for P(L̂NN(i|Y [i]) = +1 | Eall-sources, L(i) = −1), and so
P(L̂NN(i|Y [i]) 6= L(i) | Eall-sources) ≤ n|N| exp(− 116σ2G

)
.
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Then
P
(
L̂NN(i|Y [i]) 6= L(i)) ≤ P(L̂NN(i|Y [i]) 6= L(i) | Eall-sources) + P(E call-sources)

≤ n|N| exp(− 116σ2G
)+ |I|k exp(− nπmin8 )

.

Finally, we establish the pointwise nearest-neighbor segmentation performance guaran-tee by noting that the expected pixel mislabeling rate satisfies
E
[ 1
|I|
∑
i∈I

1{L̂NN(i|Y [i]) 6= L(i)}] = 1
|I|
∑
i∈I

P
(
L̂NN(i|Y [i]) 6= L(i))

≤ n|N| exp(− 116σ2G
)+ |I|k exp(− nπmin8 )

.

Pointwise Generalized Weighted Majority Voting Segmentation GuaranteeThe proof here is basically identical to that of generalized weighted majority voting fortime series classification except with our new definition of event Eall-sources and where werelate each patch Y [i] to training data via equation (5.4). As a reminder, equation (5.4)relied on good event Eall-sources holding as well as the jigsaw condition.As our proof of pointwise nearest-neighbor segmentation suggests, instead of search-ing over 2∆max + 1 time shifts, we search over at most |N| neighboring pixels. Thus, theanalogue of the generalized weighted majority voting time series classification result inthis pointwise segmentation setting, for a single pixel i, is
P
(
L̂τ (i|Y [i]θ) 6= L(i))
≤ P(L̂τ (i|Y [i];θ) 6= L(i) | Eall-sources) + P(E call-sources)
≤ |I|k exp(− nπmin8 )+ (τπ+1(i) + 1

τ π−1(i))n|N| exp (− (θ − 4σ2θ2)G).
Therefore the expected pixel labeling error rate satisfies

E
[ 1
|I|
∑
i∈I

1{L̂τ (i|Y [i];θ) 6= L(i)}] = 1
|I|
∑
i∈I

P
(
L̂τ (i|Y [i];θ) 6= L(i))

≤ |I|k exp(− nπmin8 )+ 1
|I|
∑
i∈I

(
τπ+1(i) + 1

τ π−1(i))n|N| exp (− (θ − 4σ2θ2)G).
�

� 5.5 Discussion
By introducing the jigsaw condition, we were able to import our theoretical developmenton nonparametric time series classification into nonparametric patch-based image seg-mentation. Our main result indicates that if nearby patches behave as mixture modelswith sufficient similarity, then a myopic segmentation works well, where its quality isstated in terms of the available training data.
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From a modeling standpoint, understanding the joint behavior of patches could yieldsubstantial new insights into exploiting macroscopic structure in images rather than re-lying only on local properties that enable myopic inference. In a related direction, whilewe have modeled the individual behavior of patches, an interesting theoretical questionis to understand what joint distributions on image pixels could possibly lead to suchmarginal distributions on patches. Do such joint distributions exist? If not, is there ajoint distribution whose marginals for patches produce the mixture models we use? Thesequestions outline rich areas for future research.



Chapter 6

Conclusions and Future Directions

We set out to justify when, why, and how well nearest-neighbor-like inference works,grounding our analysis in three seemingly disparate case studies. For each case study,we imposed structure by modeling data to be generated by unknown latent sources, andthe structure turns out to be enough to lead to theoretical performance guarantees fornearest-neighbor-like inference. Across all three case studies, our results asked for thenumber of training data n to scale linearly with the number of latent sources k modulolog factors, and for there to be a separation gap that combats noise.
� 6.1 More Training Data, More Problems?
A limitation across the three main theoretical results is that they become weak when thenumber of training data n grows too large. Our workaround each time was to subsample nto be smaller but in a way that depended on k . Is this really necessary? Is our worst-caseanalysis too pessimistic?One way to see why larger n might cause nearest-neighbor inference to struggle isto consider a simple setup where data are generated i.i.d. with equal probability fromone of two Gaussians, either N (0, σ2) or N (µ, σ2) for constants µ > 0, σ > 0. The goalis to predict which of these two Gaussians a new data point is from with the help oftraining data Y1, . . . , Yn drawn i.i.d. from the same model with known labels L1, . . . , Ln ∈
{+1,−1}, where +1 corresponds to N (0, σ2), and −1 corresponds to N (µ, σ2). This isthe time series classification setting with T = 1, no time shifts, and Gaussian noise.When n grows large, with high probability, we’ll encounter training data generated from
N (0, σ2) that exceed µ and thus plausibly appear to come from the second Gaussian, andvice versa! This is disastrous as it means that with large amounts of training data, theseparation gap G(T ) could become vanishingly small.To sketch why this mishap happens, first note that Lemma 2.2.2 implies that collecting
n ≥ 16 log(2/δ) training data, then with probability at least 1 − δ , we have more than
n/4 samples from each of the two Gaussians. Assuming this event holds, we next rely onthe fact that for random variables X1, . . . , Xd drawn i.i.d. from N (0, σ2) (Kamath, 2015),

σ

√ logd
π log 2 ≤ E

[ max
u=1,...,dXu] ≤ σ√2 logd.
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Hence, we know that the maximum of the training data generated from the first Gaussian
N (0, σ2) (for which there are more than n/4 such training data) has an expected valueof at least σ√ log(n/4)

π log 2 , which for large enough n exceeds µ. One could then apply aconcentration inequality to argue that as n grows large, with high probability, there willbe at least one training data point generated from N (0, σ2) that is larger than µ, andthus is more plausibly explained as being generated from the second Gaussian. A similarcalculation could be used with the two Gaussians swapped. Increasing n makes it morelikely that more of these “bad” training data appear.
� 6.2 Outlier Screening
The key observation that provides a promising solution to the disaster scenario aboveis that the “bad” training data that stray far from their corresponding (Gaussian) latentsources are outliers. We could thus screen for and remove outliers. For example, onesimple nonparametric way to do this is for a training data point to look within a ballaround it to find its nearest neighbors, and then to ask whether its label agrees withthe most popular label amongst its nearest neighbors; if not, we classify the point as anoutlier and discard it. A variant of this method was devised by Wilson (1972), where thelabel of a point is compared to the most popular label amongst its K nearest neighbors todetermine whether to retain a point or not. Outlier screening is an active area of researchwith numerous other methods devised over the years to empirically improve classificationperformance (e.g., Sánchez et al. (2003); Smith and Martinez (2011)). While it’s unclearhow outlier screening integrates with the theory we developed, we suspect that addingit as a preprocessing step could yield nonparametric inference methods with strongertheoretical performance guarantees than those presented in this thesis.
� 6.3 Fast, Scalable Nonparametric Inference
A separate question is how to actually build fast nonparametric inference methods thatcan handle massive, ever-growing amounts of training data for applications that mighteven demand real-time interactive inference for streaming test data. As with the onlinecollaborative filtering setup, test data we see now could become part of our trainingdata in the future! Developing these inference methods requires a significant amountof systems engineering and leads to many theoretical questions of interest. How doesusing approximate nearest-neighbor search (e.g., with locality-sensitive hashing (Gioniset al., 1999)) affect misclassification rate? What other approximations could be madeto expedite running time, and could we provide theoretical guarantees for the overallsystem with easy-to-tune parameters that trade off inference quality, computation time,and the amount of training data needed? Building such a system and answering thesetheoretical questions could lead to a general-purpose nonparametric inference enginethat is fast and broadly applicable, with a solid theoretical foundation characterizing itsperformance.
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