
New Error Correcting Codes from Lifting

by

Alan Xinyu Guo

B.S., Duke University (2011)
S.M., Massachusetts Institute of Technology (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 1, 2015

Certified by .
Madhu Sudan

Adjunct Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

New Error Correcting Codes from Lifting

by

Alan Xinyu Guo

Submitted to the Department of Electrical Engineering and Computer Science
on May 1, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Error correcting codes have been widely used for protecting information from noise. The
theory of error correcting codes studies the range of parameters achievable by such codes, as
well as the efficiency with which one can encode and decode them. In recent years, attention
has focused on the study of sublinear-time algorithms for various classical problems, such
as decoding and membership verification. This attention was driven in part by theoretical
developments in probabilistically checkable proofs (PCPs) and hardness of approximation.
Locally testable codes (codes for which membership can be verified using a sublinear number
of queries) form the combinatorial core of PCP constructions and thus play a central role
in computational complexity theory. Historically, low-degree polynomials (the Reed-Muller
code) have been the locally testable code of choice. Recently, “affine-invariant” codes have
come under focus as providing potential for new and improved codes.

In this thesis, we exploit a natural algebraic operation known as “lifting” to construct new
affine-invariant codes from shorter base codes. These lifted codes generically possess desirable
combinatorial and algorithmic properties. The lifting operation preserves the distance of the
base code. Moreover, lifted codes are naturally locally decodable and testable. We tap
deeper into the potential of lifted codes by constructing the “lifted Reed-Solomon code”,
a supercode of the Reed-Muller code with the same error-correcting capabilities yet vastly
greater rate.

The lifted Reed-Solomon code is the first high-rate code known to be locally decodable up
to half the minimum distance, locally list-decodable up to the Johnson bound, and robustly
testable, with robustness that depends only on the distance of the code. In particular, it is
the first high-rate code known to be both locally decodable and locally testable. We also
apply the lifted Reed-Solomon code to obtain new bounds on the size of Nikodym sets, and
also to show that the Reed-Muller code is robustly testable for all field sizes and degrees up
to the field size, with robustness that depends only on the distance of the code.

Thesis Supervisor: Madhu Sudan
Title: Adjunct Professor

3

4

Acknowledgments

First and foremost, I thank my advisor, Madhu Sudan, for his patient guidance, support, and

encouragement throughout my four years at MIT. Our shared taste in finding clean, general

solutions to algebraic problems has led to many collaborations. I thank Scott Aaronson and

Dana Moshkovitz for serving on my thesis committee.

I am also indebted to Ezra Miller, who guided my undergraduate research at Duke, and

to Vic Reiner and Dennis Stanton who mentored me at their REU in Minnesota.

I thank my co-authors during graduate school: Greg Aloupis, Andrea Campagna, Erik

Demaine, Elad Haramaty, Swastik Kopparty, Ronitt Rubinfeld, Madhu Sudan, and Giovanni

Viglietta. I especially thank Ronitt and Piotr Indyk for their guidance early on, Erik for his

excitement and willingness to entertain my more fun research ideas (i.e. hardness of video

games), and Swastik for hosting my visit to Rutgers and teaching me about codes and PCPs.

I also thank friends and faculty with whom I have shared conversations at MIT: Pablo

Azar, Mohammad Bavarian, Eric Blais, Adam Bouland, Mahdi Cheraghchi, Henry Cohn,

Matt Coudron, Michael Forbes, Badih Ghazi, Pritish Kamath, Ameya Velingker, Henry

Yuen, and so many others.

I thank my friends outside of the field for their friendship and the good times during the

past four years. I especially thank Vivek Bhattacharya, Sarah Freitas, Henry Hwang, Steven

Lin, Ann Liu, Lakshya Madhok, and Roger Que.

I am grateful to my family. Without my parents, I would not exist, and neither would

this thesis. Moreover, they always supported my education and encouraged me to pursue

my dreams. I thank my younger sister Julia for encouraging me to set a good example.

Finally, my biggest thanks goes to Lisa — my fiancée, best friend, and companion for the

rest of my life. Graduate school was not always easy, but you were always there to support

me and pick me up when I was down, and to share in my triumphs. Thank you for your

unwavering love and loyalty, without which I do not believe I would have survived through

graduate school. Only you know every twist and turn my journey has taken. Without

hesitation, I dedicate this thesis to you.

5

6

Contents

1 Introduction 11

1.1 Background . 11

1.1.1 Error Correcting Codes . 11

1.1.2 PCPs and Local Algorithms . 13

1.1.3 Affine-Invariance . 16

1.2 This Thesis . 17

1.2.1 Main Result . 17

1.2.2 Lifting . 18

1.2.3 Robust Testing . 18

1.2.4 Applications . 23

1.2.5 Organization . 25

2 Preliminaries 27

2.1 Notation . 27

2.2 Probability and Concentration bounds . 29

3 Error Correcting Codes 31

3.1 Classical Parameters . 31

3.2 Local decoding, correcting, and list-decoding 32

3.3 Local testing and robust testing . 34

3.4 Codes . 35

3.4.1 Reed-Solomon code . 36

7

3.4.2 Reed-Muller code . 36

4 Affine-invariance 39

4.1 Affine-invariant Codes . 39

4.2 Equivalence of Invariance under Affine Transformations and Permutations . . 40

5 Lifting Codes 47

5.1 The Lift Operator . 47

5.2 Algebraic and Combinatorial Properties . 48

5.2.1 Algebraic Properties . 48

5.2.2 Distance of Lifted Codes . 50

5.3 Local Decoding and Correcting . 53

5.3.1 Local Correcting up to 1/4 Distance 53

5.3.2 Local Correcting up to 1/2 Distance 54

5.3.3 Local Decoding . 57

5.4 Local Testing and Robust Testing . 59

5.4.1 Local Testing . 59

5.4.2 Robust Testing . 60

6 Robust Testing of Lifted Codes 61

6.1 Robustness of Lifted Codes . 61

6.1.1 Preliminaries . 61

6.1.2 Robustness for Small Dimension . 62

6.1.3 Robustness of Special Tensor Codes 66

6.1.4 Robustness for Large Dimension . 74

6.2 Technical Algebraic Results . 81

6.2.1 Degree Lift . 81

6.2.2 Analysis of Subspace Restrictions . 85

8

7 Applications 91

7.1 Lifted Reed-Solomon Code . 91

7.1.1 Relationship to Reed-Muller . 92

7.1.2 Rate . 95

7.1.3 Global List-Decoding . 97

7.1.4 Local List-Decoding . 98

7.1.5 Main Result: The Code That Does It All 102

7.2 Robust Low-Degree Testing . 102

7.3 Nikodym Sets . 105

A Algebra Background 107

A.1 Arithmetic over finite fields . 107

A.2 Tensor codes . 109

B Finite field geometry 111

B.1 Affine maps . 111

B.2 Affine subspaces . 114

9

10

Chapter 1

Introduction

1.1 Background

1.1.1 Error Correcting Codes

Error correcting codes arise as a solution to the problem of communicating over a noisy

channel. The sender first encodes the message using an error correcting code, which adds

redundancy to the message, into a codeword. The codeword is then sent over the noisy

channel. The receiver receives a word which is a corruption of the codeword. The receiver

then decodes the received word and hopefully retrieves the original message. The actual code

is the set of possible codewords.

Two classical parameters of interest are the rate and distance of the code. The rate is

the ratio of the message length to the codeword length, and measures the efficiency of the

encoding. The distance measures the error-correcting capability of the code. The Hamming

distance between two strings is the number of symbols in which they differ. The distance of

a code is the minimum Hamming distance between two distinct codewords. If the distance

of a code is 𝑑, then in principle one can detect up to 𝑑− 1 errors and correct up to ⌊𝑑/2⌋− 1

errors: if the codeword has been corrupted in at most 𝑑−1 locations, then it cannot have been

corrupted into a different codeword, so to detect errors one “merely” checks if the received

word is a codeword; if the codeword has been corrupted in at most ⌊𝑑/2⌋− 1 locations, then

11

there is at most one codeword within Hamming distance ⌊𝑑/2⌋ − 1 of the received word, so

to correct errors one “merely” finds the nearest codeword to the received word. We often

prefer to work with the relative distance of a code, which is simply its distance divided by

the length of the codewords. There is a fundamental tradeoff between rate and distance,

which is still not fully understood. In addition, there is the problem of designing codes which

support efficient algorithms for encoding and decoding.

Another notion of decoding is list-decoding. We just showed that if a code 𝒞 has distance

𝑑, then for any word, there is at most one codeword within Hamming distance ⌊𝑑/2⌋ − 1. If

we wish to correct more than ⌊𝑑/2⌋ − 1 errors, we cannot guarantee that there is a unique

codeword. However, if the radius is not too large, then we can hope that there are not too

many codewords within the radius from the received word. Instead of outputting the correct

codeword or message, a list-decoding would output a list of potential codewords or messages.

Another important feature of an error correcting code is the alphabet. Designing a code

is easier using a larger alphabet. If the alphabet size is allowed to grow with the code

length 𝑛, then the Singleton bound asserts that the rate 𝑅 and relative distance 𝛿 satisfies

𝑅 + 𝛿 ≤ 1 + 1/𝑛. This bound is tight, as demonstrated by the Reed-Solomon code.

The Reed-Solomon code is perhaps the most ubiquitous code in the literature. The idea

is simple. Let 𝑘 ≥ 1 and let 𝑞 ≥ 𝑘 be a prime power. Let F𝑞 be the finite field of size 𝑞. Each

message 𝑚 = (𝑚0, . . . ,𝑚𝑘−1) of length 𝑘 over the alphabet F𝑞 is interpreted as a degree 𝑘−1

polynomial 𝑚(𝑋) = 𝑚0 + 𝑚1𝑋 + · · · + 𝑚𝑘−1𝑋
𝑘−1. Let 𝛼1, . . . , 𝛼𝑞 be the elements of F𝑞.

The encoding of 𝑚 is simply the evaluation of 𝑚 at every point: (𝑚(𝛼1), . . . ,𝑚(𝛼𝑞)). The

rate of this code is clearly 𝑅 = 𝑘
𝑞
, and it follows from the Fundamental Theorem of Algebra

that 𝛿 = 1 − 𝑘−1
𝑞
, so that 𝑅 + 𝛿 = 1 + 1/𝑞, meeting the Singleton bound. Furthermore,

the Reed-Solomon code can be efficiently decoded up to half its distance using, for instance,

the Welch-Berlekamp algorithm [WB86] (see [GS92] for an exposition). Guruswami and

Sudan [GS99] showed that the Reed-Solomon code with distance 𝛿 > 0 can be list-decoded

up to the “Johnson bound” (1 −
√
1− 𝛿 fraction errors). More precisely, they gave an

efficient algorithm which, on input a received word, outputs a list of 𝑂(1/𝜖2) codewords that

12

are within (relative) distance 1− (1 + 𝜖)
√
1− 𝛿 of the received word.

A related code is the Reed-Muller code. This code, parameterized by a degree 𝑑 and a

number 𝑚 of variables, consists of polynomials 𝑓 : F𝑚
𝑞 → F𝑞 of degree at most 𝑑 (or rather,

their evaluations). Its message length is 𝑘 =
(︀
𝑑+𝑚
𝑚

)︀
and its code length is 𝑛 = 𝑞𝑚. When

𝑚 = 1, this is simply the Reed-Solomon code. If 𝑑 < 𝑞, it follows from the Schwartz-

Zippel lemma that the distance of the Reed-Muller code is 1− 𝑑
𝑞
. Although the Reed-Muller

code’s rate-distance tradeoff is worse than that of the Reed-Solomon code, the Reed-Muller

code offers locality, which we discuss in Section 1.1.2. Like the Reed-Solomon code, the

Reed-Muller code can be list-decoded up to the Johnson bound [PW04].

1.1.2 PCPs and Local Algorithms

In the late 1980s and early 1990s, there was an explosion of interest in sublinear-time al-

gorithms. Blum, Luby, and Rubinfeld [BLR93] showed that one can probabilistically test

whether a given function 𝑓 : {0, 1}𝑛 → {0, 1} is linear — that is, 𝑓(x+y) = 𝑓(x)+ 𝑓(y) for

every x,y ∈ {0, 1}𝑛 — by querying 𝑓 at only 3 points. If 𝑓 is linear, then their test accepts

with probability one, while if 𝑓 is “𝜖-far” from linear (it disagrees with every linear function

in at least 𝜖-fraction of the domain), then their test rejects with probability Ω(𝜖). The space

of linear functions 𝑓 : {0, 1}𝑛 → {0, 1} forms an error correcting code with rate 𝑛/2𝑛 and

distance 1/2 — this code is known as the Hadamard code. This was in fact the first code

shown to be locally testable — that is, using a sublinear number of queries to the received

word, one can verify membership in the code. It is also easy to show that the Hadamard

code is locally correctable — one can correct any given symbol of the received word with high

probability using a sublinear number of queries. To correct 𝑓 at x ∈ {0, 1}𝑛, select random

y ∈ {0, 1}𝑛 and output the value 𝑓(x + y) − 𝑓(y). A related notion if local decodability —

one can correct any given symbol of the message with high probability by making a sublinear

number of queries to the received word.

We will often consider codes 𝒞 ⊆ F𝑛
𝑞 that are linear (i.e. 𝒞 forms a vector space over

F𝑞). The Reed-Solomon code, Reed-Muller code, and Hadamard code are all linear codes.

13

Rather than thinking of words in F𝑛
𝑞 as sequences of length 𝑛, we view them as functions

from some fixed set 𝑆 of cardinality |𝑆| = 𝑛 to the range F𝑞. The structure of the set 𝑆 and

symmetries will play a role later. We use {𝑆 → F𝑞} to denote the set of all such functions.

We say a function 𝑓 is 𝜏 -far from 𝒞 if 𝛿(𝑓, 𝒞) , min𝑔∈𝒞 𝛿(𝑓, 𝑔) ≥ 𝜏 .

Given a code 𝒞 ⊆ {𝑆 → F𝑞} and integer ℓ, an ℓ-local tester 𝒯 is a distribution 𝒟 on

(𝑆ℓ, 2F
ℓ
𝑞) with the semantics as follows: given oracle access to 𝑓 : 𝑆 → F𝑞, the tester 𝒯

samples (𝜋, 𝑉) ← 𝒟, where 𝜋 = (𝜋1, . . . , 𝜋ℓ) ∈ 𝑆ℓ and 𝑉 ⊆ Fℓ
𝑞, and accepts 𝑓 if and only if

𝑓 |𝜋 , (𝑓(𝜋1), . . . , 𝑓(𝜋ℓ)) ∈ 𝑉 . The tester is 𝜖-sound if 𝒯 accepts 𝑓 ∈ 𝒞 with probability one,

while rejecting 𝑓 that is 𝛿-far from 𝒞 with probability at least 𝜖 · 𝛿.

We will also be interested in a stronger property of testers known as their robustness,

formally defined by Ben-Sasson and Sudan [BSS06], based on analogous notions in complexity

theory due to Ben-Sasson et al. [BSGH+04] and Dinur and Reingold [DR04]. The hope with

a robust tester is that, while it may make a few more queries than the minimum possible,

the rejection is “more emphatic” in that functions that are far from 𝒞 typically yield views

that are far from acceptable, i.e. if 𝛿(𝑓, 𝒞) is large, then so is 𝛿(𝑓 |𝜋, 𝑉) for typicaly choices of

(𝜋, 𝑉)← 𝒟. Formally, a tester 𝒟 is 𝛼-robust if E(𝜋,𝑉)←𝒟 [𝛿(𝑓 |𝜋, 𝑉)] ≥ 𝛼 ·𝛿(𝑓, 𝒞). Robustness

can be a much stronger property than mere soundnesss since it allows for composition with

other local testers. In particular, if there is an 𝛼-robust tester for 𝑓 with distribution 𝒟 and

if for every (𝜋, 𝑉) in the support of 𝒟, the property of being in 𝑉 has an ℓ′-local tester that

is 𝜖-sound, then 𝒞 has an ℓ′-local tester that is 𝛼 · 𝜖-sound. The hope that membership in 𝑉

has a nice local tester for every 𝑉 in the support of 𝒟 may seem overly optimistic, but for

many symmetric codes (such as affine-invariant codes, to be discussed later), all the 𝑉 ’s are

isomorphic — so this is really just one hope.

The interest in sublinear-time algorithms is obvious from a practical perspective. As the

amount of data stored and transmitted by society continues its explosive growth, even linear-

time algorithms may be too slow, and also unnecessary. Indeed, statisticians understood this

decades ago when estimating the population averages. If we want an approximate answer,

often 𝑂(1) queries suffice to give a good approximation with high confidence. Moreover, in

14

the context of error correction, if we have a very large encoded file and only wish to decode

a small portion of it, then we need our code to be locally decodable.

Surprisingly, sublinear-time algorithms for algebraic codes have played a prominent role

in computational complexity theory. In particular, locally testable codes form the “combi-

natorial core” of probabilistically checkable proofs (PCPs). A PCP for a language 𝐿 is a

protocol involving two parties, a Prover and a Verifier, and an input 𝑥, whereby the Prover

supplies a proof, depending on 𝑥, in an attempt to convince the Verifier that 𝑥 ∈ 𝐿. The

Verifier makes a small number of random queries to the proof and then either accepts or

rejects the proof based on what it sees. A valid PCP for 𝐿 satisfies the following: if 𝑥 ∈ 𝐿,

then there is some proof that the Prover can provide such that 𝑉 accepts with probability

1; if 𝑥 /∈ 𝐿, then regardless of the proof provided by the Prover, the Verifier will reject

with high probability (over its random queries). The celebrated PCP Theorem, proved

in [AS98, ALM+98], characterizes the complexity class NP as the class of languages with

PCPs where the Verifier makes only 𝑂(1) queries to the proof and uses only 𝑂(log 𝑛) bits of

randomness in determining its random queries, where 𝑛 is the length of the input 𝑥. Not only

did this theorem elucidate the class of NP a bit more, but it also paved the way for prov-

ing that, for many combinatorial optimization problems, even approximating the solution is

NP-hard.

At the heart of the proof of the PCP theorem lies the problem of low-degree testing —

the problem of testing whether a given function 𝑓 : F𝑚
𝑞 → F𝑞 has total degree deg(𝑓) ≤ 𝑑

or is far from any such function. Low-degree testing has been the most extensively studied

algebraic property testing problem. First studied in the work of Rubinfeld and Sudan [RS96],

low-degree testing and many variations have been analyzed in many subsequent works — a

partial list includes [ALM+98, FS95, AS03, RS97, MR06, AKK+05, KR06, JPRZ09, BKS+10,

HSS11]. When 𝑑≪ 𝑞, low-degree tests making as few as 𝑑+ 2 queries are known, that have

1/ poly(𝑑)-soundness (see, for instance, Friedl-Sudan [FS95]). However, tests that make 𝑂(𝑑)

queries achieve constant soundness (a universal constant independent of 𝑚, 𝑑, 𝑞 provided 𝑞 is

sufficiently larger than 𝑑), and even constant robustness. This constant robustness is central

15

to the PCP construction of Arora et al. [ALM+98]. In all cases with 𝑑 ≪ 𝑞, low-degree

tests operate by considering the restriction of a function to a random line, or sometimes

plane, in the domain, and accepting a function if its restriction to the chosen subspace is

a polynomial of degree at most 𝑑. Thus, the different restrictions 𝜋 are different affine

subspaces of low dimension (one or two) and the acceptable pattern 𝑉 is the same for all

𝜋. In particular, the robust analysis of the low-degree test allows for low-query tests, or

even proofs, of membership in 𝑉 in constant dimensional spaces to be composed with the

low-degree test in high dimensions to yield low-query PCPs. Robustness turns out to be

much more significant as a parameter to analyze in these results than the query complexity

of the outer test. Indeed, subsequent strengthenings of the PCP theorem in various senses

(e.g. in [AS03, RS97, MR06]) rely on improving the robustness to a quantity close to 1, and

this leads to PCPs of arbitrarily small constant, and then even 𝑜(1), error.

1.1.3 Affine-Invariance

In an attempt to understand what exactly makes codes like the Reed-Muller code testable,

Kaufman and Sudan set out to systematically study affine-invariant codes [KS08]. By then,

it was known that symmetry in properties contributed to their testability, as in graph prop-

erty testing. The hope was to find the analogous notion of symmetry for algebraic properties

such as linearity or low-degree, and affine-invariance seemed to be a promising abstraction. A

code 𝒞 ⊆ {F𝑚
𝑞 → F𝑞} is affine-invariant if, for every codeword 𝑓 ∈ 𝒞, the codeword 𝑓 ∘𝐴 ob-

tained by first applying an affine permutation 𝐴 : F𝑚
𝑞 → F𝑚

𝑞 to the domain before evaluating

𝑓 , is also a codeword. Kaufman and Sudan showed in [KS08] that any linear affine-invariant

code that is “𝑘-single-orbit characterized” is testable with 𝑘 queries and soundness Ω(𝑘−2).

For example, the Hadamard code is 3-single-orbit characterized by 𝑓(x)+𝑓(y)−𝑓(x+y) = 0

for any x,y ∈ F𝑚
𝑞 (the characterization is by constraints on 3 points, and the constraints

are all in a single orbit by the group action of affine permutations). Their proof simplifies,

unifies, and generalizes the proofs found in [BLR93, RS96, AKK+05, KR06, JPRZ09] and

unearths some of the fundamental underlying reasons for why testing works. Additionally,

16

Kaufman and Sudan initiated the systematic study of affine-invariant properties, and laid

the groundwork for our structural understanding of affine-invariant properties. The hope

was that eventually the study of affine-invariance would lead to constructions of new affine-

invariant codes with desirable testability properties.

While the locality properties (testability and correctability) of Reed-Muller codes are

well-studied, they are essentially the only rich class of symmetric codes that are well-studied.

The only other basic class of symmetric codes that are studied seem to be sparse ones (codes

with few codewords).

1.2 This Thesis

In this thesis, we use an algebraic operation, known as “lifting”, to construct new affine-

invariant codes. This thesis includes results from [GKS13, GK14, GHS15], though we omit

some results and generalize other results from these papers. [GKS13] is joint work with

Swastik Kopparty and Madhu Sudan. [GK14] is joint work with Swastik Kopparty. [GHS15]

is joint work with Elad Haramaty and Madhu Sudan.

1.2.1 Main Result

The main result of our thesis is the construction of high-rate LCCs and LTCs.

Theorem 1.2.1 (Main theorem, informal). ∀𝜖, 𝛽 > 0 ∃𝛿, 𝛼 > 0 such that for infinitely many

𝑛 there exists 𝑞 = 𝑞(𝑛) = 𝑂(𝑛𝜖) and a linear code 𝒞 ⊆ F𝑛
𝑞 of distance 𝛿 and rate 1− 𝛽 such

that

∙ 𝒞 is locally correctable and decodable from Ω(𝛿) fraction errors with 𝑂(𝑛𝜖) queries;

∙ 𝒞 is list-decodable from 1 −
√
1− 𝛿 fraction errors in polynomial time, and is locally

list-decodable from 1−
√
1− 𝛿 fraction errors with 𝑂(𝑛3𝜖) queries;

∙ 𝒞 has an 𝛼-robust tester using 𝑂(𝑛2𝜖) queries.

Theorem 1.2.1 is proved in Section 7.1.5, and is the culmination of the work in this thesis.

17

1.2.2 Lifting

The lifting operation was first defined and used in [BSMSS11] to prove negative results

— in particular, to construct “symmetric LDPC codes” that are not testable. The work

of [GKS13] initiated the systematic study of lifting, and also was the first work to use lifting

to prove positive results — in particular, to construct new high-rate locally correctable and

locally testable codes. Our definition of lifting is more general and somewhat cleaner than

that of [BSMSS11]. Starting from a base linear affine-invariant code 𝒞 ⊆ {F𝑞𝑡 → F𝑞}, we

define the𝑚-dimensional lift 𝒞𝑡↗𝑚 ⊆ {F𝑚
𝑞 → F𝑞} to be the code consisting of all 𝑓 : F𝑚

𝑞 → F𝑞

satisfying the following: 𝑓 is in the lift if and only if, for every 𝑡-dimensional affine subspace

𝐴 ⊆ F𝑚
𝑞 , the restriction 𝑓 |𝐴 ∈ 𝒞.

Lifting is a natural algebraic operation on affine-invariant codes, which is evident in the

generic properties that lifted codes naturally possess. We show that if the base code 𝒞 has

(relative) distance 𝛿, then the lifted code 𝒞𝑡↗𝑚 has distance 𝛿− 𝑞−𝑡, and in fact if 𝑞 ∈ {2, 3},

then the lifted distance is also 𝛿. So, lifting approximately preserves distance. Moreover,

𝒞𝑡↗𝑚 is naturally 𝑞𝑡-single-orbit characterized by construction, and so, by [KS08], the natural

𝑡-dimensional test — choose a random 𝑡-dimensional affine subspace 𝐴 ⊆ F𝑚
𝑞 and accept if

and only if 𝑓 |𝐴 ∈ 𝒞 — is Ω(𝑞−2𝑡)-sound. Finally, lifted codes are naturally locally correctable

— to correct 𝑓 at a point x ∈ F𝑚
𝑞 , choose a random 𝑡-dimensional subspace 𝐴 ⊆ F𝑚

𝑞 passing

through x, use the correction algorithm for 𝒞 to correct 𝑓 |𝐴 to a codeword 𝑐 ∈ 𝒞, and then

output 𝑐(x).

1.2.3 Robust Testing of Lifted Codes

In [GHS15], we consider robust testing of lifted codes. We propose and analyze the following

test for 𝒞𝑡↗𝑚: Pick a random 2𝑡-dimensional subspace 𝐴 in F𝑚
𝑞 and accept if 𝑓 |𝐴 ∈ 𝒞𝑡↗2𝑡.

Our main theorem relates the robustness of this test to the distance of the code 𝒞.

Theorem 1.2.2. ∀𝛿 > 0 ∃𝛼 > 0 such that the following holds: For every finite field F𝑞, for

every pair of positive integers 𝑡 and 𝑚, and for every affine-invariant code 𝒞 ⊆ {F𝑡
𝑞 → F𝑞}

satisfying 𝛿(𝒞) ≥ 𝛿, the code 𝒞𝑡↗𝑚 has a 𝑞2𝑡-local test that is 𝛼-robust.

18

Theorem 1.2.2 is proved in Section 6.1. As we elaborate below, Theorem 1.2.2 imme-

diately implies a robust analysis for low-degree tests. Whereas almost all previous robust

analyses of low-degree tests had more complex conditions on the relationship between the

robustness, the degree, and the field size, our relationship is extremely clean. The depen-

dence of 𝛼 on 𝛿 that we prove is polynomial but of fairly high degree 𝛼 = Ω(𝛿74). We do not

attempt to improve this relationship in this thesis and choose instead to keep the interme-

diate statements simple and general. We note that a significant portion of this complexity

arises due to our desire to lift 𝑡-dimensional codes for general 𝑡, and here the fact that the

robustness lower-bound is independent of 𝑡 is itself significant.

Comparing with other testing results for lifted codes, there are only two prior works to

compare with: Kaufman and Sudan [KS08] analyze a tester for a broader family of codes

that they call “single-orbit” codes. Their result would yield a robustness of Θ(𝑞−3𝑡). (See

Corollary 6.1.2.)

Haramaty et al. [HRS13] also give a tester for lifted codes. They do not state their results

in terms of robustness but their techniques would turn into a robustness of 𝜖𝑞 · 𝛿, where the

𝜖𝑞 is a positive constant for constant 𝑞 but goes to zero extremely quickly as 𝑞 →∞. Thus

for growing 𝑞 (and even slowly shrinking 𝛿) our results are much stronger.

Proof approach and some technical contributions

In order to describe our test and analysis techniques, we briefly review the two main tests

proposed in the literature for “low-degree testing”, when the field size is much larger than

the degree. The most natural test for this task is the one that picks a random line in F𝑚
𝑞

and computes the proximity of the function restricted to this line to the space of univariate

degree 𝑑 polynomials. This is the test proposed by Rubinfeld and Sudan [RS96] and analyzed

in [RS96, ALM+98, AS03]. A second low-degree test is somewhat less efficient in its query

complexity (quadratically so) but turns out to have a much simpler analysis — this test

would pick a random two-dimensional (affine) subspace in F𝑚
𝑞 and verify that the function

is a bivariate polynomial of degree at most 𝑑 on this subspace. This is the test proposed

19

by Raz and Safra [RS97] and analyzed in [RS97, MR06]. Both tests can be analyzed by

first reducing the testing problem to that of testing constant variate functions (at most four

variate functions) and then analyzing the constant dimensional problem as a second step.

The first step is completely generic or at least it was sensed to be so. However there was

no prior formalization of the fact that it is generic. The only class of functions to which

it has been applied is the class of low-degree polynomials and a priori it is not clear how

to even justify the claim of genericity. Here we show that the first step applies to all lifted

codes, thus giving the first justification of the presumed genericity of this step, which we

consider to be a conceptual contribution.

For the second step, the robust analyses in [ALM+98, AS03] are quite algebraic and there

seems to be no hope to use them on general lifted codes. The test and analysis of Raz and

Safra [RS97] on the other hand feels much more generic. In this work we use their test, and

extend it to general lifted codes and show that it is robust. Even the extension of the test is

not completely obvious. In particular, to test low-degree polynomials they look at restrictions

of the given function to 2-dimensional “planes”. When lifting 𝑡-dimensional properties, it

is not immediate what would be the dimension of the restrictions the test should look at:

Should it be 𝑡+1? Or 2𝑡 or maybe 3𝑡− 1 (each of which does make logical sense)? We show

that the 2𝑡 dimensional tests are robust, with robustness being independent of 𝑡.

Next we turn to our analysis. In showing robustness of their test, applied to generic lifted

codes there is a major barrier: Almost all analyses of low-degree tests, for polynomials of

degree at most 𝑑, attempt to show first that a function passing the test with high probability

is close to a polynomial of degree twice the degree, i.e., at most 2𝑑, with some additional

features. They then use the distance of the space of polynomials of degree 2𝑑 and the

additional features to establish that the function being tested is really close to a degree

𝑑 polynomial. In extending such analyses to our setting we face two obstacles: In the

completely generic setting, there is no nice notion corresponding to the set of degree 2𝑑

polynomials. One approach might be to consider the linear space spanned by products of

functions in our basic space and work with them, but the algebra gets hairy to understand and

20

analyze. Even if we abandon the complete genericity and stick to the space of polynomials

of degree 𝑑, but now allow 𝑑 > 𝑞/2 we hit a second obstacle: The space of polynomials of

degree 2𝑑 have negligible relative distance compared to the space of polynomials of degree 𝑑.

Thus we need to search for a new proof technique and we find one by unearthing a new

connection between “lifted codes” and “tensor product” codes. The tensor product is a

natural operation in linear algebra and when applied to two linear codes, it produces a new

linear code in a natural way. Tensor products of codes are well-studied in the literature

on coding theory. The testing of tensor product codes was initiated by Ben-Sasson and

Sudan [BSS06] and subsequently has been well-studied [DSW06, Val05, BSV09b, BSV09a,

GGR09]. Specifically, a recent result of Viderman [Vid12] gives a powerful analysis which

we are able to reproduce in a slightly different setting to get our results. In particular this

is the ingredient that allows us to work with base codes whose distance is less than 1/2.

Also, for the sake of the exposition we pretend that this test can test two-dimensional tensor

products of one dimensional codes, with one-dimensional tests. (Actually, the test works

with three dimensional tensors and tests them by looking at two-dimensional planes, but by

suppressing this difference, our exposition becomes a little simpler.)

To explain the connection between lifted codes and tensor product codes, and the idea

that we introduce to test the former, we turn to the simple case of testing a bivariate lift of

a univariate Reed-Solomon code. Specifically, let 𝒞 be the family of univariate polynomials

of degree at most 𝑑 mapping F𝑞 to F𝑞. Let 𝒞2 be the family of bivariate polynomials that

become a univariate polynomial of degree at most 𝑑 on every restriction to a line. The tensor

product of 𝒞 with itself, which we denote 𝒞⊗2 corresponds to the set of bivariate polynomials

of degree at most 𝑑 in each variable. Clearly 𝒞2 ⊆ 𝒞⊗2 but such subset relationships are

not of immediate use in testing a code. (Indeed locally testable codes contain many non-

LTCs.) To get a tighter relationship, now fix two “directions” 𝑑1 and 𝑑2 and let 𝒞𝑑1,𝑑2 be

the code containing all bivariate polynomials over F𝑞 that on every restriction to lines in

directions 𝑑1 and 𝑑2 form univariate degree 𝑑 polynomials. On the one hand the code 𝒞𝑑1,𝑑2
is just isomorphic to the tensor product code 𝒞⊗2 which is testable by the natural test,

21

by our assumption. On the other hand, we now have 𝒞2 = ∩𝑑1,𝑑2𝒞𝑑1,𝑑2 so we now have a

characterization of the lifted codes in terms of the tensor product. One might hope that

one could use this characterization to get a (robust) analysis of the lifted test since it tests

membership in 𝒞𝑑1,𝑑2 for random choices of 𝑑1 and 𝑑2, but unfortunately we do not see a

simple way to implement this hope.

Our key idea is look instead at a more complex family of codes 𝒞𝑑1,𝑑2,𝑑3 that consists

of functions of degree 𝑑 in directions 𝑑1, 𝑑2 and 𝑑3. (Of course now 𝑑1, 𝑑2, 𝑑3 are linearly

dependent and so 𝒞𝑑1,𝑑2,𝑑3 is not a tensor product code. We will return to this issue later.) We

still have 𝒞2 = ∩𝑑1,𝑑2,𝑑3𝒞𝑑1,𝑑2,𝑑3 . Indeed we can even fix 𝑑1, 𝑑2 arbitrarily (only requiring them

to be linearly independent) and we have 𝒞2 = ∩𝑑3𝒞𝑑1,𝑑2,𝑑3 . This view turns out to be more

advantageous since we now have that for any 𝑑3 and 𝑑′3 we have 𝒞𝑑1,𝑑2,𝑑3 ∪ 𝒞𝑑1,𝑑2,𝑑′3 ⊆ 𝒞𝑑1,𝑑2
which is a code of decent distance. This allows us to show that if the function being tested

is close to 𝒞𝑑1,𝑑2,𝑑3 for many choices of 𝑑3 then the nearest codewords for all these choices of

𝑑3 are the same. An algebraic analysis of lifted codes tells us that a codeword of 𝒞𝑑1,𝑑2 can

not be in 𝒞𝑑1,𝑑2,𝑑3 for many choices of 𝑑3 without being a codeword of the lifted code and

this lends promise to our idea. But we are not done, since we still need to test the given

function for proximity to 𝒞𝑑1,𝑑2,𝑑3 and this is no longer a tensor product code so Viderman’s

result does not apply directly. Fortunately, we are able to develop the ideas from Viderman’s

analysis for tensor product codes [Vid12] and apply them also to our case and this yields

our test and analysis. We note that this extension is not immediate — indeed one of the

central properties of tensor product codes is that they are decodable from some clean erasure

patterns and this feature is missing in our codes. Nevertheless the analysis can be modified

to apply to our codes and this suffices to complete the analysis.

In the actual implementation, as noted earlier, we can’t work with univariate tests even

for the simple case above, and work instead by using a bivariate test for trivariate and 4-

variate functions. (This is similar to the reasons why Raz and Safra used a bivariate test.)

This complicates the notations a bit, but the idea remains similar to the description above.

Our task gets more complicated when the base code being lifted is 𝑡-dimensional for 𝑡 > 1.

22

The most natural adaptation of our analysis leads to dependencies involving 𝛿 (the distance

of the base code) and 𝑡. We work somewhat harder in this case to eliminate any dependence

on 𝑡 while working within the framework described above.

1.2.4 Applications

Lifted Reed-Solomon Code

The most interesting construction arising from lifting is the “lifted Reed-Solomon code”.

As its name suggests, the lifted Reed-Solomon code is obtained by simply lifting the Reed-

Solomon code, a univariate code, to 𝑚 dimensions. The lifted Reed-Solomon, by definition,

contains the Reed-Muller code. However, if the degree 𝑑 of the Reed-Solomon code is suffi-

ciently large relative to the field size — in particular, if 𝑑 ≥ 𝑞 − 𝑞/𝑝, where F𝑞 has charac-

teristic 𝑝 — then the lifted Reed-Solomon code contains polynomials of high degree as well.

This fact follows from the characterization of low-degree polynomials as proven in [KR06].

In fact, using structural results about affine-invariance and lifts, we easily re-prove a special

case of the characterization of low-degree polynomials in Theorem 7.1.6. The lifted Reed-

Solomon code is arguably more natural than the Reed-Muller code, the latter of which is an

unnecessarily sparse subcode of the former. We therefore expect the lifted Reed-Solomon

code to exhibit the same versatility as that of the Reed-Muller code, and indeed since the

lifted Reed-Solomon code is a lifted code, it generically has good distance and is locally

decodable and testable. We show that it is also in fact (locally) list-decodable up to the

Johnson radius, just like the Reed-Muller code. What sets the lifted Reed-Solomon code

apart from the Reed-Muller code is its vastly greater rate. If one insists on having positive

distance 𝛿 > 0, then the 𝑚-variate Reed-Muller code has rate bounded by 1/𝑚!, whereas

the rate of the lifted Reed-Solomon code approaches 1 as 𝛿 → 0.

The first family of high-rate locally correctable codes known were the multiplicity codes of

Kopparty, Saraf, and Yekhanin [KSY14]. Kopparty [Kop12] showed that multiplicity codes

are also locally list-decodable up to the Johnson radius. The only prior construction of

high-rate codes that are robustly testable are the tensor product codes of Viderman [Vid12].

23

Thus, the lifted Reed-Solomon code is the first high-rate code known to be locally correctable,

locally list-decodable up to the Johnson radius, and robustly testable. This is the code in

Theorem 1.2.1.

Robust Low-Degree Testing

An almost direct corollary of our robustness result for lifted codes is a 𝑞4-local robust low-

degree test for the setting 𝑑 ≤ (1 − 𝛿)𝑞. To see why we get 𝑞4 queries, note that when

𝑑 ≥ 𝑞 − 𝑞/𝑝, the 𝑚-variate Reed-Muller code of degree 𝑑 is not equal to the 𝑚-dimensional

lift of the degree 𝑑 Reed-Solomon code. But the latter turns out to be the 𝑚-dimensional

lift of the bivariate Reed-Muller code of degree 𝑑. Applying our robust testing result to this

lifted family yields a robust test making 𝑞4 queries. But with some slight extra work we can

get a better tester that makes only 𝑞2 queries and this yields the following theorem.

Theorem 1.2.3. ∀𝛿 > 0 ∃𝛼 > 0 such that the following holds: For every finite field F𝑞,

for every integer 𝑑 ≤ (1 − 𝛿)𝑞 and every positive integer 𝑚, there is a 𝑞2-query 𝛼-robust

low-degree test for the class of 𝑚-variate polynomials of degree at most 𝑑 over F𝑞.

We note that previous works on low-degree testing worked only when 𝑑 < 𝑞/2. This

ratio seems to be achieved by Friedl and Sudan (see [FS95, Theorem 13]). Other works

[RS96, ALM+98, RS97, AS03, MR06] seem to achieve weaker ratios for a variety of reasons

discussed above.

Nikodym Set Size Bounds

One of the applications of lifted codes is to bounding, from below, the size of “Nikodym

sets” over finite fields (of small characteristic). A set 𝑆 ⊆ F𝑚
𝑞 is a Nikodym set if every point

x has a line passing through it such that all points of the line, except possibly the point x

itself, are elements of 𝑆. Nikodym sets are closely related to “Kakeya sets” — the latter

contain a line in every direction, while the former contain almost all of a line through every

point. A lower bound for Kakeya sets over finite fields was proved by Dvir [Dvi08] using the

polynomial method and further improved by using the “method of multiplicites” by Saraf and

24

Sudan [SS08] and Dvir et al. [DKSS09]. Kakeya sets have seen applications connecting its

study to the study of randomness extractors, especially [DS07, DW11]. Arguably, Nikodym

sets are about as natural in this connection as Kakeya sets.

Previous lower bounds on Kakeya sets were typically also applicable to Nikodym sets

and led to bounds of the form |𝑆| ≥ (1 − 𝑜(1))𝑞𝑚/2𝑚 where the 𝑜(1) term goes to zero as

𝑞 →∞. In particular, previous lower bounds failed to separate the growth of Nikodym sets

from those of Kakeya sets. In our work, we present a simple connection that shows that the

existence of the lifted Reed-Solomon code yields a large lower bound on the size of Nikodym

sets, thereby significantly improving the known lower bound on the size of Nikodym sets

over fields of constant characteristic.

Theorem 1.2.4. For every prime 𝑝, and every integer 𝑚, there exists 𝜖 = 𝜖(𝑝,𝑚) > 0

such that for every finite field F𝑞 of characteristic 𝑝, if 𝑆 ⊆ F𝑚
𝑞 is a Nikodym set, then

|𝑆| ≥ 𝑞𝑚 − 𝑞(1−𝜖)𝑚. In particular, if 𝑞 →∞, then |𝑆| ≥ (1− 𝑜(1)) · 𝑞𝑚.

Thus, whereas previous lower bounds on the size of Nikodym sets allowed for the possi-

bility that the density of the Nikodym sets vanishes as 𝑚 grows, ours show that Nikodym

sets occupy almost all of the space. One way to view our results is that they abstract the

polynomial method in a more general way, and thus lead to stronger lower bounds in some

cases.

1.2.5 Organization

In Chapter 2, we establish notation and preliminary definitions. In Chapter 3, we formally

define error correcting codes and relevant models: local decoding, correcting, list-decoding,

and testing. In Chapter 4, we review some structural properties of affine-invariant codes. In

Chapter 5, we formally define the lifting operation and prove generic properties of lifted codes.

In Chapter 6, we prove that lifted codes are robustly testable with robustness parameter

that depends only on the distance of the base code. In Chapter 7, we discuss applications

of lifted codes: construction of the lifted Reed-Solomon code, robust low-degree testing, and

new lower bounds on the size of Nikodym sets.

25

26

Chapter 2

Preliminaries

2.1 Notation

Letters. We will typically use lower-case italic letters (e.g. 𝑎, 𝑏, 𝑐) to denote scalar val-

ues, lower-case bold letters (e.g. a,b, c) to denote vectors, and upper-case bold letters (e.g.

A,B,C) to denote matrices. If A is a matrix, then we denote by A𝑖* the 𝑖-th row of A and

by A*𝑗 the 𝑗-th row of A.

Sets and functions. For a set 𝑆 and 𝑛 ∈ N, let
(︀
𝑆
𝑛

)︀
be the collection of subsets 𝑇 ⊆ 𝑆

with |𝑇 | = 𝑛. Let 2𝑆 be the collection of all subsets of 𝑆. For a positive integer 𝑛, define

[𝑛] , {1, . . . , 𝑛} and J𝑛K , {0, 1, . . . , 𝑛− 1}. For sets 𝐴 and 𝐵, let {𝐴→ 𝐵} denote the set

of functions from 𝐴 to 𝐵.

Vectors and Hamming distance. If a ∈ N𝑚, let ‖a‖ ,
∑︀𝑚

𝑖=1 𝑎𝑖. If Σ is a finite set,

𝑛 ∈ N, and s ∈ Σ𝑛 is a string, then let 𝑠𝑖 denote the 𝑖-th component of s, for 𝑖 ∈ [𝑛], so that

s = (𝑠1, . . . , 𝑠𝑛). For two vectors a,b ∈ Σ𝑛, denote their Hamming distance by Δ(a,b) ,

#{𝑖 ∈ [𝑛] | 𝑎𝑖 ̸= 𝑏𝑖} and their normalized Hamming distance by 𝛿(a,b) , |Δ(a,b)|
𝑛

. If 𝑆 ⊆ Σ𝑛

is a set, then 𝛿(a, 𝑆) , minb∈𝑆 𝛿(a,b) is the distance from a to 𝑆. If Σ is a field, then the

(resp. normalized) Hamming weight of a ∈ Σ𝑛 is (resp. 𝛿(a,0)) Δ(a,0). We will frequently

think of functions 𝑓 : 𝐴 → 𝐵 as vectors in 𝐵𝐴 and so we extend the vector notations to

27

functions as well. In particular, if 𝑓, 𝑔 : 𝐴→ 𝐵, then Δ(𝑓, 𝑔) , #{𝑥 ∈ 𝐴 | 𝑓(𝑥) ̸= 𝑔(𝑥)} and

𝛿(𝑓, 𝑔) , Δ(𝑓,𝑔)
|𝐴| . Note that 𝛿(𝑓, 𝑔) = Pr𝑥∈𝐴 [𝑓(𝑥) ̸= 𝑔(𝑥)].

Minkowski sums and affine subspaces. For sets 𝐴,𝐵 ⊆ F𝑚, their Minkowski sum

is denoted 𝐴 + 𝐵 , {a + b | a ∈ 𝐴,b ∈ 𝐵}. For 𝐴 ⊆ F𝑚, the span of 𝐴 is denoted

span(𝐴) , {
∑︀

a∈𝐴 𝑐a · a | 𝑐a ∈ F}. For x ∈ F𝑚 and 𝐴 ⊆ F𝑚, let (x, 𝐴) , {x} + span(𝐴) be

the affine subspace through x in directions 𝐴.

Shadows. Let 𝑝, 𝑎, 𝑏 ∈ N and 𝑎 =
∑︀

𝑖≥0 𝑎
(𝑖)𝑝𝑖, 𝑏 =

∑︀
𝑖≥0 𝑏

(𝑖)𝑝𝑖 with 𝑎(𝑖), 𝑏(𝑖) ∈ J𝑝K for 𝑖 ≥ 0.

Then 𝑎 is in the 𝑝-shadow of 𝑏, denoted by 𝑎 ≤𝑝 𝑏, if 𝑎
(𝑖) ≤ 𝑏(𝑖) for 𝑖 ≥ 0. If a,b ∈ N𝑚, then

a ≤𝑝 b means that 𝑎𝑖 ≤𝑝 𝑏𝑖 for every 𝑖 ∈ [𝑚]. If a ∈ N𝑛 and 𝑏 ∈ N, then a ≤𝑝 𝑏 means that∑︀
𝑖∈𝑆 𝑎𝑖 ≤𝑝 𝑏 for any subset 𝑆 ⊆ [𝑛]. If A ∈ N𝑚×𝑛 and b ∈ N𝑚, then A ≤𝑝 b means that

A𝑖* ≤𝑝 b for every 𝑖 ∈ [𝑚].

Finite fields and polynomials. If 𝑝 is a prime and 𝑞 is a power of 𝑝, then F𝑞 denotes

the finite field of size 𝑞. If X = (𝑋1, . . . , 𝑋𝑚) are variables and d ∈ N𝑚, then Xd denotes

the monomial
∏︀𝑚

𝑖=1𝑋
𝑑𝑖
𝑖 . Any polynomial ℎ(X) ∈ F𝑞[X] with such that ℎ(X) = 𝑓(X) +

𝑔(X)
∏︀𝑚

𝑖=1(𝑋
𝑞
𝑖 − 𝑋𝑖) for some 𝑔(X) ∈ F𝑞[X] defines the same function F𝑚

𝑞 → F𝑞, since the

polynomial 𝑋𝑞 −𝑋 is identically zero on F𝑞. Observe that every function 𝑓 : F𝑚
𝑞 → F𝑞 can

be expressed uniquely as a linear combination 𝑓(X) =
∑︀

d∈J𝑞K𝑚 𝑓d ·Xd of monomials Xd with

d ∈ J𝑞K𝑚. Throughout this thesis, when we refer to a “polynomial” 𝑓 : F𝑚
𝑞 → F𝑞, we mean

the unique 𝑓(X) defined above. The support of 𝑓 is supp(𝑓) , {d ∈ J𝑞K𝑚 | 𝑓d ̸= 0}. The

degree of a polynomial 𝑓 : F𝑚
𝑞 → F𝑞 is deg(𝑓) , max{‖d‖ | d ∈ supp(𝑓)}. When we refer

to a polynomial 𝑓 : F𝑚
𝑞 → F𝑞 in the context of codewords, we refer to the 𝑞𝑚-dimensional

vector (𝑓(x))x∈F𝑚
𝑞
.

28

Mod-star. For 𝑎 ∈ N and 𝑏 > 1, define the operation mod* by

𝑎mod* 𝑏 =

⎧⎪⎨⎪⎩𝑎 𝑎 < 𝑏

𝑎 mod (𝑏− 1) 𝑎 ≥ 𝑏

so that 𝑋𝑎 ≡ 𝑋𝑎mod* 𝑏 (mod 𝑋𝑏 −𝑋).

2.2 Probability and Concentration bounds

If 𝑋 is a random variable, we use E[𝑋] and Var[𝑋] to denote the expectation and variance

of 𝑋, respectively. If the probability space of 𝑋 is not clear from context, we use subscripts,

e.g. if 𝑋 = 𝑋(𝑎, 𝑏), then E𝑎[𝑋] is the average over 𝑎 with 𝑏 fixed.

Proposition 2.2.1 (Markov inequality). Let 𝑋 ≥ 0 be a random variable with E[𝑋] < ∞

and let 𝑎 > 0. Then Pr[𝑋 ≥ 𝑎] ≤ E[𝑋]
𝑎

.

Proposition 2.2.2 (Chebyshev inequality). Let 𝑋 be a random variable with E[𝑋] < ∞

and Var[𝑋] <∞, and let 𝑎 > 0. Then Pr[|𝑋 − E[𝑋]| ≥ 𝑎] ≤ Var[𝑋]
𝑎2

.

Proposition 2.2.3 (Hoeffding inequality). Let 𝑋1, . . . , 𝑋𝑛 ∈ [0, 1] be independent random

variables and let 𝑋 , 1
𝑛

∑︀𝑛
𝑖=1𝑋𝑖. Let 𝜖 > 0. Then Pr

[︀⃒⃒
𝑋 − E[𝑋]

⃒⃒
> 𝜖
]︀
≤ 2 exp(−2𝑛𝜖2).

Proposition 2.2.4. Let 𝑓, 𝑔 : F𝑚
𝑞 → F𝑞. Let ̃︀𝛿(𝑓, 𝑔) be the estimate of 𝛿(𝑓, 𝑔) by random

sampling, i.e. independent uniformly random x ∈ F𝑚
𝑞 are chosen and the average of 1𝑓(x)̸=𝑔(x)

is output. If Θ(ln(1/𝜂)/𝜖2) queries are used in the sample, then with probability at least 1−𝜂,

the estimate ̃︀𝛿(𝑓, 𝑔) has additive error at most 𝜖.

Proof. Let 𝑛 ≥ ln(2/𝜂)/(2𝜖2). For each 𝑖 ∈ [𝑛], let 𝑋𝑖 , 1𝑓(x𝑖) ̸=𝑔(x𝑖), and define 𝑋 ,

1
𝑛

∑︀𝑛
𝑖=1𝑋𝑖 so that ̃︀𝛿(𝑓, 𝑔) = 𝑋, and 𝛿(𝑓, 𝑔) = E[𝑋]. By Proposition 2.2.3,

Pr
[︁⃒⃒⃒̃︀𝛿(𝑓, 𝑔)− 𝛿(𝑓, 𝑔)⃒⃒⃒ > 𝜖

]︁
≤ 2 exp(−2𝑛𝜖2) ≤ 𝜂.

29

30

Chapter 3

Error Correcting Codes

3.1 Classical Parameters

Error correcting codes are schemes for encoding messages as codewords to protect them from

noise. The code itself is the subset of valid codewords. The rate of a code is the ratio of

the message length to the encoding length, and measures the efficiency of the encoding. The

distance of a code measures the minimum distance between valid codewords, and indicates

the error-correcting capability of the code. In this section, we formally define these notions.

Definition 3.1.1 (Code). Let Σ be a finite set and let 𝑛 be a natural number. A code over

Σ of block length 𝑛 is a subset 𝒞 ⊆ Σ𝑛. If there exists a set Σ0, integer 𝑘 ≤ 𝑛, and injective

function Enc : Σ𝑘
0 → Σ𝑛 such that Enc(Σ𝑘

0) = 𝒞, then Enc is an encoding function for 𝒞.

Definition 3.1.2 (Rate of a code). The rate of a code 𝒞 ⊆ Σ𝑛 is log |𝒞|
𝑛 log |Σ| .

Definition 3.1.3 (Distance of a code). The (normalized) distance of a code 𝒞 ⊆ Σ𝑛 is

𝛿(𝒞) , minx ̸=y∈𝒞 𝛿(x,y).

The following proposition shows that, algorithmic efficiency aside, any code supports

unique decoding up to half its minimum distance.

Proposition 3.1.4. For every r ∈ Σ𝑛, there exists at most one c ∈ 𝒞 with 𝛿(r, c) < 𝛿(𝒞)
2
.

31

Proof. Suppose c, c′ ∈ 𝒞 and 𝛿(r, c), 𝛿(r, c′) < 𝛿(𝒞)
2
. Then, by the triangle inequality,

𝛿(c, c′) ≤ 𝛿(c, r) + 𝛿(r, c′) < 𝛿(𝒞), so c = c′.

Linear codes are codes whose alphabet is a (finite) field and whose codewords form a

vector space over the field. Every code of interest to us in this thesis is a linear code.

Definition 3.1.5 (Linear code). A code 𝒞 ⊆ Σ𝑛 is linear if Σ = F is a field and 𝒞 is a linear

subspace of F𝑛.

Proposition 3.1.6. If 𝒞 ⊆ F𝑛 is a linear code, then 𝛿(𝒞) is equal to the minimal normalized

Hamming weight of nonzero c ∈ 𝒞.

Proof. Let c ∈ 𝒞 be nonzero of minimal Hamming weight. By definition, 𝛿(𝒞) ≤ 𝛿(c,0).

On the other hand, for any two distinct x,y ∈ 𝒞, 𝛿(x,y) = 𝛿(x − y,0) ≥ 𝛿(c,0), and so

minimizing over x ̸= y, we have 𝛿(𝒞) ≥ 𝛿(c,0).

3.2 Local decoding, correcting, and list-decoding

In this section, we formally define the models of local decoding, local correcting, and local

list-decoding. Intuitively, local decoding entails recovering a symbol of the original message

using few queries, while local correcting entails recovering a symbol of the original codeword

using few queries.

Definition 3.2.1 (Local decoding). A code 𝒞 ⊆ Σ𝑛 with encoding function Enc : Σ𝑘
0 → Σ𝑛

is (ℓ, 𝜏, 𝜖)-locally decodable if there exists a randomized oracle 𝒜 : [𝑘]→ Σ0 with oracle access

to a received word r ∈ Σ𝑛 such that

1. 𝒜𝑟 queries at most ℓ symbols of r;

2. if there is m ∈ Σ𝑘
0 with 𝛿(Enc(m), r) ≤ 𝜏 , then Pr [𝒜𝑟(𝑖) = 𝑚𝑖] ≥ 1−𝜖 for every 𝑖 ∈ [𝑘].

Definition 3.2.2 (Local correcting). A code 𝒞 ⊆ Σ𝑛 is (ℓ, 𝜏, 𝜖)-locally correctable if there

exists a randomized oracle 𝒜 : [𝑛] → Σ with oracle access to a received word r ∈ Σ𝑛 such

that

32

1. 𝒜𝑟 queries at most ℓ symbols of r;

2. if there is c ∈ 𝒞 with 𝛿(c, r) ≤ 𝜏 , then Pr [𝒜𝑟(𝑖) = 𝑐𝑖] ≥ 1− 𝜖 for every 𝑖 ∈ [𝑛].

If 𝒞 is a linear code, then it is possible to encode 𝒞 in systematically, i.e. such that the

original message is part of the codeword. Of course, this is not algorithmically satisfying

unless the systematic encoding function is explicit, i.e. computable in polynomial time. When

𝒞 is linear, we can think of it as a space of functions {𝑆 → F𝑞}. A systematic encoding is

then equivalent to finding an interpolating set for 𝒞 in 𝑆.

Definition 3.2.3. If 𝒞 ⊆ {𝑆 → F𝑞} is linear, then 𝐼 ⊆ 𝑆 is an interpolating set for 𝒞 if, for

every 𝑓 : 𝐼 → F𝑞, there exists a unique extension 𝑔 ∈ 𝒞 such that 𝑔|𝐼 = 𝑓 .

Remark 3.2.4. If 𝒞 ⊆ {𝑆 → F𝑞} has an interpolating set 𝐼 ⊆ 𝑆, then |𝒞| = 𝑞|𝐼|. In

particular, if 𝒞 is linear, then |𝐼| = dimF𝑞(𝒞).

Proposition 3.2.5. If 𝒞 ⊆ {𝑆 → F𝑞} is linear and has an explicit interpolating set 𝐼 ⊆ 𝑆,

and 𝒞 is a (ℓ, 𝜏, 𝜖)-locally correctable code, then 𝒞 is a (ℓ, 𝜏, 𝜖)-locally decodable code.

Proof. Let Enc be the map which takes 𝑓 : 𝐼 → F𝑞 to its unique extension 𝑔 ∈ 𝒞 such that

𝑔|𝐼 = 𝑓 , guaranteed by the fact that 𝐼 is an interpolating set. Then the local correcting

algorithm for 𝒞 also serves as the local decoding algorithm, when restricted to 𝐼.

A local list-decoding algorithm outputs a list of oracles, such that each valid codeword

within the given radius is computed by some oracle in the output list.

Definition 3.2.6 (Local list-decoding). A code 𝒞 ⊆ Σ𝑛 is (ℓ1, ℓ2, 𝜏, 𝐿, 𝜖, 𝜂)-locally list-

decodable if there exists a randomized algorithm 𝒜 with oracle access to a received word

r ∈ Σ𝑛 that outputs a list 𝑀1, . . . ,𝑀𝐿 : [𝑛]→ Σ of randomized oracles with oracle access to

r, such that

1. 𝒜𝑟 queries at most ℓ1 symbols of r;

2. for each 𝑗 ∈ [𝐿], 𝑀𝑗 queries at most ℓ2 symbols of r;

3. with probability at least 1 − 𝜂, the following holds: if there is c ∈ 𝒞 with 𝛿(c, r) ≤ 𝜏 ,

then there is some 𝑗 ∈ [𝐿] such that Pr[𝑀 𝑟(𝑖) = 𝑐𝑖] ≥ 1− 𝜖 for every 𝑖 ∈ [𝑛].

33

3.3 Local testing and robust testing

In this section, we formally define the model of testing. Since we will be solely interested in

the testing of linear codes, we only present the definition of local testing in the context of

linear codes. We also define the notions of soundness and robustness, and prove some simple

relationships between the two.

Definition 3.3.1 (Local testing). A ℓ-local tester for a code 𝒞 ⊆ {𝑆 → F𝑞} is a randomized

algorithm 𝒯 with oracle access to a received word 𝑓 : 𝑆 → F𝑞, which randomly samples

(𝜋, 𝑉) according to some distribution 𝒟 on (𝑆ℓ, 2F
ℓ
𝑞), with 𝜋 = (𝜋1, . . . , 𝜋ℓ) ∈ 𝑆ℓ and 𝑉 ⊆ Fℓ

𝑞

and accepts if and only if 𝑓 |𝜋 , (𝑓(𝜋1), . . . , 𝑓(𝜋ℓ)) ∈ 𝑉 .

The tester is 𝜖-sound if 𝒯 accepts 𝑓 ∈ 𝒞 with probability one, and rejects 𝑓 /∈ 𝒞 with

probability at least 𝜖 · 𝛿(𝑓, 𝒞).

The tester is 𝛼-robust if E(𝜋,𝑉)←𝒟 [𝛿 (𝑓 |𝜋, 𝑉)] ≥ 𝛼 · 𝛿(𝑓, 𝒞).

Proposition 3.3.2. Let 𝒯 be an ℓ-local tester for 𝒞. If 𝒯 is 𝜖-sound, then 𝒯 is (𝜖/ℓ)-robust.

If 𝒯 is 𝛼-robust, then 𝒯 is 𝛼-sound.

Proof. Suppose 𝒯 is 𝜖-sound. Observe that if 𝑓 |𝜋 /∈ 𝑉 , then 𝛿(𝑓 |𝜋, 𝑉) ≥ 1/ℓ. Therefore,

E(𝜋,𝑉)←𝒟 [𝛿 (𝑓 |𝜋, 𝑉)] = E(𝜋,𝑉)←𝒟 [𝛿 (𝑓 |𝜋, 𝑉) | 𝑓 |𝜋 /∈ 𝑉] · Pr
(𝜋,𝑉)←𝒟

[𝑓 |𝜋 /∈ 𝑉] (3.1)

≥ (1/ℓ) · Pr
(𝜋,𝑉)←𝒟

[𝑓 |𝜋 /∈ 𝑉] (3.2)

≥ (1/ℓ) · 𝜖 · 𝛿(𝑓, 𝒞). (3.3)

Now suppose 𝒯 is 𝛼-robust. Then

Pr
(𝜋,𝑉)←𝒟

[𝑓 |𝜋 /∈ 𝑉] ≥ E(𝜋,𝑉)←𝒟 [𝛿 (𝑓 |𝜋, 𝑉) | 𝑓 |𝜋 /∈ 𝑉] · Pr
(𝜋,𝑉)←𝒟

[𝑓 |𝜋 /∈ 𝑉] (3.4)

= E(𝜋,𝑉)←𝒟 [𝛿 (𝑓 |𝜋, 𝑉)] (3.5)

≥ 𝛼 · 𝛿(𝑓, 𝒞). (3.6)

34

Proposition 3.3.3. Let 𝒯𝒞 be an ℓ1-local tester for 𝒞 with distribution 𝒟𝒞, and suppose

for every (𝜋, 𝑉) in the support of 𝒟, 𝑉 has an ℓ2-local tester 𝒯𝑉 with distribution 𝒟𝑉 , and

ℓ2 ≤ ℓ1.

1. If 𝒯𝒞 is 𝛼1-robust and 𝒯𝑉 is 𝛼2-robust for every (𝜋, 𝑉) in the support of 𝒟𝒞, then 𝒞 has

an ℓ2-local tester that is (𝛼1 · 𝛼2)-robust.

2. If 𝒯𝒞 is 𝛼-robust and 𝒯𝑉 is 𝜖-sound for every (𝜋, 𝑉) in the support of 𝒟𝒞, then 𝒞 has

an ℓ2-local tester that is (𝛼 · 𝜖)-sound.

Proof. Let 𝒟 be the following distribution: choose (𝜋, 𝑉)← 𝒟𝒞 and then choose and output

(𝜋′, 𝑉 ′)← 𝒟𝑉 . Let 𝒯 be the ℓ2-tester for 𝒞 with distribution 𝒟.

1. If 𝒯𝒞 is 𝛼1-robust and 𝒯𝑉 is 𝛼2-robust, then

E(𝜋′,𝑉 ′)←𝒟 [𝛿 (𝑓 |𝜋′ , 𝑉 ′)] = E(𝜋,𝑉)←𝒟𝒞

[︀
E(𝜋′,𝑉 ′)←𝒟𝑉

[𝛿 (𝑓 |𝜋′ , 𝑉 ′)]
]︀

(3.7)

≥ 𝛼2 · E(𝜋,𝑉)←𝒟𝒞 [𝛿 (𝑓 |𝜋, 𝑉)] (3.8)

= 𝛼1 · 𝛼2 · 𝛿(𝑓, 𝒞). (3.9)

2. If 𝒯𝒞 is 𝛼-robust and 𝒯𝑉 is 𝜖-sound, then

Pr
(𝜋′,𝑉 ′)←𝒟

[𝑓 |𝜋′ /∈ 𝑉 ′] = E(𝜋,𝑉)←𝒟𝒞

[︂
Pr

(𝜋′,𝑉 ′)←𝒟𝑉

[𝑓 |𝜋′ /∈ 𝑉 ′]
]︂

(3.10)

≥ 𝜖 · E(𝜋,𝑉)←𝒟𝒞 [𝛿 (𝑓 |𝜋, 𝑉)] (3.11)

≥ 𝛼 · 𝜖 · 𝛿(𝑓, 𝒞). (3.12)

3.4 Codes

In this section, we present two of the most ubiquitous linear codes: the Reed-Solomon code

and the Reed-Muller code. We will directly use the Reed-Solomon code in our constructions,

35

whereas the Reed-Muller code serves as a benchmark for comparison.

3.4.1 Reed-Solomon code

The Reed-Solomon code consists of evaluations of low-degree univariate polynomials over a

finite field F𝑞.

Definition 3.4.1. Let 𝑞 be a prime power, and let 𝑑 ∈ N. The Reed-Solomon code RS(𝑞, 𝑑)

of degree 𝑑 over F𝑞 is the code RS(𝑞, 𝑑) , {𝑓 : F𝑞 → F𝑞 | deg(𝑓) ≤ 𝑑}.

Proposition 3.4.2. If 𝑑 < 𝑞, then the Reed-Solomon code RS(𝑞, 𝑑) has distance 1 − 𝑑
𝑞
and

rate 𝑑+1
𝑞
.

In [GS99], Guruswami and Sudan showed that the Reed-Solomon code of distance 𝛿 > 0

can be efficiently list-decoded up to the Johnson radius 1−
√
1− 𝛿. We will use this algorithm

as a subroutine in our list-decoding and local list-decoding algorithms for the lifted Reed-

Solomon code in Sections 7.1.3 and 7.1.4, respectively.

Theorem 3.4.3 (Guruswami-Sudan list-decoding [GS99]). For every 𝛿, 𝜖 > 0, there is a

polynomial time algorithm taking as input a function 𝑟 : F𝑞 → F𝑞 and outputs a list ℒ of size

|ℒ| = 𝑂(1/𝜖2) satisfying the following: if 𝑐 ∈ RS(𝑞, (1 − 𝛿)𝑞) and 𝛿(𝑟, 𝑐) < 1 −
√
1− 𝛿 − 𝜖,

then 𝑐 ∈ ℒ.

3.4.2 Reed-Muller code

The Reed-Muller code consists of evaluations of low-degree multivariate polynomials over a

finite field F𝑞.

Definition 3.4.4. Let 𝑞 be a prime power, and let 𝑑,𝑚 ∈ N. The 𝑚-variate Reed-Muller

code RM(𝑞, 𝑑,𝑚) of degree 𝑑 over F𝑞 is the code RM(𝑞, 𝑑,𝑚) , {𝑓 : F𝑚
𝑞 → F𝑞 | deg(𝑓) ≤ 𝑑}.

Remark 3.4.5. It follows immediately from definitions that RM(𝑞, 𝑑, 1) = RS(𝑞, 𝑑).

Proposition 3.4.6. If 𝑑 < 𝑞, then the Reed-Muller code RM(𝑞, 𝑑,𝑚) has distance 1− 𝑑
𝑞
and

rate
(𝑑+𝑚

𝑚)
𝑞𝑚

.

36

Reed-Muller codes play a prominent role in complexity theory due to their locality fea-

tures. Reed-Muller codes are locally decodable/correctable, and are also list-decodable

and locally list-decodable up to the Johnson radius [PW04, STV99, BK09]. Moreover,

Reed-Muller codes are testable, even robustly [RS96, ALM+98, FS95, AS03, RS97, MR06,

AKK+05, KR06, JPRZ09, BKS+10, HSS11].

Note that if we want a family of Reed-Muller codes with positive distance 𝛿 > 0, we

need the degree 𝑑 = (1 − 𝛿)𝑞. The rate is therefore roughly (1−𝛿)𝑚
𝑚!

< 1
𝑚!
. In particular, the

rate never exceeds 1
2
. The multiplicity codes of [KSY14] were the first locally correctable

codes with rate close to 1. The highlight of our work is the construction of codes with

the same distance as that of the Reed-Muller code and same locality features (decodability,

correctability, list-decodability, and testability), but with rate close to 1.

37

38

Chapter 4

Affine-invariance

4.1 Affine-invariant Codes

In [KS08], Kaufman and Sudan examine the role of symmetry in algebraic property testing

(testing of linear codes). The type of symmetry they focus on is affine-invariance. Viewing

codewords as functions 𝑓 : F𝑚
𝑄 → F𝑞, where F𝑄 is an extension field of F𝑞, one can permute

the symbols of 𝑓 by applying a permutation 𝜋 : F𝑚
𝑄 → F𝑚

𝑄 to the domain, resulting in a new

word 𝑓 ∘ 𝜋. Affine-invariance is simply the property of being closed under applying affine

permutations to the domain, i.e. if 𝑓 is a codeword, then 𝑓 ∘ 𝐴 is a codeword for any affine

permutation 𝐴.

Definition 4.1.1 (Affine-invariance). A code 𝒞 ⊆ {F𝑚
𝑞 → F𝑞} is affine-invariant if 𝑓 ∘𝐴 ∈ 𝒞

whenever 𝑓 ∈ 𝒞 and 𝐴 : F𝑚
𝑞 → F𝑚

𝑞 is an affine permutation.

Affine-invariance appears to be the right abstraction of the low-degree property. In fact,

when 𝑄 = 𝑞 is prime, then the only affine-invariant codes are the Reed-Muller codes [KS08].

However, when 𝑞 is a prime power or if 𝑄 is a power of 𝑞, then there is a richer collection of

affine-invariant codes. Affine-invariant codes are particularly appealing because they possess

rich structure. The main structural feature of affine-invariant codes we will use is that they

are spanned by monomials.

39

Definition 4.1.2 (Degree set). A code 𝒞 ⊆ {F𝑚
𝑞 → F𝑞} has a degree set Deg(𝒞) ⊆ J𝑞K𝑚

if 𝒞 = {𝑓 : F𝑚
𝑞 → F𝑞 | supp(𝑓) ⊆ Deg(𝒞)}. The degree set Deg(𝒞) is 𝑝-shadow-closed if,

whenever d ∈ Deg(𝒞) and e ≤𝑝 d, we have e ∈ Deg(𝒞).

Proposition 4.1.3 ([KS08]). If 𝒞 ⊆ {F𝑚
𝑞 → F𝑞} is linear affine-invariant, where F𝑞 has

characteristic 𝑝, then 𝒞 has a 𝑝-shadow-closed degree set.

Proposition 4.1.4 ([BGM+11a]). If 𝒞 ⊆ {F𝑞𝑚 → F𝑞} is a F𝑞-linear affine-invariant code,

then dimF𝑞(𝒞) = |Deg(𝒞)|.

4.2 Equivalence of Invariance under Affine Transfor-

mations and Permutations

In their work initiating the study of the testability of affine-invariant properties (codes),

Kaufman and Sudan [KS07] studied properties closed under general affine transformations

and not just permutations. While affine transformations are nicer to work with when avail-

able, they are not mathematical elegant (they do not form a group under composition).

Furthermore in the case of codes they also do not preserve the code — they only show that

every codeword stays in the code after the transformation. Among other negative features

affine transformations do not even preserve the weight of non-zero codewords, which can

lead to some rude surprises. Here we patch the gap by showing that families closed under

affine permutations are also closed under affine transformations. So one can assume the

latter, without restricting the class of properties under consideration. We note that such

a statement was proved in [BGM+11b] for the case of univariate functions. Unfortunately

their proof does not extend to the multivariate setting and forces us to rework many steps

from [KS08].

Theorem 4.2.1. If 𝒞 ⊆ {F𝑚
𝑄 → F𝑞} is an F𝑞-linear code invariant under affine permutations,

then 𝒞 is invariant under all affine transformations.

40

The central lemma (Lemma 4.2.2) that we prove is that every non-trivial function can

be split into more basic ones. This leads to a proof of Theorem 4.2.1 fairly easily.

We first start with the notion of a basic function. For 𝑄 = 𝑞𝑛, let Tr : F𝑄 → F𝑞 denote

the trace function Tr(𝑥) = 𝑥+ 𝑥𝑞 + · · ·+ 𝑥𝑞
𝑛−1

. We say that 𝑓 : F𝑚
𝑄 → F𝑞 is a basic function

if 𝑓(X) = Tr(𝜆Xd) for some d ∈ J𝑄K𝑚. For 𝒞 ⊆ {F𝑚
𝑄 → F𝑞} and 𝑓 ∈ 𝒞 we say 𝑓 can be split

(in 𝒞) if there exist functions 𝑔, ℎ ∈ 𝒞 such that 𝑓 = 𝑔 + ℎ and supp(𝑔), supp(ℎ) (supp(𝑓).

Lemma 4.2.2. If 𝒞 ⊆ {F𝑚
𝑄 → F𝑞} is an F𝑞-linear code invariant under affine permutations,

then for every function 𝑓 ∈ 𝒞, 𝑓 is either basic or 𝑓 can be split.

We first prove Theorem 4.2.1 from Lemma 4.2.2.

Proof of Theorem 4.2.1. First we assert that it suffices to prove that for every function 𝑓 ∈ 𝒞

the function 𝑓 = 𝑓(𝑋1, . . . , 𝑋𝑚−1, 0) is also in 𝒞. To see this, consider 𝑓 ∈ 𝒞 and 𝐴 : F𝑚
𝑄 →

F𝑚
𝑄 which is not a permutation. Then there exists affine permutations 𝐵,𝐶 : F𝑚

𝑄 → F𝑚
𝑄 such

that 𝐴(X) = 𝐵(𝐶(X)1, . . . , 𝐶(X)𝑟, 0, . . . , 0) where 𝑟 < 𝑚 is the dimension of the image of 𝐴.

By closure under affine permutations, it follows 𝑓 ∘𝐵 ∈ 𝒞. Applying the assertion above𝑚−𝑟

times we have that 𝑓 ′(X) , (𝑓 ∘𝐵)(𝑋1, . . . , 𝑋𝑟, 0, . . . , 0) is also in 𝒞. Finally 𝑓 ∘𝐴 = 𝑓 ′ ∘𝐶

is also in 𝒞. So we turn to proving that for every 𝑓 ∈ 𝒞 the function 𝑓 = 𝑓(𝑋1, . . . , 𝑋𝑚−1, 0)

is also in 𝒞.

Let 𝑓(X) =
∑︀

d 𝑐dX
d. Notice 𝑓(X) =

∑︀
d|𝑑𝑚=0 𝑐dX

d. Writing 𝑓 = 𝑓 + 𝑓1, we use

Lemma 4.2.2 to split 𝑓 till we express it as a sum of basic functions 𝑓 =
∑︀𝑁

𝑖=1 𝑏𝑖, where

each 𝑏𝑖 is a basic function in 𝒞. Note that for every 𝑏𝑖, we have supp(𝑏𝑖) ⊆ supp(𝑓) or

supp(𝑏𝑖) ⊆ supp(𝑓1) (since the trace preserves 𝑑𝑚 = 0). By reordering the 𝑏𝑖’s assume the

first 𝑀 𝑏𝑖’s have their support in the support of 𝑓 . Then we have 𝑓 =
∑︀𝑀

𝑖=1 𝑏𝑖 ∈ 𝒞.

We thus turn to the proof of Lemma 4.2.2. We prove the lemma in a sequence of cases,

based on the kind of monomials that 𝑓 has in its support.

We say that d and e are equivalent (modulo 𝑞), denoted d ≡𝑞 e if there exists a 𝑗 such

that for every 𝑖, 𝑑𝑖 = 𝑞𝑗𝑒𝑖 mod*𝑄. The following proposition is immediate from previous

works (see, for example, [BGM+11b]). We include a proof for completeness.

41

Proposition 4.2.3. If every pair d, e in the support of 𝑓 : F𝑚
𝑄 → F𝑞 are equivalent, then 𝑓

is a basic function.

Proof. We first note that since the Tr : F𝑄 → F𝑞 is a (𝑄/𝑞)-to-one function, we have

in particular that for every 𝛽 ∈ F𝑞 there is an 𝛼 ∈ F𝑄 such that Tr(𝛼) = 𝛽. As an

immediate consequence we have that every function 𝑓 : F𝑚
𝑄 → F𝑞 can be expressed Tr ∘𝑔

where 𝑔 : F𝑚
𝑄 → F𝑄. Finally we note that we can view 𝑔 as an element of F𝑄[X], to conclude

that 𝑓 = Tr ∘𝑔 for some polynomial 𝑔.

Now fix 𝑓 : F𝑚
𝑄 → F𝑞 all of whose monomials are equivalent. By the above we can express

𝑓 = Tr ∘𝑔 for some polynomial 𝑔. By inspection we can conclude that all monomials in the

support of 𝑔 are equivalent to the monomials in the support of 𝑓 . Finally, using the fact

that Tr(𝛼Xd) = Tr(𝛼𝑞X𝑞dmod* 𝑄) we can assume that 𝑔 is supported on a single monomial

and so 𝑓 = Tr(𝜆Xd) for some 𝜆 ∈ F𝑄.

So it suffices to show that every function that contains non-equivalent degrees in its

support can be split. We first prove that functions with “non-weakly-equivalent” monomials

can be split.

We say that d and e are weakly equivalent if there exists a 𝑗 such that for every 𝑖,

𝑑𝑖 = 𝑞𝑗𝑒𝑖 (mod 𝑄− 1).

Lemma 4.2.4. If ℱ ⊆ {F𝑚
𝑄 → F𝑞} is an F𝑞-linear code invariant under affine permutations

and 𝑓 ∈ 𝒞 contains a pair of non-weakly equivalent monomials in its support, then 𝑓 can be

split.

Proof. Let d and e be two non weakly-equivalent monomials in the support of 𝑓 . Fix 𝑗 and

consider the function 𝑓𝑗(X) =
∑︀

a∈(F*
𝑄)𝑚

∏︀
𝑎−𝑞

𝑗𝑑𝑖
𝑖 𝑓(𝑎1𝑋1, . . . , 𝑎𝑚𝑋𝑚). We claim that (1) the

support of 𝑓𝑗 is a subset of the support of 𝑓 , (2) 𝑞𝑗d is in the support of 𝑓𝑗, (3) d is in the

support of 𝑓𝑗 only if for every 𝑖 𝑓𝑖 = 𝑞𝑗𝑑𝑖 (mod 𝑄− 1) and in particular (4) e is not in the

support of 𝑓𝑗.

Now let 𝑏 = 𝑏(d) be the smallest positive integer such that 𝑞𝑏𝑑𝑖 = 𝑑𝑖 mod*𝑄 for every 𝑖.

Now consider the function 𝑔 =
∑︀𝑏−1

𝑗=0 𝑓𝑗. We have that 𝑔 ∈ 𝒞 since it is an F𝑞-linear

42

combination of linear transforms of functions in 𝒞. By the claims about the 𝑓𝑗’s we also

have that d is in the support of 𝑔, the support of 𝑔 is contained in the support of 𝑓 and e is

not in the support of 𝑓 . Expressing 𝑓 = 𝑔 + (𝑓 − 𝑔) we now have that 𝑓 can be split.

The remaining cases are those where some of coordinates of d are zero or 𝑄− 1 for every

d in the support of 𝑓 . We deal with a special case of such functions next.

Lemma 4.2.5. Let 𝒞 be a linear affine-invariant code. Let 𝑓 ∈ 𝒞 be given by 𝑓(X,Y) =

Tr(Yd𝑝(X)) where every variable in 𝑝(X) has degree in {0, 𝑄− 1} in every monomial, and

d is arbitrary. Further, let degree of 𝑝(X) be 𝑎(𝑄 − 1). Then for every 0 ≤ 𝑏 ≤ 𝑎 and for

every 𝜆 ∈ F𝑄, the function (𝑋1 · · ·𝑋𝑏)
𝑄−1Tr(𝜆Yd) ∈ 𝒞.

Note that in particular the lemma above implies that such 𝑓 ’s can be split into basic

functions.

Proof. We prove the lemma by a triple induction, first on 𝑎, then on 𝑏, and then on the

number of monomials in 𝑝. The base case is 𝑎 = 0 and that is trivial. So we consider general

𝑎 > 0.

First we consider the case 𝑏 < 𝑎. Assume without loss of generality that the monomial

(𝑋1 · · ·𝑋𝑎)
𝑄−1 is in the support of 𝑝 and write 𝑝 = 𝑝0+𝑋

𝑄−1
1 𝑝1 where 𝑝0, 𝑝1 do not depend on

𝑋1. Note that 𝑝1 ̸= 0 and deg(𝑝1) = (𝑎− 1)(𝑄− 1). We will prove that −Tr(Yd𝑝1(X)) ∈ 𝒞

and this will enable us to apply the inductive hypothesis to 𝑝1. Let 𝑔(X,Y) =
∑︀

𝛽∈F𝑄
𝑓(𝑋1+

𝛽,𝑋2, . . . , 𝑋𝑚,Y). By construction 𝑔 ∈ 𝒞. By linearity of the Trace we have

𝑔 = Tr

⎛⎝Yd

⎛⎝∑︁
𝛽∈F𝑄

𝑝0 + (𝑋1 + 𝛽)𝑄−1𝑝1

⎞⎠⎞⎠ = Tr(Yd(−𝑝1(X))),

where the second equality follows from the fact that
∑︀

𝛽∈F𝑄
(𝑧 + 𝛽)𝑄−1 = −1. Thus we can

now use induction to claim (𝑋1 . . . 𝑋𝑏)
𝑄−1Tr(𝜆Yd) ∈ 𝒞.

Finally we consider the case 𝑏 = 𝑎. Now note that since the case 𝑏 < 𝑎 is known, we can

assume without loss of generality that 𝑝 is homogeneous (else we can subtract off the lower de-

gree terms). Now if 𝑎 = 𝑚 there is nothing to be proved since 𝑝 is just a single monomial. So

43

assume 𝑎 < 𝑚. Also if 𝑝 has only one monomial then there is nothing to be proved, so assume

𝑝 has at least two monomials. In particular assume 𝑝 is supported on some monomial that

depends on 𝑋1 and some monomial that does not depend on 𝑋1. Furthermore, assume with-

out loss of generality that a monomial depending on 𝑋1 does not depend on 𝑋2. Write 𝑝 =

𝑋𝑄−1
1 𝑝1+𝑋

𝑄−1
2 𝑝2+(𝑋1𝑋2)

𝑄−1𝑝3+𝑝4 where the 𝑝𝑖’s don’t depend on 𝑋1 or 𝑋2. By assump-

tion on the monomials of 𝑝 we have that 𝑝1 ̸= 0 and at least one of 𝑝2, 𝑝3, 𝑝4 ̸= 0. Now consider

the affine transform 𝐴 that sends 𝑋1 to 𝑋1 +𝑋2 and preserves all other 𝑋𝑖’s. We have 𝑔 =

𝑓 ∘𝐴 = Tr
(︁
Yd(𝑋𝑄−1

1 𝑝1 +𝑋𝑄−1
2 (𝑝1 + 𝑝2) + (𝑋1𝑋2)

𝑄−1𝑝3 + 𝑝4 + 𝑟)
)︁
where the 𝑋1-degree of

every monomial in 𝑟 is in [𝑄−2]. Now consider 𝑔′(x,y) =
∑︀

𝛼∈F*
𝑄
𝑔(𝛼𝑥1, 𝑥2, . . . , 𝑥𝑚,y). The

terms of 𝑟 vanish in 𝑔′ leaving

𝑔′ = −(𝑓 ∘ 𝐴− 𝑟) = Tr
(︁
Yd
(︁
−𝑋𝑄−1

1 𝑝1 −𝑋𝑄−1
2 (𝑝1 + 𝑝2)− (𝑋1𝑋2)

𝑄−1𝑝3 − 𝑝4
)︁)︁

.

Finally we consider the function 𝑔 = 𝑓 + 𝑔′ = Tr(Yd(−𝑋𝑄−1
2 𝑝1)) which is a function in 𝒞

of degree 𝑎(𝑄− 1) supported on a smaller number of monomials than 𝑓 , so by applying the

inductive hypothesis to 𝑔 we have that 𝒞 contains the monomial (𝑋1 · · ·𝑋𝑎)
𝑄−1.

The following lemma converts the above into the final piece needed to prove Lemma 4.2.2.

Lemma 4.2.6. If ℱ ⊆ {F𝑚
𝑄 → F𝑞} is an F𝑞-linear code invariant under affine permutations

and all monomials in 𝑓 ∈ 𝒞 are weakly equivalent, then 𝑓 can be split.

Proof. First we describe the structure of a function 𝑓 : F𝑚
𝑄 → F𝑞 that consists only of weakly

equivalent monomials. First we note that the 𝑚 variables can be separated into those in

which every monomial has degree in [𝑄− 2] and those in which every monomial has degree

in {0, 𝑄− 1} (since every monomial is weakly equivalent). Let us denote by X the variables

in which the monomials of 𝑓 have degree in {0, 𝑄 − 1} and Y be the remaining variables.

Now consider some monomial of the form 𝑀 = 𝑐XeYd in 𝑓 . Since 𝑓 maps to F𝑞 we must

have that the coefficient of (XeYd)𝑞
𝑗
is 𝑐𝑞

𝑗
. Furthermore, we have every other monomial 𝑀 ′

in the support of 𝑓 is of the form 𝑐′Y𝑞𝑗dX𝑥e
′
. Thus 𝑓 can be written as Tr(Yd𝑝(X)) where

𝑝(𝑋1, . . . , 𝑋𝑚) = 𝑝(𝑋𝑄−1
1 , . . . , 𝑋𝑄−1

𝑚). But, by Lemma 4.2.5, such an 𝑓 can be split.

44

Proof of Lemma 4.2.2. If 𝑓 contains a pair of non-weakly equivalent monomials then 𝑓 can

be split by Lemma 4.2.4. If not, then 𝑓 is either basic or, by Lemma 4.2.6 is can be split.

We also prove an easy consequence of Lemma 4.2.2.

Lemma 4.2.7. Let 𝒞 ⊆ {F𝑚
𝑄 → F𝑞} be affine invariant. If d ∈ Deg(𝒞), then Tr(𝜆Xd) ∈ 𝒞

for all 𝜆 ∈ F𝑄.

Proof. We first claim that Lemma 4.2.2 implies that there exists 𝛽 ∈ F𝑄 such that Tr(𝛽Xd)

is a non-zero function in 𝒞. To verify this, consider a “minimal” function (supported on

fewest monomials) 𝑓 ∈ 𝒞 with d ∈ supp(𝑓). Since 𝑓 can’t be split in 𝒞 (by minimality), by

Lemma 4.2.2 𝑓 must be basic and so equals (by definition of being basic) Tr(𝛽Xd).

Now let 𝑏 = 𝑏(d) be the smallest positive integer such that 𝑞𝑏dmod*𝑄 = d. If 𝑄 = 𝑞𝑛,

note that 𝑏 divides 𝑛 and so one can write Tr : F𝑄 → F𝑞 as Tr1 ∘Tr2 where Tr1 : F𝑞𝑏 → F𝑞

is the function Tr1(𝑧) = 𝑧 + 𝑧𝑞 + · · · + 𝑧𝑞
𝑏−1

and Tr2 : F𝑄 → F𝑞𝑏 is the function Tr2(𝑧) =

𝑧 + 𝑧𝑞
𝑏
+ · · · + 𝑧𝑄/𝑞𝑏 . (Both Tr1 and Tr2 are trace functions mapping the domain to the

range.) It follows that Tr(𝛽Xd) = Tr1(Tr2(𝛽)X
d).

We first claim that Tr1(𝜏X
d) ∈ 𝒞 for every 𝜏 ∈ F𝑞𝑏 . Let 𝑆 = {

∑︀
𝛼∈(F*

𝑄)𝑚 𝑎𝛼 ·𝛼d | 𝑎𝛼 ∈ F𝑞}.

We note that by linearity and affine-invariance of 𝒞, we have that Tr1(Tr2(𝛽) · 𝜂Xd) ∈ 𝒞

for every 𝜂 ∈ 𝑆. By definition 𝑆 is closed under addition and multiplication and so is a

subfield of F𝑄. In fact, since every 𝜂 ∈ 𝑆 satisfies 𝜂𝑞
𝑏
= 𝜂 (which follows from the fact

that 𝛼d = 𝛼𝑞𝑏d), we have that 𝑆 ⊆ F𝑞𝑏 . It remains to show 𝑆 = F𝑞𝑏 . Suppose it is a

strict subfield of size 𝑞𝑐 for 𝑐 < 𝑏. Consider 𝛾𝑑𝑖 for 𝛾 ∈ F𝑄 and 𝑖 ∈ [𝑚]. Since 𝛾𝑑𝑖 ∈ 𝑆,

we have that 𝛾𝑑𝑖𝑞
𝑐
= 𝛾𝑑𝑖 for every 𝛾 ∈ F𝑄 and so we get 𝑋𝑞𝑐𝑑𝑖

𝑖 = 𝑋𝑖 (mod 𝑋𝑄
𝑖 − 𝑋𝑖). We

conclude that X𝑞𝑐d = Xd (mod X𝑄 −X) which contradicts the minimality of 𝑏 = 𝑏(d). We

conclude that 𝑆 = F𝑞𝑏 . Since Tr2(𝛽) ∈ F*
𝑞𝑏
, we conclude that the set of coefficients 𝜏 such

that Tr1(𝜏X
d) ∈ 𝒞 is all of F𝑞𝑏 as desired.

Finally consider any 𝜆 ∈ F𝑄. since Tr2(𝜆) ∈ F𝑞𝑏 , we have that Tr1(Tr2(𝜆)X
d) ∈ 𝒞 (from

the previous paragraph), and so Tr(𝜆Xd) = Tr1(Tr2(𝜆)X
d) ∈ 𝒞

45

46

Chapter 5

Lifting Codes

5.1 The Lift Operator

First defined and used in [BSMSS11] to prove the existence of certain codes that are not

locally testable, the lift operator takes short codes and creates longer codes from them. The

original lift operator took codes defined over the domain F𝑞 and “lifted” them to codes

defined over the domain F𝑞𝑚 . We generalize the definition, allowing one to lift codes over F𝑡
𝑞

to codes over F𝑚
𝑞 , for any 𝑚 ≥ 𝑡 (in particular, 𝑡 does not need to divide 𝑚).

Definition 5.1.1 (Lift). Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be a linear affine-invariant code. Let 𝑚 ≥ 𝑡 be

an integer. The 𝑚-dimensional lift of 𝒞, denoted by 𝒞𝑡↗𝑚, is the code

𝒞𝑡↗𝑚 ,
{︀
𝑓 : F𝑚

𝑞 → F𝑞

⃒⃒
𝑓 |𝐴 ∈ 𝒞 for every 𝑡-dimensional affine subspace 𝐴 ⊆ F𝑚

𝑞

}︀
.

Proposition 5.1.2. Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant, and let 𝑚 ≥ 𝑡. If

𝑓 ∈ 𝒞𝑡↗𝑚 and 𝐴 : F𝑡
𝑞 → F𝑚

𝑞 is an affine map, then 𝑓 ∘ 𝐴 ∈ 𝒞.

Proof. By Proposition B.1.1, there exists an invertible affine map 𝐴′′ : F𝑡
𝑞 → F𝑚

𝑞 and a linear

map 𝐴′ : F𝑡
𝑞 → F𝑡

𝑞 such that 𝐴 = 𝐴′′ ∘ 𝐴′. By the definition of lift, 𝑔 , 𝑓 ∘ 𝐴′′ ∈ 𝒞. Since 𝒜

47

is affine-invariant, it follows from Theorem 4.2.1 that 𝑔 ∘ 𝐴′ ∈ 𝒞. Therefore,

𝑓 ∘ 𝐴 = 𝑓 ∘ (𝐴′′ ∘ 𝐴′) = (𝑓 ∘ 𝐴′′) ∘ 𝐴′ = 𝑔 ∘ 𝐴′ ∈ 𝒞.

5.2 Algebraic and Combinatorial Properties

We begin by exploring the algebraic and combinatorial (as opposed to algorithmic) properties

of codes lifted from linear affine-invariant codes. First, we show that the lifting operator is

a natural algebraic operation, preserving linearity and affine-invariance and composing well.

We then present the degree set of a lifted code in terms of the degree set of the base code.

Finally, we conclude by showing that lifting preserves distance.

5.2.1 Algebraic Properties

Proposition 5.2.1. Let 𝑡 ≤ 𝑚 be integers. If 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} is linear affine-invariant,

then 𝒞𝑡↗𝑚 is linear affine-invariant.

Proof. First, we show that 𝒞𝑡↗𝑚 is linear. Let 𝑓, 𝑔 ∈ 𝒞𝑡↗𝑚 and let 𝛼 ∈ F𝑞. If 𝐴 ⊆ F𝑚
𝑞 is a

𝑡-dimensional affine subspace, then, since 𝒞 is linear,

(𝛼𝑓 + 𝑔)|𝐴 = 𝛼 · (𝑓 |𝐴) + (𝑔|𝐴) ∈ 𝒞

Next, we show that 𝒞𝑡↗𝑚 is affine-invariant. Let 𝑓(X) ∈ 𝒞𝑡↗𝑚, and let M ∈ F𝑚×𝑚
𝑞 and

c ∈ F𝑚
𝑞 . Let 𝑔(X) = 𝑓(MX+ c). Let Y = (𝑌1, . . . , 𝑌𝑡), let A ∈ F𝑚×𝑡

𝑞 and b ∈ F𝑚
𝑞 . Then

𝑔(AX+ b) = 𝑓(M(AX+ b) + c) = 𝑓((MA)X+ (Mb+ c)) ∈ 𝒞.

Since A,b were arbitrary, this implies that 𝑔 ∈ 𝒞𝑡↗𝑚. Since M, c were arbitrary, this implies

that 𝒞𝑡↗𝑚 is affine-invariant.

48

Proposition 5.2.2 (Composition of lift). Let 𝑡 ≤ 𝑚 ≤ 𝑛 be integers. Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞}

be linear affine-invariant. Then

𝒞𝑡↗𝑛 =
(︀
𝒞𝑡↗𝑚

)︀𝑚↗𝑛
.

Proof. This follows immediately from the fact that choosing a 𝑡-dimensional affine subspace

𝐴 ⊆ F𝑛
𝑞 is equivalent to first choosing an 𝑚-dimensional affine subspace 𝐵 ⊆ F𝑛

𝑞 and then

choosing a 𝑡-dimensional affine subspace 𝐴 ⊆ 𝐵.

Proposition 5.2.3 (Degree set of lift). Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant with

degree set Deg(𝒞). If 𝑚 ≥ 𝑡 is an integer, then the lift 𝒞𝑡↗𝑚 has degree set

Deg(𝒞𝑡↗𝑚) = {d ∈ J𝑞K𝑚 | E ≤𝑝 d =⇒ (‖E*1‖, . . . , ‖E*𝑡‖)mod* 𝑞 ∈ Deg(𝒞)}

where E has rows [𝑚] and columns J𝑡+ 1K.

Proof. Let 𝑓 ∈ 𝒞𝑡↗𝑚. Let 𝐷 = Deg(𝒞𝑡↗𝑚). Let X = (𝑋1, . . . , 𝑋𝑚) and let Y = (𝑌1, . . . , 𝑌𝑡).

Write 𝑓(X) =
∑︀

d∈𝐷 𝑓d · Xd. For any matrix A ∈ F𝑚×𝑡
𝑞 and b ∈ F𝑚

𝑞 , it follows from

Proposition A.1.4 that

𝑓(AY + b) =
∑︁
d∈𝐷

𝑓d ·
∑︁
E≤𝑝d

(︂
d

E

)︂ 𝑚∏︁
𝑖=1

(︃
𝑏𝑒𝑖0𝑖

𝑡∏︁
𝑗=1

𝑎
𝑒𝑖𝑗
𝑖𝑗

)︃
·

𝑡∏︁
𝑗=1

𝑌
‖E*𝑗‖
𝑗

Since 𝑓(AY + b) ∈ 𝒞 for any A,b, and 𝒞 is affine-invariant, it follows by Proposition 4.1.3

that for every d ∈ 𝐷 and E ≤𝑝 d, with columns J𝑡 + 1K, it holds that the monomial∏︀𝑡
𝑗=1 𝑌

‖E*𝑗‖
𝑗 ∈ 𝒞, hence (‖E*1‖, . . . , ‖E*𝑡‖)mod* 𝑞 ∈ Deg(𝒞). Conversely, if d satisfies that

for every E ≤𝑝 d with columns J𝑡 + 1K that (‖E*1‖, . . . , ‖E*𝑡‖)mod* 𝑞 ∈ Deg(𝒞), then it is

easy to see that d ∈ 𝐷 by considering 𝑓(X) = Xd.

49

5.2.2 Distance of Lifted Codes

Proposition 5.2.4 (Distance of lift). Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant, and let

𝑚 ≥ 𝑡. The following hold:

1. 𝛿(𝒞𝑡↗𝑚) ≤ 𝛿(𝒞);

2. 𝛿(𝒞𝑡↗𝑚) ≥ 𝛿(𝒞)− 𝑞−𝑡;

3. if 𝑞 ∈ {2, 3} and 𝛿(𝒞) > 𝑞−𝑡, then 𝛿(𝒞𝑡↗𝑚) = 𝛿(𝒞).

We prove several lemmas, which in turn will help us prove Proposition 5.2.4. The first

lemma proves Proposition 5.2.4 (1).

Lemma 5.2.5. If 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} is linear affine-invariant, and𝑚 ≥ 𝑡, then 𝛿(𝒞𝑡↗𝑚) ≤ 𝛿(𝒞).

Proof. The case 𝑚 = 𝑡 is trivial, so assume 𝑚 > 𝑡. By Proposition 5.2.2 and induction, it

suffices to consider the case 𝑚 = 𝑡+1. Let 𝑓 ∈ 𝒞 and let 𝛿 , 𝛿(𝑓, 0). Let X = (𝑋1, . . . , 𝑋𝑡).

Consider the function 𝑔 : F𝑡+1
𝑞 → F𝑞 defined by 𝑔(X, 𝑋𝑡+1) = 𝑓(X). Clearly, we have

𝛿(𝑔, 0) = 𝛿. We claim that 𝑔 ∈ 𝒞𝑡↗(𝑡+1). Let 𝐴 : F𝑡
𝑞 → F𝑡+1

𝑞 be an affine map. Let

𝐴′ : F𝑡
𝑞 → F𝑡

𝑞 be the affine map given by the projection of 𝐴 onto its first 𝑡 coordinates, i.e.

𝐴′(X) = (𝐴(X)1, . . . , 𝐴(X)𝑡). Since 𝑓 ∈ 𝒞 and 𝒞 is affine-invariant, by Theorem 4.2.1 we

have 𝑓 ∘ 𝐴′ ∈ 𝒞. Therefore, 𝑔 ∘ 𝐴 = 𝑓 ∘ 𝐴′ ∈ 𝒞. Since 𝐴 was arbitrary, this shows that

𝑔 ∈ 𝒞𝑡↗(𝑡+1).

The next lemma proves Proposition 5.2.4 (2), and uses a simple probabilistic argument.

Lemma 5.2.6. If 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} is linear affine-invariant, and 𝑚 ≥ 𝑡, then 𝛿(𝒞𝑡↗𝑚) ≥

𝛿(𝒞)− 𝑞−𝑡.

Proof. Let 𝑓, 𝑔 ∈ 𝒞𝑡↗𝑚 be distinct. Let x ∈ F𝑚
𝑞 such that 𝑓(x) ̸= 𝑔(x). Let 𝐴 : F𝑡

𝑞 → F𝑚
𝑞 be

a random affine map such that 𝐴(0) = x, so that 𝑓 ∘𝐴, 𝑔 ∘𝐴 ∈ 𝒞 (by Proposition 5.1.2) and

are distinct. Then

𝛿(𝒞) ≤ E𝐴 [𝛿 (𝑓 ∘ 𝐴, 𝑔 ∘ 𝐴)] (5.1)

(Proposition B.1.3) ≤ 𝛿(𝑓, 𝑔) + 𝑞−𝑡. (5.2)

50

The next two lemmas will help in proving Proposition 5.2.4, for the cases 𝑞 = 2 and 𝑞 = 3

respectively.

Lemma 5.2.7. For all 𝑚 ≥ 2, if 𝛿 > 1
2𝑚−1 and 𝑓 : F𝑚

2 → F2 such that 0 < 𝛿(𝑓, 0) < 𝛿, then

there exists a hyperplane 𝐻 ⊂ F𝑚
2 such that 0 < 𝛿(𝑓 |𝐻 , 0) < 𝛿.

Proof. We proceed by induction on 𝑚. The base case 𝑚 = 2 is straightforward to verify.

Now suppose 𝑚 > 2 and our assertion holds for 𝑚−1. Let 𝐻0, 𝐻1 be the affine subspaces

given by 𝑋𝑚 = 0 and 𝑋𝑚 = 1, respectively. For 𝑖 ∈ {0, 1}, let 𝛿𝑖 , 𝛿(𝑓 |𝐻𝑖
, 0). Note that

𝛿 > 𝛿(𝑓, 0) = (𝛿0 + 𝛿1)/2. If both 𝛿0, 𝛿1 > 0, then by averaging we have 0 < 𝛿𝑖 < 𝛿, for some

𝑖 ∈ {0, 1}, and so 𝐻 = 𝐻𝑖 does the job. Otherwise, suppose without loss of generality that

𝛿1 = 0. Note that 0 < 𝛿0 < 2𝛿 and 2𝛿 > 1
2𝑚−2 . Thus, by the induction hypothesis, there

exists an (𝑚 − 2)-dimensional affine subspace 𝐻 ′0 ⊆ 𝐻0 such that 0 < 𝛿(𝑓 |𝐻′
0
, 0) < 2𝛿. Let

𝐻 ′1 , 𝐻 ′0 + e𝑚, where e𝑚 is the 𝑚-th standard basis vector. Note that 𝛿(𝑓 |𝐻′
1
, 0) = 0. Let

𝐻 = 𝐻 ′0 ∪𝐻 ′1. Then 𝐻 is an (𝑚− 1)-dimensional subspace of F𝑚
2 (spanned by 𝐻 ′0 and e𝑚)

such that 0 < 𝛿(𝑓 |𝐻 , 0) =
(︀
𝛿(𝑓 |𝐻′

0
, 0) + 𝛿(𝑓 |𝐻′

1
, 0)
)︀
/2 < 𝛿.

Lemma 5.2.8. For all 𝑚 ≥ 2, if 𝑓 : F𝑚
3 → F3 and 𝛿(𝑓, 0) ≥ 1

3𝑚−1 , then there exists a

hyperplane 𝐻 ⊆ F𝑚
3 such that 0 < 𝛿(𝑓 |𝐻 , 0) ≤ 𝛿(𝑓, 0).

Proof. Let 𝛿 , 𝛿(𝑓, 0). We proceed by induction on 𝑚.For the base case, 𝑚 = 2, 𝛿 ≥ 1
3
.

Suppose 𝑓 : F2
3 → F3 and for each 𝑖 ∈ F3, let 𝑓𝑖 be the restriction of 𝑓 to the hyperplane

defined by 𝑋2 = 𝑖. If 𝑓𝑖 ̸= 0 for every 𝑖 ∈ F3, then by averaging there is some 𝑖 ∈ F3 for

which 0 < 𝛿(𝑓𝑖, 0) ≤ 𝛿. Otherwise, without loss of generality, suppose 𝑓2 = 0. Further,

without loss of generality, suppose 𝑓0 ̸= 0 and 𝑓(0, 0) ̸= 0. Now, if 𝛿 ≥ 2
3
, then the line

𝐻 = {(𝑥, 𝑦) ∈ F3
2 | 𝑥 = 0} does the job, since 0 < 𝛿(𝑓 |𝐻 , 0) ≤ 2

3
≤ 𝛿. If 𝛿 < 2

3
, then there

must exist some 𝑎, 𝑏 ∈ F3 and 𝑐 ∈ {0, 1} such that 𝑓(𝑎, 𝑐) ̸= 0 and 𝑓(𝑏, 1− 𝑐) = 0. Then the

line 𝐻 = {(𝑎, 𝑐), (𝑏, 1− 𝑐), (2𝑏− 𝑎, 2)} does the job, since 0 < 𝛿(𝑓 |𝐻 , 0) = 1
3
≤ 𝛿.

Now suppose 𝑚 > 2 and the assertion holds for 𝑚 − 1. For 𝑖 ∈ F3, let 𝐻𝑖 be the

hyperplane cut out by 𝑋𝑚 = 𝑖 and let 𝛿𝑖 , 𝛿(𝑓 |𝐻𝑖
, 0) for each 𝑖 ∈ F3. Then 𝛿0+ 𝛿1+ 𝛿3 = 3𝛿.

51

If 𝛿𝑖 > 0 for all 𝑖 ∈ F3, then by simple averaging, for some 𝑖 ∈ F3, we have 0 < 𝛿𝑖 ≤ 𝛿, so

assume without loss of generality that 𝛿2 = 0 and 𝛿0 ≥ 𝛿1.

First, suppose 𝛿0 ≥ 1
3𝑚−2 . Then, by the inductive hypothesis, there exists an (𝑚 − 2)-

dimensional affine subspace 𝐻(0) ⊂ 𝐻0 such that 0 < 𝛿(𝑓 |𝐻 , 0) ≤ 𝛿0. Suppose 𝐻
(0) is defined

by the linear equations
∑︀𝑚

𝑖=1 𝑎𝑖𝑋𝑖 − 𝑎0 = 0 and 𝑋𝑚 = 0 for some (𝑎0, . . . , 𝑎𝑚) ∈ F𝑚+1
𝑞 . For

each 𝑖, 𝑗 ∈ F3, let 𝐻
(𝑖)
𝑗 ⊂ 𝐻𝑖 be the affine subspace defined by

∑︀𝑚
𝑖=1 𝑎𝑖𝑋𝑖−𝑎0 = 𝑗 and 𝑋𝑚 = 𝑖.

By averaging, for some 𝑗 ∈ F3, we have 𝛿
(︁
𝑓 |

𝐻
(1)
𝑗
, 0
)︁
≤ 𝛿1. Take 𝐻 , 𝐻(0) ∪ 𝐻(1)

𝑗 ∪ 𝐻
(2)
2𝑖 .

Then

0 < 𝛿(𝑓 |𝐻 , 0) =
𝛿
(︀
𝑓 |𝐻(0) , 0

)︀
+ 𝛿
(︀
𝑓 |

𝐻
(1)
𝑗
, 0
)︀
+ 𝛿
(︀
𝑓 |

𝐻
(2)
2𝑗
, 0
)︀

3
≤ 𝛿0 + 𝛿1

3
= 𝛿.

Now, suppose 𝛿0 <
1

3𝑚−2 , so 𝛿0, 𝛿1 ≤ 2
3𝑚−1 . There exists an (𝑚 − 2)-dimensional affine

subspace 𝐻(0) ⊂ 𝐻0 such that 𝛿(𝑓 |𝐻(0) , 0) = 1
3𝑚−1 . To see this, let a,b ∈ 𝐻0 such that

𝑓(a), 𝑓(b) ̸= 0, and suppose 𝑎𝑘 ̸= 𝑏𝑘, for some 𝑘 ∈ [𝑚]. Then take 𝐻(0) to be the subspace

defined by 𝑋𝑘 = 𝑎𝑘 and 𝑋𝑚 = 0. For 𝑖, 𝑗 ∈ F3, let 𝐻
(𝑖)
𝑗 be the (𝑚− 2)-dimensional subspace

defined by 𝑋𝑘 = 𝑎𝑘 + 𝑗 and 𝑋𝑚 = 𝑖. Since 𝛿1 ≤ 2
3𝑚−2 , there is 𝑗 ∈ F3 such that 𝑓 |

𝐻
(1)
𝑗

= 0.

Then, taking 𝐻 , 𝐻(0) ∪𝐻(1)
𝑗 ∪𝐻

(2)
2𝑗 , we have

0 < 𝛿(𝑓 |𝐻 , 0) =
𝛿
(︀
𝑓 |𝐻(0) , 0

)︀
+ 𝛿
(︀
𝑓 |

𝐻
(1)
𝑗
, 0
)︀
+ 𝛿
(︀
𝑓 |

𝐻
(2)
2𝑗
, 0
)︀

3
=

1

3𝑚
< 𝛿.

Now, we are ready to prove Proposition 5.2.4.

Proof of Proposition 5.2.4. Parts 1 and 2 follow immediately from Lemmas 5.2.5 and 5.2.5,

respectively, so we proceed with proving part 3. In light of part 1, it suffices to show that

𝛿(𝒞𝑡↗𝑚) ≥ 𝛿(𝒞).

We start with the 𝑞 = 2 case. We proceed by induction on 𝑚− 𝑡. Indeed, the inductive

step is straightforward since, by Proposition 5.2.2, we have 𝒞𝑡↗𝑚 =
(︀
𝒞𝑡↗𝑚−1)︀𝑚−1↗𝑚

, so by

induction 𝛿(𝒞𝑡↗𝑚) ≥ 𝛿(𝒞𝑡↗𝑚−1) ≥ 𝛿(𝒞). The main case is therefore the base case 𝑚 = 𝑡+1.

Suppose 𝑓 ∈ 𝒞𝑡↗𝑡+1 such that 0 < 𝛿(𝑓, 0) < 𝛿(𝒞). By assumption, 𝛿(𝒞) > 1
2𝑡
, so we

52

may apply Lemma 5.2.7 to conclude that there exists a hyperplane 𝐻 ⊂ F𝑚
2 such that

9 < 𝛿(𝑓 |𝐻 , 0) < 𝛿(𝒞), contradicting the fact that 𝑓 |𝐻 ∈ 𝒞 (since 𝑓 ∈ 𝒞𝑡↗𝑡+1).

Finally, we consider the 𝑞 = 3 case. Again, we proceed by induction on 𝑚− 𝑡, and again

the main case is the base case 𝑚 = 𝑡+ 1. Suppose 𝑓 ∈ 𝒞𝑡↗𝑡+1 such that 0 < 𝛿(𝑓, 0) < 𝛿(𝒞).

If 𝛿(𝑓, 0) ≥ 1
3𝑚−1 , then, by Lemma 5.2.8, there exists a hyperplane 𝐻 ⊂ F𝑚

𝑞 such that

0 < 𝛿(𝑓 |𝐻 , 0) ≤ 𝛿(𝑓, 0) < 𝛿(𝒞), contradicting the fact that 𝑓 |𝐻 ∈ 𝒞. If 𝛿(𝑓, 0) < 1
3𝑚−1 , then

there are at most two points a,b ∈ F𝑚
3 such that 𝑓(a), 𝑓(b) ̸= 0. Let 𝑖 ∈ [𝑚] such that

𝑎𝑖 ̸= 𝑏𝑖 and let 𝐻 be the hyperplane defined by 𝑋𝑖 = 𝑎𝑖. Then 𝑓 |𝐻 is nonzero only on a, so

0 < 𝛿(𝑓 |𝐻) = 1
3𝑚−1 < 𝛿(𝒞), again contradicting the fact that 𝑓 |𝐻 ∈ 𝒞.

5.3 Local Decoding and Correcting

In this section, we explore some of the algorithmic decoding properties of lifted codes. In

particular, for codes of distance 𝛿 > 0, we give simple algorithms for locally correcting up to

𝛿/4 and then 𝛿/2 fraction errors. We then show that all linear affine-invariant codes — in

particular, lifted codes — have explicit interpolating sets, thereby showing that lifted codes

are locally decodable as well.

5.3.1 Local Correcting up to 1/4 Distance

The following algorithm is an abstraction of a simple algorithm for locally correcting Reed-

Muller codes of distance 𝛿 > 0 from 𝛿/4 fraction errors.

Theorem 5.3.1. Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant with distance 𝛿 , 𝛿(𝒞), and

let 𝑚 ≥ 𝑡. Then, for every 𝜖 > 0, the lifted code 𝒞𝑡↗𝑚 is
(︀
𝑞𝑡, (1

4
− 𝜖)𝛿 − 𝑞−𝑡, 1

2
− 2𝜖

)︀
-locally

correctable.

Proof. Let Corr𝒞 be a correction algorithm for 𝒞, so that for every 𝑓 : F𝑞 → F𝑞 that is 𝛿/2-

close to some 𝑔 ∈ 𝒞, Corr𝒞(𝑓) = 𝑔. The following algorithm is a local correction algorithm

that achieves the desired parameters.

53

Local correction algorithm: Oracle access to received word 𝑟 : F𝑚
𝑞 → F𝑞.

On input x ∈ F𝑚
𝑞 :

1. Choose uniform random affine map 𝐴 : F𝑡
𝑞 → F𝑚

𝑞 such that 𝐴(0) = x.

2. Set 𝑓 , 𝑟 ∘ 𝐴.

3. Compute ̂︀𝑓 , Corr𝒞(𝑓).

4. Output ̂︀𝑓(0).
Analysis: Let 𝜏 , (1

4
− 𝜖)𝛿. Fix a received word 𝑟 : F𝑚

𝑞 → F𝑞. Let 𝑐 ∈ 𝒞 be a codeword

such that 𝛿(𝑟, 𝑐) < 𝜏 − 𝑞−𝑡. Let 𝐴 : F𝑡
𝑞 → F𝑚

𝑞 be a random affine map such that 𝐴(0) = x.

By Proposition B.1.3, the expected distance is E𝐴 [𝛿 (𝑟 ∘ 𝐴, 𝑐 ∘ 𝐴)] ≤ 𝛿(𝑟, 𝑐)+ 𝑞−𝑡 < 𝜏 , so, by

Markov’s inequality, with probability at least 1
2
+ 2𝜖, we have 𝛿(𝑟 ∘ 𝐴, 𝑐 ∘ 𝐴) < 𝛿

2
. For such

𝐴, setting 𝑓 , 𝑟 ∘ 𝐴, we have ̂︀𝑓 = Corr𝒞(𝑓) = 𝑐 ∘ 𝐴, hence ̂︀𝑓(0) = 𝑐(𝐴(0)) = 𝑐(x).

5.3.2 Local Correcting up to 1/2 Distance

The following algorithm can locally correct lifted codes up to half the minimum distance.

The basic idea is to decode along multiple lines and weight their opinions based on distance to

the base code. This is a direct translation of the elegant line-weight local decoding algorithm

for matching-vector codes [BET10] to the Reed-Muller code and lifted codes setting.

Theorem 5.3.2. Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant with distance 𝛿 , 𝛿(𝒞), and

let 𝑚 ≥ 𝑡. Then, for every 𝜖, 𝜂 > 0, the lifted code 𝒞𝑡↗𝑚 is
(︀
𝑄, (1

2
− 𝜖)𝛿 − 𝑞−𝑡, 𝜂

)︀
-locally

correctable for 𝑄 = 𝑂 (ln(1/𝜂)/𝜖2 · 𝑞𝑡).

Proof. Let Corr𝒞 be a correction algorithm for 𝒞, so that for every 𝑓 : F𝑞 → F𝑞 that is 𝛿/2-

close to some 𝑔 ∈ 𝒞, Corr𝒞(𝑓) = 𝑔. The following algorithm is a local correction algorithm

that achieves the desired parameters.

54

Local correction algorithm: Oracle access to received word 𝑟 : F𝑚
𝑞 → F𝑞.

On input x ∈ F𝑚
𝑞 :

1. Let 𝑐 =
⌈︁

2
𝜖2
ln 4

𝜂

⌉︁
and choose affine maps 𝐴1, . . . , 𝐴𝑐 ∈ F𝑚

𝑞 such that 𝐴𝑖(0) = x for each

𝑖 ∈ [𝑐] independently and uniformly at random.

2. For each 𝑖 ∈ [𝑐]:

(a) Set 𝑟𝑖 , 𝑟 ∘ 𝐴𝑖.

(b) Compute 𝑠𝑖 , Corr𝒞(𝑟𝑖) and 𝛿𝑖 , 𝛿(𝑟𝑖, 𝑠𝑖).

(c) Assign the value 𝑠𝑖(0) a weight 𝑊𝑖 , max
(︁
1− 𝛿𝑖

𝛿/2
, 0
)︁
.

3. Set𝑊 ,
∑︀𝑐

𝑖=1𝑊𝑖. For every 𝛼 ∈ F𝑞, let 𝑤(𝛼) :=
1
𝑊

∑︀
𝑖:𝑠𝑖(0)=𝛼𝑊𝑖. If there is an 𝛼 ∈ F𝑞

with 𝑤(𝛼) > 1
2
, output 𝛼, otherwise fail.

Analysis: Let 𝜏 , (1
2
−𝜖)𝛿. Fix a received word 𝑟 : F𝑚

𝑞 → F𝑞. Let 𝑐 ∈ 𝒞 be a codeword such

that 𝛿(𝑟, 𝑐) < 𝜏 − 𝑞−𝑡. The query complexity follows from the fact that the algorithm queries

𝑂(ln(1/𝜂)/𝜖2) subspaces, each consisting of at most 𝑞𝑡 points. Fix an input x ∈ F𝑚
𝑞 . We wish

to show that, with probability at least 1− 𝜂, the algorithm outputs 𝑐(x), i.e. 𝑤(𝑐(x)) > 1
2
.

For each affine map 𝐴 : F𝑡
𝑞 → F𝑚

𝑞 , define the following:

𝜏𝐴 , 𝛿(𝑟 ∘ 𝐴, 𝑐 ∘ 𝐴)

𝑠𝐴 , Corr𝒞(𝑟 ∘ 𝐴)

𝛿𝐴 , 𝛿(𝑟 ∘ 𝐴, 𝑠𝐴)

𝑊𝐴 , max

(︂
1− 𝛿𝐴

𝛿/2
, 0

)︂

𝑋𝐴 ,

⎧⎪⎨⎪⎩𝑊𝐴 𝑠𝐴 = 𝑐 ∘ 𝐴

0 𝑠𝐴 ̸= 𝑐 ∘ 𝐴.

Let 𝑝 , Pr𝐴[𝑠𝐴 = 𝑐 ∘ 𝐴]. Note that if 𝑠𝐴 = 𝑐 ∘ 𝐴, then 𝛿𝐴 = 𝜏𝐴, otherwise 𝛿𝐴 ≥ 𝛿 − 𝜏𝐴.

Hence, if 𝑠𝐴 = 𝑐 ∘ 𝐴, then 𝑊𝐴 ≥ 1− 𝜏𝐴
𝛿/2

, otherwise 𝑊𝐴 ≤ 𝜏𝐴
𝛿/2
− 1.

55

Define

𝜏good , E𝐴[𝜏𝐴 | 𝑠𝐴 = 𝑐 ∘ 𝐴]

𝜏bad , E𝐴[𝜏𝐴 | 𝑠𝐴 ̸= 𝑐 ∘ 𝐴]

𝑊good , E𝐴[𝑊𝐴 | 𝑠𝐴 = 𝑐 ∘ 𝐴] ≥ 1− 𝜏good
𝛿/2

𝑊bad , E𝐴[𝑊𝐴 | 𝑠𝐴 ̸= 𝑐 ∘ 𝐴] ≤ 𝜏bad
𝛿/2
− 1.

Observe that

E𝐴[𝜏𝐴] ≤
1 + (𝜏 − 1

𝑞
)(𝑞 − 1)

𝑞
≤ 𝜏

E𝐴[𝑋𝐴] = 𝑝 ·𝑊good

E𝐴[𝑊𝐴] = 𝑝 ·𝑊good + (1− 𝑝) ·𝑊bad.

We claim that

𝑝 ·𝑊good ≥ (1− 𝑝) ·𝑊bad + 2𝜖. (5.3)

To see this, we start from

(︂
1

2
− 𝜖
)︂
𝛿 = 𝜏 ≥ E𝐴[𝜏𝐴] = 𝑝 · 𝜏good + (1− 𝑝) · 𝜏bad.

Dividing by 𝛿/2 yields

1− 2𝜖 ≥ 𝑝 · 𝜏good
𝛿/2

+ (1− 𝑝) · 𝜏bad
𝛿/2

.

Re-writing 1− 2𝜖 on the left-hand side as 𝑝+ (1− 𝑝)− 2𝜖 and re-arranging, we get

𝑝 ·
(︂
1− 𝜏good

𝛿/2

)︂
≥ (1− 𝑝) ·

(︂
𝜏bad
𝛿/2
− 1

)︂
+ 2𝜖.

The left-hand side is bounded from above by 𝑝 ·𝑊good while the right-hand side is bounded

from below by (1− 𝑝) ·𝑊bad + 2𝜖, hence (5.3) follows.

Consider the random affine maps 𝐴1, . . . , 𝐴𝑐 chosen by the algorithm. Note that the 𝑋𝐴

56

are defined such that 𝐴𝑖 contributes weight
𝑋𝐴𝑖

𝑊
to 𝑤(𝑐(x)), so it suffices to show that, with

probability at least 1− 𝜂, ∑︀𝑐
𝑖=1𝑋𝐴𝑖∑︀𝑐
𝑖=1𝑊𝐴𝑖

>
1

2
.

Each 𝑋𝐴,𝑊𝐴 ∈ [0, 1], so by Proposition 2.2.3,

Pr

[︃ ⃒⃒⃒⃒
⃒1𝑐

𝑐∑︁
𝑖=1

𝑋𝐴𝑖
− E𝐴[𝑋𝐴]

⃒⃒⃒⃒
⃒ > 𝜖/2

]︃
≤ 2 exp(−𝜖2𝑐/2) ≤ 𝜂/2

Pr

[︃ ⃒⃒⃒⃒
⃒1𝑐

𝑐∑︁
𝑖=1

𝑊𝐴𝑖
− E𝐴[𝑊𝐴]

⃒⃒⃒⃒
⃒ > 𝜖/2

]︃
≤ 2 exp(−𝜖2𝑐/2) ≤ 𝜂/2.

Therefore, by a union bound, with probability at least 1− 𝜂 we have

∑︀𝑐
𝑖=1𝑋𝐴𝑖∑︀𝑐
𝑖=1𝑊𝐴𝑖

≥ E𝐴[𝑋𝐴]− 𝜖/2
E[𝑊𝐴] + 𝜖/2

=
𝑝 ·𝑊good − 𝜖/2

𝑝 ·𝑊good + (1− 𝑝) ·𝑊bad + 𝜖/2

by (5.3) ≥ (1− 𝑝) ·𝑊bad + 3𝜖/2

2(1− 𝑝) ·𝑊bad + 5𝜖/2

>
1

2
.

5.3.3 Local Decoding

We show that all linear affine-invariant codes, in particular lifted codes, have explicit inter-

polating sets, which allows us to immediately translate the local correctability of lifted codes

into local decodability.

Finite field isomorphisms. Let Tr : F𝑞𝑚 → F𝑞 be the F𝑞-linear trace map 𝑧 ↦→
∑︀𝑞−1

𝑖=0 𝑧
𝑞𝑖 .

Let 𝛼1, . . . , 𝛼𝑚 ∈ F𝑞𝑚 be linearly independent over F𝑞 and let 𝜑 : F𝑞𝑚 → F𝑞 be the map 𝑧 ↦→

(Tr(𝛼1𝑧), . . . ,Tr(𝛼𝑚𝑧)). Since Tr is F𝑞-linear, 𝜑 is F𝑞-linear, and in fact 𝜑 is an isomorphism.

Observe that 𝜑 induces a F𝑞-linear isomorphism 𝜑* : {F𝑚
𝑞 → F𝑞} → {F𝑞𝑚 → F𝑞} defined by

57

𝜑*(𝑓) = 𝑓 ∘ 𝜑.

It is straightforward to verify that if 𝒞 ⊆ {F𝑚
𝑞 → F𝑞}, and 𝑆 ⊆ F𝑞𝑚 is an interpolating

set for 𝜑*(𝒞), then 𝜑(𝑆) is an interpolating set for 𝒞.

Theorem 5.3.3. Let 𝒞 ⊆ {F𝑚
𝑞 → F𝑞} be a nontrivial affine-invariant code with dimF𝑞(𝒞) =

𝐷. Let 𝜔 ∈ F𝑞𝑚 be a generator, i.e. 𝜔 has order 𝑞𝑚 − 1. Let 𝑆 = {𝜔, 𝜔2, . . . , 𝜔𝐷} ⊆ F𝑞𝑚.

Then 𝜑(𝑆) ⊆ F𝑚
𝑞 is an interpolating set for 𝒞.

Proof. The map 𝜑 induces a map 𝜑* : {F𝑚
𝑞 → F𝑞} → {F𝑞𝑚 → F𝑞} defined by 𝜑*(𝑓) =

𝑓 ∘ 𝜑. It suffices to show that 𝑆 is an interpolating set for 𝒞 ′ , 𝜑*(𝒞). Observe that 𝒞 ′

is affine-invariant over F𝑞𝑚 , and hence has a degree set Deg(𝒞 ′), by Proposition 4.1.3. By

Proposition 4.1.4, dimF𝑞(𝒞 ′) = |Deg(𝒞 ′)|, so suppose Deg(𝒞 ′) = {𝑖1, . . . , 𝑖𝐷}. Every 𝑔 ∈ 𝒞 ′

is of the form 𝑔(𝑍) =
∑︀𝐷

𝑗=1 𝑎𝑗𝑍
𝑖𝑗 , where 𝑎𝑗 ∈ F𝑞𝑚 . By linearity, it suffices to show that if

𝑔 ∈ 𝒞 ′ is nonzero, then 𝑔(𝑧) ̸= 0 for some 𝑧 ∈ 𝑆. We have

⎡⎢⎢⎢⎢⎢⎢⎣
𝜔𝑖1 𝜔𝑖2 · · · 𝜔𝑖𝐷

𝜔2𝑖1 𝜔2𝑖2 · · · 𝜔2𝑖𝐷

...
...

. . .
...

𝜔𝐷𝑖1 𝜔𝐷𝑖2 · · · 𝜔𝐷𝑖𝐷

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎1

𝑎2
...

𝑎𝐷

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑔(𝜔)

𝑔(𝜔2)
...

𝑔(𝜔𝐷)

⎤⎥⎥⎥⎥⎥⎥⎦
and the leftmost matrix is invertible since it is a generalized Vandermonde matrix. Therefore,

if 𝑔 ̸= 0, then the right-hand side, which is simply the vector of evaluations of 𝑔 on 𝑆, is

nonzero.

Theorem 5.3.4. Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant with distance 𝛿 , 𝛿(𝒞), and

let 𝑚 ≥ 𝑡. Then, for every 𝜖, 𝜂 > 0, the lifted code 𝒞𝑡↗𝑚 is
(︀
𝑄, (1

2
− 𝜖)𝛿 − 𝑞−𝑡, 𝜂

)︀
-locally

decodable where 𝑄 = 𝑂(ln(1/𝜂)/𝜖2).

Proof. Follows immediately from Theorems 5.3.2 and 5.3.3 and Proposition 3.2.5.

58

5.4 Local Testing and Robust Testing

5.4.1 Local Testing

Many testing results may be viewed as robustness statements about properties. A char-

acterization statement would say “an object 𝑋 has a property 𝑃 globally if and only if it

has property 𝑃 locally”. For example, degree 𝑑 polynomials over F𝑞 of characteristic 𝑝 are

characterized by the fact that, when restricted to 𝑡-dimensional subspaces, for 𝑡 =
⌈︁

𝑑+1
𝑞−𝑞/𝑝

⌉︁
,

they are degree 𝑑 polynomials. This was proved in [KR06]. A testing statement would go

further to say “if 𝑋 does not have property 𝑃 globally, then locally it often fails to have

property 𝑃”. For example, building on our previous example, a low-degree testing statement

would say that if a polynomial over F𝑞 of characteristic 𝑝 has degree greater than 𝑑, then on

many 𝑡-dimensional subspaces, it has degree greater than 𝑑. This was also proved in [KR06].

A robust testing statement would go even further to say “if 𝑋 is far from having property

𝑃 globally, then locally its average distance from 𝑃 is also far”.

The lift operator is natural for many reasons, but primarily because it suggests such a

natural test for lifted codes. The lifted code 𝒞𝑡↗𝑚, by construction, is locally characterized

by the fact that any codeword, when restricted to 𝑡-dimensional subspaces, is a codeword

of 𝒞. Along with the symmetry provided by affine-invariance, the work of Kaufman and

Sudan [KS08] immediately imply that the natural 𝑡-dimensional test is Ω(𝑞−2𝑡)-sound, i.e. if

𝑓 /∈ 𝒞𝑡↗𝑚, then on at least Ω(𝑞−2𝑡)-fraction of 𝑡-dimensional subspaces 𝐴, 𝑓 |𝐴 /∈ 𝒞.

Definition 5.4.1. Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant, and let 𝑡 ≤ 𝑘 ≤ 𝑚. The

natural 𝑘-dimensional test for 𝒞𝑡↗𝑚 is the 𝑞𝑘-local tester with the following distribution: it

selects a uniformly random 𝑘-flat 𝐴 ⊆ F𝑚
𝑞 and accepts a function 𝑓 : F𝑚

𝑞 → F𝑞 if and only if

𝑓 |𝐴 ∈ 𝒞𝑡↗𝑘.

Theorem 5.4.2 ([KS08]). Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant, and let 𝑚 ≥ 𝑡.

Then the natural 𝑡-dimensional test for the lifted code 𝒞𝑡↗𝑚 is (𝑞−2𝑡/2)-sound.

59

5.4.2 Robust Testing

However, for our high-rate code constructions, we often take𝑚 to be constant and let 𝑞 →∞

to make our code longer. As such, a soundness of Ω(𝑞−𝑂(𝑡)) is insufficient as this quickly

approaches zero. In fact, in Chapter 6, we prove that the natural 2𝑡-dimensional (as opposed

to 𝑡-dimensional) test is 𝛼-robust, where 𝛼 is a polynomial in the distance of the code, but

does not depend on 𝑞, 𝑡, or 𝑚. In particular, by Proposition 3.3.2, this implies that the

2𝑡-dimensional test is 𝛼-sound.

Theorem 5.4.3. Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant, and let 𝑚 ≥ 𝑡. Then the

natural (2𝑡)-dimensional test for the lifted code 𝒞𝑡↗𝑚 is 𝛿(𝒞)72
2·1052 -robust.

The proof of Theorem 5.4.3 is somewhat long and technical, so we defer it to Chapter 6.

60

Chapter 6

Robust Testing of Lifted Codes

6.1 Robustness of Lifted Codes

In this section, we prove Theorem 6.1.18, which is simply a more precise restatement of

Theorem 1.2.2. That is, we prove that the natural 2𝑡-dimensional test for the 𝑚-dimensional

lift of a 𝑡-dimensional code over F𝑞 is 𝛼-robust, where 𝛼 depends only on the distance of the

code and not on 𝑡 or 𝑚 or the field size. Our approach is a standard one — we first analyze

the test for low-dimensional settings (Theorem 6.1.4), and then use a general projection

argument (“bootstrapping”) to get an analysis for all dimensions (Theorem 6.1.18).

6.1.1 Preliminaries

We begin by presenting some basic definitions and results on robust testing. We define the

robustness of a lifted code, specializing the definition to robustness with respect to subspace

testers. We include the dimension of the testing subspace as a parameter in the robustness

since this will be convenient later.

Definition 6.1.1. Let 𝑡 ≤ 𝑘 ≤ 𝑚. The code 𝒞𝑡↗𝑚 is (𝛼, 𝑘)-robust if, for every 𝑟 : F𝑚
𝑞 → F𝑞,

E𝐴

[︀
𝛿
(︀
𝑟|𝐴, 𝒞𝑡↗𝑘

)︀]︀
≥ 𝛼 · 𝛿

(︀
𝑟, 𝒞𝑡↗𝑚

)︀
61

where the expectation is over uniformly random 𝑘-dimensional subspaces 𝐴 ⊆ F𝑚
𝑞 . When 𝑘

is clear from context, we say the code is 𝛼-robust.

Observe that if 𝐴 is a random 𝑘1-dimensional affine subspace and 𝐵 is a random 𝑘2-

dimensional affine subspace, where 𝑘2 ≥ 𝑘1, then

E𝐴

[︀
𝛿
(︀
𝑟|𝐴, 𝒞𝑡↗𝑘1

)︀]︀
= E𝐵

[︀
E𝐴⊆𝐵

[︀
𝛿
(︀
𝑟|𝐴, 𝒞𝑡↗𝑘1

)︀]︀]︀
≤ E𝐵

[︀
𝛿
(︀
𝑟|𝐵, 𝒞𝑡↗𝑘2

)︀]︀
so if 𝒞𝑡↗𝑚 is (𝛼, 𝑘1)-robust, then it is also (𝛼, 𝑘2)-robust.

As a corollary to Theorem 5.4.2, the 𝑘-dimensional test (for 𝑘 ≥ 𝑡) for 𝒞𝑡↗𝑚 is 𝑂(𝑞−3𝑡)-

robust.

Corollary 6.1.2. If 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} is linear affine-invariant, then 𝒞𝑡↗𝑚 is (𝑞

−3𝑡

2
, 𝑘)-robust

for 𝑘 ≥ 𝑡.

Proof. It suffices to show that 𝒞𝑡↗𝑚 is (𝑞
−3𝑡

2
, 𝑡)-robust, which follows immediately from The-

orem 5.4.2 and Proposition 3.3.2.

Proposition 6.1.3 (Robustness composes multiplicatively). Let 𝑡 ≤ 𝑘1 ≤ 𝑘2 ≤ 𝑚

and let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant. If 𝒞𝑡↗𝑚 is (𝛼2, 𝑘2)-robust and 𝒞𝑡↗𝑘2 is

(𝛼1, 𝑘1)-robust, then 𝒞𝑡↗𝑚 is (𝛼1 · 𝛼2, 𝑘1)-robust.

6.1.2 Robustness for Small Dimension

Throughout Sections 6.1.2 and 6.1.3, fix a linear affine invariant code 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} with

relative distance 𝛿 , 𝛿(𝒞). Let 𝑛 ≥ 1 be an integer (we will use 𝑛 = 3 or 4) and let 𝑚 = 𝑛𝑡.

Two codes that play a prominent role are the lift 𝒞𝑡↗𝑚 of 𝒞 to 𝑚 dimensions, and the

𝑛-fold tensor product 𝒞⊗𝑛 of 𝒞, which is also an 𝑚-dimensional code.

We begin by giving a tester with robust analysis for 𝒞𝑡↗𝑚 for this restricted choice of

𝑚. We will show that the (𝑚− 𝑡)-dimensional test is
(︀
𝛿𝑛

𝑛

)︀𝑂(1)
-robust. (Note the robustness

degrades poorly with 𝑛 = 𝑚/𝑡 and so can only be applied for small 𝑛). It is important, for

Section 6.1.4, that there is no dependence on 𝑡.

62

Theorem 6.1.4. Let 𝑛 ≥ 3 and 𝑡 ≥ 1 and set 𝑚 = 𝑛𝑡. Then 𝒞𝑡↗𝑚 is (𝛼0,𝑚− 𝑡)-robust for

𝛼0 =
𝛿3𝑛

16(𝑛2+3𝑛+2)3
.

Overview. For simplicity, we describe the proof idea for 𝑡 = 1. Suppose the average

local distance to 𝒞1↗(𝑚−1) on random hyperplanes is small. For a ∈ F𝑚
𝑞 , let 𝒞a be the

code consisting of tensor codewords in 𝒞⊗𝑛 whose restrictions to lines in direction a are also

codewords of 𝒞. Note that
⋂︀

a 𝒞a = 𝒞1↗𝑚. Our main technical result (Theorem 6.1.11) of this

section shows that 𝒞a is
(︀
𝛿𝑛

𝑛

)︀𝑂(1)
-robust. Now, observe that choosing a random hyperplane

can be done by choosing 𝑚 random linearly independent directions, choosing an additional

random direction a that is not spanned by any 𝑚− 1 of the former, and choosing a random

hyperplane spanned by 𝑚 − 1 of these 𝑚 + 1 random directions (call such a hyperplane

“special”). Viewing the first 𝑚 chosen directions as the standard basis directions, we see

that the average local distance to 𝒞1↗(𝑚−1), and hence to 𝒞⊗(𝑚−1), when restricting to special

hyperplanes, is still small. Therefore, for most a, the average local distance to 𝒞⊗(𝑚−1) on

special hyperplanes is small. By the robustness of 𝒞a, this implies that our received word

is close to some codeword 𝑐a ∈ 𝒞a for most a. But these codewords 𝑐a are all codewords

of 𝒞⊗𝑚 and close to each other, so they must be the same codeword 𝑐 ∈ 𝒞⊗𝑚. So we have

shown that we are close to 𝑐 ∈ 𝒞⊗𝑚. We proceed by showing that in fact 𝑐 ∈ 𝒞1↗𝑚. Note

that 𝑐 ∈ 𝒞a for most a. Another technical result, Corollary 6.2.7, implies that in fact 𝑐 ∈ 𝒞a
for all a and we are done.

To generalize to 𝑡 > 1, we replace dimension 𝑘 subspaces with dimension 𝑘𝑡 subspaces

throughout. Some work needs to be done to ensure that Theorem 6.1.11 still works, and also

Corollary 6.2.7 must be generalized appropriately to remove the dependence on 𝑡. These

issues will be discussed in the corresponding sections.

Definition 6.1.5. Let ℓ ≤ 𝑚 be an integer. A collection 𝐷 ⊆
(︀F𝑚

𝑞

𝑡

)︀
is ℓ-proper if for every

𝑘 and every distinct 𝐴1, . . . , 𝐴𝑘 ∈ 𝐷, the union
⋃︀𝑘

𝑖=1𝐴𝑖 contains at least min {𝑘𝑡,𝑚− ℓ}

linearly independent vectors.

Definition 6.1.6. For a set 𝐷 ⊆
(︀F𝑚

𝑞

𝑡

)︀
, for every x ∈ F𝑚

𝑞 define 𝒱𝑘
𝐷(x) to be the collection

63

of subspaces through x in directions from 𝑘 different sets from 𝐷. More precisely,

𝒱𝑘
𝐷(x) ,

{︃
(x, 𝐴)

⃒⃒⃒⃒
⃒ 𝐴 =

𝑘⋃︁
𝑖=1

𝐷𝑖, {𝐷1, . . . , 𝐷𝑘} ∈
(︂
𝐷

𝑘

)︂}︃

Define

𝒱𝑘
𝐷 ,

⋃︁
x∈F𝑛

𝑞

𝒱𝑘
𝐷(x).

The testing subspaces through x are 𝒯𝐷(x) , 𝒱𝑚−1
𝐷 (x) and the decoding subspaces through

x are 𝒟𝐷(x) , 𝒱1
𝐷(x). Similarly, the testing subspaces are 𝒯𝐷 , 𝒱𝑚−1

𝐷 and the decoding

subspaces are 𝒟𝐷 , 𝒱1
𝐷. If 𝑆 = (x,∪𝑘𝑖=1𝐷𝑖) ∈ 𝒱𝑘

𝐷, then the blocks of 𝑆 are the sets

𝐷1, . . . , 𝐷𝑘. Two testing subspaces are adjacent if they differ in at most one block.

Remark 6.1.7. If 𝐷 is ℓ-proper for ℓ ≤ 𝑡 then for any 𝑘 < 𝑛 we have that 𝒱𝑘
𝐷 consists of

𝑘𝑡-dimensional subspaces.

Definition 6.1.8. Define 𝒞𝑛𝐷 to be the code of all words 𝑓 : F𝑚
𝑞 → F𝑞 such that 𝑓 |𝑢 ∈ 𝒞 for

every decoding subspace 𝑢 ∈ 𝒟𝐷.

Remark 6.1.9. Observe that 𝒞𝑡↗𝑚 is a subcode of 𝒞𝑛𝐷 for any 𝐷. If
⋃︀
𝐷 contains the

standard basis vectors, then 𝒞𝑛𝐷 is a subcode of 𝒞⊗𝑛.

Proof of Theorem 6.1.4. Define ℓ ,

⌊︂
𝑛 log(1

𝛿)+log(𝑛2+3𝑛+2)+1

log(𝑞)

⌋︂
. We note that for the most

interesting cases, where 𝛿 > 0 and 𝑛 are fixed and 𝑞 → ∞, ℓ = 0. Our first step handles

the less interesting cases (by appealing to a known result). Specifically, if ℓ ≥ 𝑡 then by

Corollary 6.1.2 we are done since

𝑞−3𝑡

2
≥ 𝑞−3ℓ

2
≥ 𝑞

−3
(︃

𝑛 log(1
𝛿)+log(𝑛2+3𝑛+2)+1

log(𝑞)

)︃

2
=

𝛿3𝑛

16(𝑛2 + 3𝑛+ 2)3
= 𝛼0 .

Now assume ℓ < 𝑡 and let 𝜌 , E𝑣

[︀
𝛿
(︀
𝑟|𝑣, 𝒞𝑡↗(𝑚−𝑡))︀]︀, where 𝑣 ⊆ F𝑚

𝑞 is a uniformly random

(𝑚− 𝑡)-dimensional affine subspace. We will assume without lost of generality that 𝜌 ≤ 𝛼0

and in particular 𝜌 ≤ 𝛿3𝑛

16(𝑛+1
𝑛−1)

2
(𝑛2+3𝑛+2)

≤ 𝛿2𝑛𝑞−ℓ

8(𝑛+1
𝑛−1)

2 .

64

Observe that

𝜌 = E
𝐴1,...,𝐴𝑛∈(F

𝑚
𝑞
𝑡)
E

𝐴∈(F
𝑛
𝑞
𝑡)
E𝑣∈𝒯{𝐴1,...,𝐴𝑛,𝐴}

[︀
𝛿
(︀
𝑟|𝑣, 𝒞𝑡↗(𝑚−𝑡))︀]︀

where 𝐴1, . . . , 𝐴𝑛 are random sets such that their union is linearly independent, and 𝐴 is a

random set such that {𝐴1, . . . , 𝐴𝑛, 𝐴} is ℓ-proper. Fix 𝐴1, . . . , 𝐴𝑛 such that

E
𝐴∈(F

𝑚
𝑞
𝑡)
E𝑣∈𝒯{𝐴1,...,𝐴𝑛,𝐴}

[︀
𝛿
(︀
𝑟|𝑣, 𝒞𝑡↗(𝑚−𝑡))︀]︀ ≤ 𝜌.

Since 𝒞𝑡↗(𝑚−𝑡) ⊆ 𝒞⊗(𝑛−1),

E
𝐴∈(F

𝑚
𝑞
𝑡)
E𝑣∈𝒯{𝐴1,...,𝐴𝑛,𝐴}

[︀
𝛿
(︀
𝑟|𝑣, 𝒞⊗(𝑛−1)

)︀]︀
≤ 𝜌.

By affine-invariance, we may assume without loss of generality that 𝐴1, . . . , 𝐴𝑛 form the

standard basis vectors for F𝑚
𝑞 . For any 𝐴 ∈

(︀F𝑚
𝑞

𝑡

)︀
, let 𝐷𝐴 , {𝐴1, . . . , 𝐴𝑛, 𝐴}. By Markov’s

inequality,

Pr
𝐴

[︁
E𝑣∈𝒯𝐷𝐴

[︀
𝛿
(︀
𝑟|𝑣, 𝒞⊗(𝑛−1)

)︀
≥ 2𝛿−𝑛𝜌

]︀]︁
<

1

2
𝛿𝑛.

So, for more than 1− 1
2
𝛿𝑛 fraction of blocks 𝐴 such that 𝐷𝐴 is ℓ-proper, we have a codeword

𝑐𝐴 ∈ 𝒞𝑛𝐷𝐴
⊆ 𝒞⊗𝑛 such that (by Theorem 6.1.11) 𝛿(𝑟, 𝑐𝐴) < 2𝛿−𝑛𝜌

(︀
𝑛+1
𝑛−1

)︀
< 1

2
𝛿𝑛. For every

two such blocks 𝐴,𝐴′, we have 𝛿(𝑐𝐴, 𝑐𝐴′) ≤ 𝛿(𝑐𝐴, 𝑟) + 𝛿(𝑟, 𝑐𝐴′) < 𝛿𝑛 = 𝛿(𝒞⊗𝑛), so there is

some codeword 𝑐 ∈ 𝒞⊗𝑛 such that 𝑐𝐴 = 𝑐 for every such 𝐴. For such 𝐴, it follows that for

every b ∈ F𝑚
𝑞 , the restriction of 𝑐 to the subspace (b, 𝐴) is a codeword of 𝒞, i.e. 𝑐|(b,𝐴) ∈ 𝒞.

By Claim 6.1.17, for more than 1 − 1
2
𝛿𝑛 −

(︀
𝑛
2

)︀
𝑞−𝑡

𝑞−1 − 𝑛
𝑞−𝑙

𝑞−1 fraction of blocks 𝐴 (without the

requirement that 𝐷𝐴 be proper), 𝑐|(b,𝐴) ∈ 𝒞 for every b ∈ F𝑚
𝑞 . In particular, 𝑐 ∈ 𝒞⊗𝑛 and

for every b ∈ F𝑚
𝑞 , 𝑐|(b,𝐴) /∈ 𝒞 for less than 1

2
𝛿𝑛 +

(︀
𝑛
2

)︀
𝑞−𝑡

𝑞−1 + 𝑛 𝑞−ℓ

𝑞−1 fraction of 𝐴. It sufficient to

show that 1
2
𝛿𝑛 +

(︀
𝑛
2

)︀
𝑞−𝑡

𝑞−1 + 𝑛 𝑞−𝑙

𝑞−1 ≤ 𝛿𝑛 − (𝑛 + 1)𝑞−𝑡. Then it will follow from Corollary 6.2.7

65

that 𝑐 ∈ 𝒞𝑡↗𝑚 and since 𝛿(𝑟, 𝑐) ≤ 2𝛿−𝑛𝜌
(︀
𝑛+1
𝑛−1

)︀
we are done. Calculating:

(︂
𝑛

2

)︂
𝑞−𝑡

𝑞 − 1
+ 𝑛

𝑞−𝑙

𝑞 − 1
+ (𝑛+ 1)𝑞−𝑡 ≤

(︂
𝑛

2

)︂
𝑞−𝑙

𝑞 − 1
+ 𝑛

𝑞−𝑙

𝑞 − 1
+ (𝑛+ 1)

𝑞−𝑙

𝑞 − 1

=
𝑞−𝑙

𝑞 − 1

(︂
𝑛2 + 3𝑛+ 2

2

)︂
≤ 𝑞𝛿𝑛

4(𝑞 − 1)

≤ 1

2
𝛿𝑛.

The composability of robust tests immediately yields the following corollary where the

test is now 2𝑡 dimensional.

Corollary 6.1.10. 𝒞𝑡↗4𝑡 is (𝛼1, 2𝑡)-robust, where 𝛼1 ≥ 𝛿21

6·1010 .

Proof. By Theorem 6.1.4, 𝒞𝑡↗4𝑡 is
(︁

𝛿12

432,000
, 3𝑡
)︁
-robust and 𝒞𝑡↗3𝑡 is

(︁
𝛿9

128,000
, 2𝑡
)︁
-robust. There-

fore, by composing, the 2𝑡-dimensional robustness of 𝒞𝑡↗4𝑡 is at least 𝛿12

432,000
· 𝛿9

128,000
=

𝛿21

55,296,000,000

6.1.3 Robustness of Special Tensor Codes

In this section, we prove the main technical result (Theorem 6.1.11) used in Section 6.1.2.

Theorem 6.1.11. Let 𝑛 ≥ 3 and ℓ ≤ 𝑡. Set 𝑚 = 𝑛𝑡. Let 𝐷 ⊆
(︀F𝑛

𝑞

𝑡

)︀
be ℓ-proper with |𝐷| ≥ 𝑛

blocks. Let 𝑟 : F𝑚
𝑞 → F𝑞 be a word with 𝜌 , E𝑣∈𝒯𝐷

[︀
𝛿
(︀
𝑟|𝑣, 𝒞⊗(𝑛−1)

)︀]︀
. If 𝜌 < 𝛿𝑛𝑞−ℓ

4(|𝐷|
𝑛−1)

2 , then

𝛿(𝑟, 𝒞𝑛𝐷) ≤ 𝜌
(︀ |𝐷|
𝑛−1

)︀
.

Overview. Our analysis is an adaptation of Viderman’s [Vid12]. For simplicity, assume

𝑡 = 1. We define a function 𝑐 : F𝑚
𝑞 → F𝑞, which we show is both close to 𝑟 and a codeword

of 𝒞𝑛𝐷. Following Viderman’s analysis, we partition F𝑚
𝑞 into “good”, “fixable”, and “bad”

points. Each hyperplane 𝑣 ∈ 𝒯𝐷 has an associated codeword 𝑐𝑣 ∈ 𝒞⊗(𝑚−1), the nearest

codeword to 𝑟|𝑣, and an opinion 𝑐𝑣(x) about x. “Good” points are points for which any

66

hyperplane agrees with 𝑟. “Fixable” points are points for which hyperplanes agree with each

other, but not with 𝑟. “Bad” points are points for which at least two hyperplanes disagree

with each other. For good or fixable x, we naturally define 𝑐(x) to be the common opinion

𝑐𝑣(x) of any hyperplane 𝑣 through x. Claim 6.1.13 implies that there are not many bad

points, which immediately shows that 𝑐 is close to 𝑟.

So far, our proof has been a straightforward adaptation of Viderman’s. However, at

this point, we are forced to depart from Viderman’s proof. A hyperplane is “bad” if it

has more than 1
2
𝛿𝑚−1 fraction bad points. Claim 6.1.12 shows that every bad point is in

a bad hyperplane, and Claim 6.1.14 shows that there are less than 1
2
𝛿𝑞 bad hyperplanes.

In [Vid12], which analyses 𝒞⊗𝑚 and axis-parallel hyperplanes instead of 𝒞𝑛𝐷 and 𝒯𝐷, this is

already enough, since this implies that in each axis-parallel direction, there are less than

𝛿𝑞 bad hyperplanes, so the remaining points are all good or fixable and with a little bit

more work, one can show that 𝑐 can be extended uniquely to a tensor codeword using the

erasure-decoding properties of tensor codes. Unfortunately, we do not have this structure.

We say a line is “good” if it is contained in some good hyperplane, otherwise it is bad.

We must further partition the bad points into merely bad and “super-bad” points, which

are points such that either every hyperplane is bad, or there are two disagreeing good hy-

perplanes. For merely bad x, we define 𝑐(x) to be the common opinion 𝑐𝑣(x) of any good

hyperplane 𝑣 through x. For super-bad x, we pick any line 𝑢 through x, take the restriction

of 𝑐 to the non-super-bad points on 𝑢, and extend it to a codeword 𝑐𝑢 ∈ 𝒞, and define

𝑐(x) , 𝑐𝑢(x). Two non-trivial steps remain: showing that 𝑐(x) is well-defined for super-bad

x, and showing that 𝑐 ∈ 𝒞𝑛𝐷.

Claim 6.1.15 shows that, for any special plane, there are less than 1
2
𝛿𝑞 lines in each

direction that are bad (not contained in any good hyperplane) or contain a super-bad point.

This is proved by exhibiting, for each such undesirable line, a bad hyperplane in a fixed

direction containing the line. If there were too many undesirable lines, this would result in

too many parallel bad hyperplanes, contradicting Claim 6.1.14. Finally, Claim 6.1.16 shows

that if 𝑢 is a line with no super-bad points, then 𝑐|𝑢 ∈ 𝒞 is a codeword.

67

Now, we show that 𝑐 is well-defined on super-bad x. Let 𝑢1, 𝑢2 be two lines through x. Let

𝑃 be the plane through x containing 𝑢1, 𝑢2. On this plane, by Claim 6.1.15, in each direction

we have enough lines 𝑢 with no super-bad points, for which 𝑐|𝑢 ∈ 𝒞 (by Claim 6.1.16), so

that we can uniquely extend 𝑐 onto the entire plane (by Proposition A.2.5). This gives a

well-defined value for 𝑐(x).

Finally, we show that 𝑐 ∈ 𝒞𝑛𝐷. Let 𝑢 be any line. If 𝑢 has no super-bad points, then

𝑐|𝑢 ∈ 𝒞 follows from Claim 6.1.16. If 𝑐 does have a super-bad point x, then 𝑐|𝑢 ∈ 𝒞 by the

way we defined 𝑐(x).

This completes our analysis for the case 𝑡 = 1. To generalize to 𝑡 > 1, we replace lines

with “decoding subspaces” (subspaces of dimension 𝑡), planes with subspaces of dimension

2𝑡, and hyperplanes with “testing subspaces” (subspaces of codimension 𝑡). Some care must

be taken when proving Claim 6.1.15, because the intersection of two decoding subspaces

may have non-trivial dimension. We therefore require the notion of “ℓ-properness” of 𝐷,

and must modify Claim 6.1.14 and also prove Claim 6.1.17 to accommodate this notion.

Details follow.

Proof of Theorem 6.1.11. For each testing subspace 𝑣 ∈ 𝒯𝐷, define 𝑐𝑣 ∈ 𝒞⊗(𝑛−1) to be the

closest codeword to 𝑟|𝑣 (break ties arbitrarily). We will partition F𝑚
𝑞 into three disjoint sets

𝐺,𝐹,𝐵 (good, fixable, and bad points, respectively) as follows:

𝐺 ,
{︀
x ∈ F𝑚

𝑞 | 𝑐𝑣(x) = 𝑟(x) for every 𝑣 ∈ 𝒯𝐷(x)
}︀

𝐹 ,
{︀
x ∈ F𝑚

𝑞 | 𝑐𝑣(x) = 𝑐𝑣′(x) ̸= 𝑟(x) for every 𝑣, 𝑣′ ∈ 𝒯𝐷(x)
}︀

𝐵 ,
{︀
x ∈ F𝑚

𝑞 | 𝑐𝑣(x) ̸= 𝑐𝑣′(x) for some 𝑣, 𝑣′ ∈ 𝒯𝐷(x)
}︀
.

Call a testing subspace bad if at least 1
2
𝛿𝑛−1 fraction of its points are in 𝐵, and good otherwise.

A decoding subspace is good if it is contained in some good testing subspace, and bad

otherwise. Further, define the set 𝐵′ of super-bad points

𝐵′ , {x ∈ 𝐵 | every 𝑣 ∈ 𝒯𝐷(x) is bad or ∃ good 𝑣, 𝑣′ ∈ 𝒯𝐷(x) such that 𝑐𝑣(x) ̸= 𝑐𝑣′(x)}.

68

Claim 6.1.12. If 𝑣, 𝑣′ ∈ 𝒯𝐷 are adjacent good testing subspaces, then 𝑐𝑣|𝑣∩𝑣′ = 𝑐𝑣′ |𝑣∩𝑣′. In

particular, every bad point is in a bad testing subspace.

Proof. Suppose b ∈ 𝑣 ∩ 𝑣′ and 𝑐𝑣(b) ̸= 𝑐𝑣′(b). Since 𝑣, 𝑣′ are adjacent, they have 𝑛 − 2

blocks 𝐴1, . . . , 𝐴𝑛−2 in common. Let 𝑣 have blocks 𝐴1, . . . , 𝐴𝑛−2, 𝐴 and let 𝑣′ have blocks

𝐴1, . . . , 𝐴𝑛−2, 𝐴
′.

Let 𝑢 ∈ 𝒟𝐷 be the decoding subspace (b, 𝐴1). Since 𝑐𝑣|𝑢, 𝑐𝑣′ |𝑢 ∈ 𝒞 disagree on b, they

are distinct codewords and hence disagree on at least 𝛿𝑞𝑡 points of 𝑢, say x1, . . . ,x𝛿𝑞𝑡 . For

each 𝑖 ∈ [𝛿𝑞𝑡], let 𝑣𝑖 ∈ 𝒯𝐷 be the testing subspace (x𝑖, 𝐴2 ∪ · · · ∪ 𝐴𝑛−2 ∪ 𝐴 ∪ 𝐴′).

Since 𝑐𝑣(x𝑖) ̸= 𝑐𝑣′(x𝑖), that means 𝑐𝑣𝑖 disagrees with one of 𝑐𝑣, 𝑐𝑣′ at x𝑖. Without loss

of generality, suppose 𝑐𝑣 disagrees with 𝑐𝑣1 , . . . , 𝑐𝑣𝛿𝑞𝑡/2 . We will show that 𝑣 is bad, which

proves the first part of the claim.

For each 𝑖 ∈ [𝛿𝑞𝑡], let 𝑤𝑖 = (x𝑖, 𝐴2 ∪ · · · ∪ 𝐴𝑛−2 ∪ 𝐴). Note that 𝑢 ∩ 𝑤𝑖 = {x𝑖} (since

𝐷 is ℓ-proper, for ℓ ≤ 𝑡), so all 𝑤𝑖 are different parallel subspaces and hence disjoint. Since

𝑤𝑖 ∈ 𝒱𝑛−2
𝐷 , the restrictions 𝑐𝑣|𝑤𝑖

, 𝑐𝑣𝑖 |𝑤𝑖
∈ 𝒞⊗𝑛−2 are codewords and are distinct because they

disagree on x𝑖, therefore, by Proposition A.2.4, they disagree on at least 𝛿𝑛−2𝑞𝑚−2𝑡 points in

𝑤𝑖, which are therefore bad. Thus, each 𝑣𝑖 contributes 𝛿
𝑛−2𝑞𝑚−2𝑡 bad points to 𝑣, for a total

of 1
2
𝛿𝑛−1𝑞𝑚−𝑡 bad points since the 𝑤𝑖 are disjoint.

For the second part, suppose b ∈ 𝐵 is a bad point. We will show that b lies in a bad

testing subspace. By definition, there are two testing subspaces 𝑣, 𝑣′ ∈ 𝒯𝐷(b) such that

𝑐𝑣(b) ̸= 𝑐𝑣′(b). Suppose 𝑣 has blocks 𝐴1, . . . , 𝐴𝑛−1 and 𝑣′ has directions 𝐴′1, . . . , 𝐴
′
𝑛−1. As-

sume, without lost of generality, that if 𝐴𝑖 = 𝐴′𝑗 then 𝑖 = 𝑗. Define 𝑣0 , 𝑣, and for 𝑖 ∈ [𝑛−1],

define 𝑣𝑖 ∈ 𝒯𝐷 to be the testing subspace through b in directions 𝐴′1, . . . , 𝐴
′
𝑖, 𝐴𝑖+1, . . . , 𝐴𝑛−1.

Consider the sequence 𝑣0, 𝑣1, . . . , 𝑣𝑛−1 of testing subspaces. For each 𝑖, the testing subspaces

𝑣𝑖, 𝑣𝑖+1 are adjacent. Since 𝑐𝑣0(b) ̸= 𝑐𝑣𝑛−1(b), there exists some 𝑖 such that 𝑐𝑣𝑖(b) ̸= 𝑐𝑣𝑖+1
(b),

and by the first part of the claim it follows that one of 𝑣𝑖, 𝑣𝑖+1 is bad.

Claim 6.1.13. 𝜌 ≥ |𝐹 |
𝑞𝑚

+ |𝐵|
𝑞𝑚(|𝐷|

𝑛−1)

69

Proof. Observe that |𝒯𝐷| = 𝑞𝑡
(︀ |𝐷|
𝑛−1

)︀
. Therefore,

𝜌 = E𝑣∈𝒯𝐷
[︀
𝛿
(︀
𝑟|𝑣, 𝒞⊗(𝑛−1)

)︀]︀
= E𝑣∈𝒯𝐷 [𝛿 (𝑟|𝑣, 𝑐𝑣)]

=
1

𝑞𝑡
(︀ |𝐷|
𝑛−1

)︀ ∑︁
𝑣∈𝒯𝐷

1

𝑞𝑚−𝑡

∑︁
x∈𝑣

1𝑐𝑣(x)̸=𝑟(x)

=
1

𝑞𝑚
(︀ |𝐷|
𝑛−1

)︀ ∑︁
x∈F𝑚

𝑞

#{𝑣 ∈ 𝒯𝐷(x) | 𝑐𝑣(x) ̸= 𝑟(x)}

≥ 1

𝑞𝑚
(︀ |𝐷|
𝑛−1

)︀ (︃∑︁
x∈𝐺

0 +
∑︁
x∈𝐹

(︂
|𝐷|
𝑚− 1

)︂
+
∑︁
x∈𝐵

1

)︃

=
|𝐹 |
𝑞𝑚

+
|𝐵|

𝑞𝑚
(︀ |𝐷|
𝑛−1

)︀ .

Claim 6.1.14. There are less than 1
2
𝛿𝑞𝑡−ℓ bad testing subspaces.

Proof. By Claim 6.1.13, there are at most |𝐵| ≤ 𝜌
(︀ |𝐷|
𝑛−1

)︀
𝑞𝑚 bad points. Each bad testing

subspace has at least 𝛿𝑛−1𝑞𝑚−𝑡/2 bad points by definition. Each bad point has at most
(︀ |𝐷|
𝑛−1

)︀
bad testing subspaces through it. Therefore, the number of testing subspaces is bounded by

|𝐵|
1
2
𝛿𝑛−1𝑞𝑚−𝑡

·
(︂
|𝐷|
𝑛− 1

)︂
≤ 2𝜌

𝛿𝑛−1

(︂
|𝐷|
𝑛− 1

)︂2

𝑞𝑡 <
1

2
𝛿𝑞𝑡−ℓ.

Now we proceed to prove the lemma. We construct a codeword 𝑐 ∈ 𝒞𝑛𝐷 with 𝛿(𝑟, 𝑐) ≤

𝜌
(︀ |𝐷|
𝑛−1

)︀
in stages, as follows. First, for x ∈ 𝐺 ∪ 𝐹 , we define 𝑐(x) , 𝑐𝑣(x) for any testing

subspace 𝑣 ∈ 𝒯𝐷(x). This is well-defined by the definition of 𝐺 and 𝐹 . Furthermore, since

𝑐(x) = 𝑐𝑣(x) = 𝑟(x) for x ∈ 𝐺, we already guarantee that 𝛿(𝑟, 𝑐) ≤ |𝐹 |+|𝐵|
𝑞𝑚

≤ 𝜌
(︀ |𝐷|
𝑛−1

)︀
.

For x ∈ 𝐵 ∖ 𝐵′, define 𝑐(x) , 𝑐𝑣(x) for any good testing subspace 𝑣 ∈ 𝒯𝐷(x), whose

existence is guaranteed by the fact that x /∈ 𝐵′. This is well-defined because if 𝑣, 𝑣′ ∈ 𝒯𝐷(x)

are both good, then it follows from the fact that x /∈ 𝐵′ that 𝑐𝑣(x) = 𝑐𝑣′(x).

70

Claim 6.1.15. Let 𝑤 ∈ 𝒱2
𝐷 be a subspace in directions 𝐴1, 𝐴2 ∈ 𝐷. For each 𝑖 ∈ {1, 2}, 𝑤

contains less than 1
2
𝛿𝑞𝑡 decoding subspaces in direction 𝐴𝑖 which intersect 𝐵′ or are bad (not

contained in any good testing subspace).

Proof. By symmetry, it suffices to consider 𝑖 = 2. Let 𝐴3, . . . , 𝐴𝑛 ∈ 𝐷 be blocks in some

other direction. Let 𝑢1, . . . , 𝑢𝑘 ⊆ 𝑤 be decoding subspaces in direction 𝐴2 such that, for

each 𝑗 ∈ [𝑘], 𝑢𝑗 intersects 𝐵
′ or is bad. It suffices to exhibit, for each 𝑗 ∈ [𝑘], a bad testing

subspace 𝑣 ∈ 𝒯𝐷 containing 𝑢𝑗 which has block 𝐴2 but not 𝐴1. In this case we will show

that |𝑣 ∩ 𝑤| ≤ 𝑞𝑡+ℓ so each such bad testing subspace contain at most 𝑞ℓ of the 𝑢𝑖-s. Since,

by Claim 6.1.14, there are at most 1
2
𝛿𝑞𝑡−ℓ such subspaces, we get that 𝑘 ≤ 1

2
𝛿𝑞𝑡. Indeed,

since 𝐷 is ℓ-proper, the subspace 𝑢+ 𝑣 ∈ 𝒱𝑛
𝐷 has dimension at least 𝑚− ℓ. Therefore,

dim(𝑣 ∩ 𝑤) = dim(𝑣) + dim(𝑤)− dim(𝑣 + 𝑤) ≤ 𝑚− 𝑡+ 2𝑡− (𝑚− 𝑙) = 𝑡+ 𝑙

and |𝑣 ∩ 𝑤| ≤ 𝑞𝑡+ℓ.

Fix 𝑗 ∈ [𝑙] and 𝑢 , 𝑢𝑗 and we will show that 𝑢 is contained in a bad testing subspace.

If 𝑢 is bad, then we are done, since any testing subspace containing 𝑢, in particular the

testing subspace in directions 𝐴2, . . . , 𝐴𝑛, is bad. Now suppose 𝑢 has a point x ∈ 𝑢 ∩ 𝐵′.

Let 𝑣 ∈ 𝒯𝐷 be the testing subspace (x, 𝐴2 ∪ · · · ∪ 𝐴𝑛). If 𝑣 is bad, we are done. Otherwise,

since x ∈ 𝐵′, there exists another good hyperplane 𝑣′ ∈ 𝐷, in directions 𝐴′1, . . . , 𝐴
′
𝑛−1, such

that 𝑐𝑣(x) ̸= 𝑐𝑣′(x). Without loss of generality, assume that if 𝐴𝑖 = 𝐴′𝑗 then 𝑖 = 𝑗 (in

particular 𝐴1 /∈ {𝐴′2, . . . , 𝐴′𝑛−1}). For each 𝑖 ∈ [𝑛 − 1], if 𝐴2 = 𝐴′2 define 𝑣𝑖 ∈ 𝒯𝐷(x) to be

the testing subspace (x, 𝐴′2, . . . , 𝐴
′
𝑖, 𝐴𝑖+1, . . . , 𝐴𝑛), and if 𝐴2 ̸= 𝐴′2 define 𝑣1 to be 𝑣 and 𝑣𝑖

to be (x, 𝐴2, 𝐴
′
2, . . . , 𝐴

′
𝑖, 𝐴𝑖+1, . . . , 𝐴𝑛−1). In any case define 𝑣𝑛 , 𝑣′. For every 𝑖 ∈ [𝑛 − 1],

𝑣𝑖 and 𝑣𝑖+1 are adjacent. Note that for every 𝑖 ∈ [𝑛 − 1], 𝑣𝑖 contains the direction 𝐴2 and

does not contain the direction 𝐴1. We will show that 𝑣𝑖 is bad for some 𝑖 ∈ [𝑛 − 1]. Since

𝑐𝑣1(x) ̸= 𝑐𝑣𝑛(x), there exists some 𝑖 ∈ [𝑛 − 1] such that 𝑐𝑣𝑖(x) ̸= 𝑐𝑣𝑖+1
(x), and therefore, by

Claim 6.1.12, one of 𝑣𝑖, 𝑣𝑖+1 is bad. If 𝑖 < 𝑛 − 1, then 𝑖, 𝑖 + 1 ≤ 𝑛 − 1, and so we are done.

If 𝑖 = 𝑛− 1, then by assumption 𝑣𝑛 = 𝑣′ is good, so it must be that 𝑣𝑛−1 is bad.

71

Claim 6.1.16. If 𝑢 ∈ 𝒟𝐷 is a decoding subspace and 𝑢∩𝐵′ = ∅, then for every x ∈ 𝑢 there

is a codeword 𝑐x ∈ 𝒞 defined on 𝑢 such that 𝑐x(x) = 𝑐(x) and 𝛿(𝑐x, 𝑐|𝑢) < 𝛿
2
. In particular,

𝑐|𝑢 ∈ 𝒞.

Proof. Fix x ∈ 𝑢. Let 𝐴 = {a1, . . . , a𝑡} ∈ 𝐷 be the directions of 𝑢. Since x /∈ 𝐵′, there

is a good testing subspace 𝑣 ∈ 𝒯𝐷(x). Let 𝐴′ = {a′1, . . . , a′𝑡} be some block in 𝑣 not equal

to 𝐴 and consider the subspace 𝑤 = (x, 𝐴 ∪ 𝐴′) ∈ 𝒱2
𝐷. For s, s′ ∈ F𝑡

𝑞, let 𝑤(s, s′) ,

x+
∑︀𝑡

𝑖=1 𝑠𝑖a𝑖 +
∑︀𝑡

𝑖=1 𝑠
′
𝑖a
′
𝑖. Let

𝑤(s, *) , {𝑤(s, s′) | s′ ∈ F𝑡
𝑞} ∈ 𝒟𝐷,

𝑤(*, s′) , {𝑤(s, s′) | s ∈ F𝑡
𝑞} ∈ 𝒟𝐷.

Let 𝐼 ⊆ F𝑡
𝑞 ∖ {0} be the set of points s ̸= 0 such that 𝑤(s, *) intersects 𝐵′ or is bad.

Similarly, let 𝐼 ′ ⊆ F𝑡
𝑞 ∖ {0} be the set of points s′ ̸= 0 such that 𝑤(*, s′) intersects 𝐵′ or is

bad. By Claim 6.1.15, |𝐼|, |𝐼 ′| < 1
2
𝛿𝑞𝑡. Note that for each (s, s′) ∈ (F𝑡

𝑞 ∖ 𝐼)× (F𝑡
𝑞 ∖ 𝐼 ′), we have

𝑤(s, s′) /∈ 𝐵′: if s ̸= 0 or s′ ̸= 0, this follows from the definition of 𝐼 and 𝐼 ′; if s = s′ = 0, then

𝑤(s, s′) = x /∈ 𝐵′. Thus 𝑐 is defined on 𝑤((F𝑡
𝑞∖𝐼)×(F𝑡

𝑞∖𝐼 ′)). Note that for each s ∈ F𝑡
𝑞∖𝐼, the

decoding subspace 𝑤(s, *) is good and hence contained in a good testing subspace 𝑣s ∈ 𝒯𝐷,

therefore 𝑐𝑣s|𝑤(s,*) ∈ 𝒞. Similarly, for each s′ ∈ F𝑡
𝑞 ∖ 𝐼 ′, the decoding subspace 𝑤(*, s′) is

contained in a good testing subspace 𝑣s′ ∈ 𝒯𝐷, hence 𝑐𝑣s′ |𝑤(*,s′) ∈ 𝒞. Since |𝐼|, |𝐼 ′| < 1
2
𝛿𝑞𝑡, by

Proposition A.2.5, 𝑐 can be extended uniquely into 𝑐𝑤 ∈ 𝒞⊗2 defined on 𝑤. Define 𝑐x , 𝑐𝑤|𝑢.

Note that 𝑐x ∈ 𝒞 since it is the restriction of 𝑐𝑤 ∈ 𝒞⊗2 to 𝑢 = 𝑤(*,0). Also, if s ∈ F𝑡
𝑞 ∖𝐼, then

𝑐|𝑤(s,*) = 𝑐𝑣s|𝑤(s,*) = 𝑐𝑤|𝑤(s,*) and in particular, 𝑐(𝑤(s,0)) = 𝑐𝑤(𝑤(s,0)) = 𝑐x(𝑤(s,0)). So

𝛿(𝑐, 𝑐x) ≤ |𝐼|
𝑞𝑡
< 𝛿

2
. Finally, since 0 /∈ 𝐼, 𝐼 ′, we have 𝑐(x) = 𝑐(𝑤(0,0)) = 𝑐x(𝑤(0,0)) = 𝑐x(x).

This proves the first part of the claim.

For the second part (showing 𝑐|𝑢 ∈ 𝒞), fix some x0 ∈ 𝑢. For each x ∈ 𝑢, let 𝑐x be the

codeword guaranteed by the previous part. Then, for every x ∈ 𝑢, 𝛿(𝑐x0 , 𝑐x) ≤ 𝛿(𝑐x0 , 𝑐|𝑢) +

𝛿(𝑐|𝑢, 𝑐x) < 𝛿, therefore 𝑐x0 = 𝑐x. Moreover, for all x ∈ 𝑢, 𝑐x0(x) = 𝑐x(x) = 𝑐(x), so

𝑐|𝑢 = 𝑐x0 ∈ 𝒞.

72

We proceed to define 𝑐(x) for 𝑥 ∈ 𝐵′. For such an x, pick any decoding subspace

𝑢 ∈ 𝒟𝐷(x), extend 𝑐|𝑢∖𝐵′ to a codeword 𝑐𝑢 ∈ 𝒞, and define 𝑐(x) , 𝑐𝑢(x). We now argue that

this is well-defined. Suppose 𝑢1, 𝑢2 ∈ 𝒟𝐷(x) in directions 𝐴1, 𝐴2 ∈ 𝐷, respectively. We need

to show that 𝑐𝑢1 , 𝑐𝑢2 are well-defined and that 𝑐𝑢1(x) = 𝑐𝑢2(x). Let 𝑤 ∈ 𝒱2
𝐷 be the unique

subspace containing 𝑢1, 𝑢2, so 𝑤 = (x, 𝐴1 ∪ 𝐴2). By Claim 6.1.15, in each direction 𝐴1, 𝐴2,

there are less than 1
2
𝛿𝑞𝑡 decoding subspaces in that direction in 𝑤 which intersect 𝐵′. In

particular, this implies that 𝑢1, 𝑢2 each contain less than 𝛿𝑞𝑡 points from 𝐵′. By what we just

showed, there are sets 𝐽1, 𝐽2 ⊆ F𝑡
𝑞 of size |𝐽1|, |𝐽2| > (1− 𝛿)𝑞𝑡 such that the “sub-rectangle”

𝑅 , 𝑤(𝐽1 × 𝐽2) contains no points from 𝐵′, and therefore 𝑐 has already been defined on 𝑅.

By Claim 6.1.16, on each decoding subspace 𝑢 in 𝑅 in either direction 𝐴1 or 𝐴2, 𝑐|𝑢 ∈ 𝒞.

Applying Proposition A.2.5, we see that 𝑐|𝑅 can be uniquely extended to a tensor codeword

𝑐𝑤 ∈ 𝒞⊗2 on 𝑤, and this gives a way to extend 𝑐|𝑢𝑖∖𝐵′ to the codeword 𝑐𝑢𝑖
, 𝑐𝑤|𝑢𝑖

∈ 𝒞

for 𝑖 ∈ {1, 2}. Therefore, the extensions 𝑐𝑢1 , 𝑐𝑢2 agree on x since 𝑐𝑢1(x) = 𝑐𝑤(x) = 𝑐𝑢2(x),

and moreover for each decoding subspace 𝑢𝑖 this extension is unique since each decoding

subspace has less than 𝛿𝑞𝑡 points from 𝐵′.

Now that we have defined 𝑐 : F𝑚
𝑞 → F𝑞 and have shown that 𝛿(𝑟, 𝑐) ≤ 𝜌

(︀ |𝐷|
𝑛−1

)︀
, it only

remains to show that 𝑐 ∈ 𝒞𝑛𝐷. Let 𝑢 ∈ 𝒟𝐷 be a decoding subspace. If 𝑢 ∩ 𝐵′ = ∅, then

𝑐|𝑢 ∈ 𝒞 follows from Claim 6.1.16. If 𝑢 intersects 𝐵′, by the way we defined 𝑐(x) for x ∈ 𝐵′,

we showed that for any decoding subspace 𝑢 through x ∈ 𝐵′, 𝑐|𝑢 ∈ 𝒞 by extending 𝑐|𝑢∖𝐵′ to

a codeword.

Claim 6.1.17. Let ℓ ≤ 𝑡 be a natural number and 𝐴1, . . . , 𝐴𝑛 ∈
(︀F𝑚

𝑞

𝑡

)︀
be such that their

union is linearly independent. Then at least 1−
(︀
𝑛
2

)︀
𝑞−𝑡

𝑞−1 − 𝑛
𝑞−ℓ

𝑞−1 fraction of 𝐴 ∈
(︀F𝑚

𝑞

𝑡

)︀
satisfy

that 𝐴,𝐴1, . . . , 𝐴𝑛 is ℓ-proper.

Proof. Let a1, . . . , a𝑡 be the random elements comprising 𝐴. By a union bound, it suffices to

show for any 𝑆 ∈
(︀

[𝑛]
𝑛−2

)︀
that

(︀⋃︀
𝑖∈𝑆 𝐴𝑖

)︀
∪ 𝐴 is linearly independent with probability at least

1 − 𝑞−𝑡

𝑞−1 and for any 𝑇 ∈
(︀

[𝑛]
𝑛−1

)︀
the probability that

(︀⋃︀
𝑖∈𝑇 𝐴𝑖

)︀
∪ 𝐴 contains at least 𝑚 − ℓ

linearly independent elements is at least 1− 𝑞−ℓ

𝑞−1 .

Fix 𝑆 ∈
(︀

[𝑛]
𝑛−2

)︀
.For any 𝑗 ∈ [𝑡], the probability that a𝑗 ∈ F𝑚

𝑞 is in the span of
(︀⋃︀

𝑖∈𝑆 𝐴𝑖

)︀
∪

73

{a1, . . . , a𝑗−1}, conditioned on the event that the latter is linearly independent, is 𝑞𝑚−2𝑡+𝑗−1

𝑞𝑚
=

𝑞−2𝑡+𝑗−1. So the probability that
(︀⋃︀

𝑖∈𝑆 𝐴𝑖

)︀
∪ 𝐴 is linearly independent is

𝑡∏︁
𝑗=1

(︀
1− 𝑞−2𝑡+𝑗−1)︀ ≥ 1−

𝑡∑︁
𝑗=1

𝑞−2𝑡+𝑗−1

≥ 1− 𝑞−𝑡
∞∑︁
𝑗=1

𝑞−𝑗

= 1− 𝑞−𝑡

𝑞 − 1
.

Now fix 𝑇 ∈
(︀

[𝑛]
𝑛−1

)︀
. Similarly, The probability that 𝑎𝑗 ∈

(︀⋃︀
𝑖∈𝑇 𝐴𝑖

)︀
∪ {a1, . . . , a𝑗−1},

condition on the event that the later linearly independent is 𝑞−𝑡+𝑗−1. So we get that(︀⋃︀
𝑖∈𝑆 𝐴𝑖

)︀
∪ {a1, . . . , a𝑡−ℓ} are linearly independent is

𝑡−ℓ∏︁
𝑗=1

(︀
1− 𝑞−𝑡+𝑗−1)︀ ≥ 1−

𝑡−ℓ∑︁
𝑗=1

𝑞−𝑡+𝑗−1

≥ 1− 𝑞−ℓ
∞∑︁
𝑗=1

𝑞−𝑗

= 1− 𝑞−ℓ

𝑞 − 1
.

6.1.4 Robustness for Large Dimension

In this section, we prove our main result of the chapter:

Theorem 6.1.18. Let 𝜌 , E𝑣[𝛿(𝑟|𝑣, 𝒞𝑡↗2𝑡)], where 𝑣 is a random affine subspace of di-

mension 2𝑡. Let 𝛼1 be the 2𝑡-dimensional robustness of 𝒞𝑡↗4𝑡 given by Corollary 6.1.10. If

𝜌 < 𝛼1𝛿3

400
− 3𝑞−𝑡, then 𝜌 ≥

(︀
1− 𝛿

4

)︀
· 𝛿(𝑟, 𝒞𝑡↗𝑚). In particular, 𝒞𝑡↗𝑚 is (𝛼2, 2𝑡)-robust, where

𝛼2 ≥ 𝛿72

2·1052 .

74

Notation. Throughout Section 6.1.4, fix the received word 𝑟 : F𝑚
𝑞 → F𝑞 and define 𝜌 ,

E𝑣[𝛿(𝑟|𝑣, 𝒞𝑡↗2𝑡)], and we will assume that 0 < 𝜌 < 𝛼1𝛿3

400
− 3𝑞−𝑡. The case where 𝛼1𝛿3

400
> 3𝑞−𝑡

is easily dealt with at the end of the proof by using Corollary 6.1.2. Note that, since

𝛼1, 𝛿 ≤ 1, this implies 𝑞−𝑡 ≤ 𝛿
1200

. Throughout this section we will assume 𝑚 ≥ 4𝑡. If

𝑚 < 4𝑡 we can pad the function 𝑓 to get a function 𝑓 : F4𝑡
𝑞 → F𝑞 (by setting 𝑓(x,y) = 𝑓(x)

for every x ∈ F𝑚
𝑞 and y ∈ F4𝑡−𝑚

𝑞) and applying our tester to 𝑓 . We will typically use

𝑢, 𝑣, 𝑤 to denote affine subspaces of dimension 𝑡, 2𝑡, and 4𝑡 respectively. For any affine

subspace 𝐴 ⊆ F𝑚
𝑞 , let 𝑐𝐴 ∈ 𝒞𝑡↗dim(𝐴) be the codeword nearest to 𝑟|𝐴, breaking ties arbitrarily.

Let 𝜌𝐴 , E𝑣⊆𝐴[𝛿(𝑟|𝑣, 𝒞𝑡↗2𝑡)], where the expectation is taken over uniformly random 2𝑡-

dimensional subspaces 𝑣 ⊆ 𝐴. Fix the following constants:

𝛾 ,
𝛼1𝛿

2

40
− 𝛼1𝑞

−𝑡

𝜖 ,
𝜌+ 2𝑞−𝑡

𝛾
.

In particular, these constants are chosen so that the following bounds hold:

20𝛿−1(𝛼−11 𝛾 + 𝑞−𝑡) ≤ 𝛿

2

𝜖 ≤ 𝛿

10
.

Overview. This proof is a straightforward generalization of “bootstrapping” proofs orig-

inating in the work of Rubinfeld and Sudan [RS96] and which also appears in [ALM+98,

AS03, Aro94]. Our writeup in particular follows [Aro94]. For simplicity, assume 𝑡 = 1.

Our approach is to define a function 𝑐 : F𝑚
𝑞 → F𝑞 and then show that it is both close to

𝑟 and a codeword of 𝒞1↗𝑚. The definition of 𝑐 is simple: for every x ∈ F𝑚
𝑞 , consider the

opinion 𝑐𝑢(x) for every line 𝑢 through x, and define 𝑐(x) as the majority opinion. We need

to show that 𝑐 is well-defined (the majority is actually a majority). Our main technical

lemma (Lemma 6.1.21) of this section shows that most lines agree with each other, so 𝑐 is

well-defined. Lemma 6.1.21 uses Claim 6.1.19, which shows that for a 4-dimensional affine

75

subspace 𝑤, if 𝜌𝑤 is small, then for every x ∈ 𝑤, most lines 𝑢 ⊆ 𝑤 satisfy 𝑐𝑢(x) = 𝑐𝑤(x).

To prove Claim 6.1.19 we use the results of Section 6.1.2, in particular the robustness of

the plane test in 𝑚 = 4 dimensions (Corollary 6.1.10). Since the average 𝛿(𝑟|𝑢, 𝑐𝑤|𝑢) over 𝑢

through x is about 𝛿(𝑟|𝑤, 𝑐𝑤), by robustness this is less than 𝛼−11 𝜌𝑤, which is small since 𝜌𝑤

is small. Therefore, for most 𝑢, 𝛿(𝑟|𝑢, 𝑐𝑤|𝑢) is small and so it must be that 𝑐𝑢 = 𝑐𝑤|𝑢.

Once we have shown that 𝑐 is well-defined, showing that 𝑐 is close to 𝑟 requires just a bit

of calculation. Showing that 𝑐 ∈ 𝒞1↗𝑚 involves more work. For each line 𝑢, define 𝑐′𝑢 ∈ 𝒞

to be the nearest codeword to 𝑐|𝑢. Fix a line 𝑢 and a point x ∈ 𝑢. We want to show that

𝑐|𝑢(x) = 𝑐′𝑢(x). The idea is to show the existence of a “good” 4-dimensional 𝑤 ⊇ 𝑢 such that

𝜌𝑤 is small and for more than 1− 𝛿
2
fraction of points y ∈ 𝑢 (including x) are “good” in the

sense that 𝑐(y) = 𝑐𝑢′(y) for a non-negligible fraction of lines 𝑢′ through y. Once we have such

a 𝑤, we show that for every good y ∈ 𝑢, 𝑐(y) = 𝑐𝑤(y). Since 𝑢 has more than 1− 𝛿
2
fraction

good points, this implies that 𝛿(𝑐|𝑢, 𝑐𝑤|𝑢) < 𝛿
2
, hence 𝑐′𝑢 = 𝑐|𝑤, so 𝑐′𝑢(x) = 𝑐|𝑤(x) = 𝑐(x), as

desired.

Claim 6.1.19. If 𝑤 ⊆ F𝑚
𝑞 be a 4𝑡-dimensional affine subspace with 𝜌𝑤 ≤ 𝛾, then for every

x ∈ 𝑤, at least 1− 𝛿
20

fraction of 𝑡-dimensional subspaces 𝑢 ⊆ 𝑤 satisfy 𝑐𝑢(x) = 𝑐𝑤(x).

Proof. Fix x ∈ 𝑤. Let 𝑈 be the set of 𝑡-dimensional subspaces 𝑢 containing x such that

𝛿(𝑟|𝑢, 𝑐𝑤|𝑢) < 20𝛿−1(𝛼−11 𝜌𝑤+𝑞
−𝑡). By Corollary 6.1.10, E𝑢⊆𝑤

𝑢∋x
[𝛿(𝑟|𝑢, 𝑐𝑤|𝑢)] ≤ 𝛿(𝑟|𝑤, 𝑐𝑤)+𝑞−𝑡 ≤

𝛼−11 𝜌𝑤+𝑞
−𝑡, so by Markov’s inequality, the probability that 𝛿(𝑟|𝑢, 𝑐𝑤|𝑢) ≥ 20𝛿−1(𝛼−11 𝜌𝑤+𝑞

−𝑡)

is at most
𝛼−1
1 𝜌𝑤+𝑞−𝑡

20𝛿−1(𝛼−1
1 𝜌𝑤+𝑞−𝑡)

= 𝛿
20
. For 𝑢 ∈ 𝑈 , since 𝛿(𝑟|𝑢, 𝑐𝑤|𝑢) < 20𝛿−1(𝛼−11 𝜌𝑤 + 𝑞−𝑡) ≤ 𝛿

2
and

𝑐𝑤|𝑢 ∈ 𝒞, we have 𝑐𝑢 = 𝑐𝑤|𝑢 and therefore 𝑐𝑢(x) = 𝑐𝑤(x).

The following claim says that E𝑤[𝜌𝑤] ≈ 𝜌, even if we insist that 𝑤 contains a fixed

𝑡-dimensional subspace.

Claim 6.1.20. For any 𝑡-dimensional affine subspace 𝑢 ⊆ F𝑚
𝑞 , E𝑤⊇𝑢[𝜌𝑤] ≤ 𝜌 + 2𝑞−𝑡, where

𝑤 is a random 4𝑡-dimensional affine subspace containing 𝑢. In particular, for any point

x ∈ F𝑚
𝑞 , E𝑤∋x[𝜌𝑤] ≤ 𝜌+ 2𝑞−𝑡.

76

Proof. Observe that

𝜌 = E𝑣

[︀
𝛿
(︀
𝑟|𝑣, 𝒞𝑡↗2𝑡

)︀]︀
≥ E𝑣:𝑢∩𝑣=∅

[︀
𝛿
(︀
𝑟|𝑣, 𝒞𝑡↗2𝑡

)︀]︀
· Pr

𝑣
[𝑢 ∩ 𝑣 = ∅]

(Lemma B.2.1) ≥ E𝑣:𝑢∩𝑣=∅
[︀
𝛿
(︀
𝑟|𝑣, 𝒞𝑡↗2𝑡

)︀]︀
·
(︀
1− 𝑞−(𝑚−3𝑡)

)︀
.

Therefore,

E𝑤⊇𝑢[𝜌𝑤] = E𝑤⊇𝑢
[︀
E𝑣⊆𝑤

[︀
𝛿(𝑟|𝑣, 𝒞𝑡↗2𝑡)

]︀]︀
≤ E𝑤⊇𝑢

[︂
E𝑣⊆𝑤

[︀
𝛿(𝑟|𝑣, 𝒞𝑡↗2𝑡)

⃒⃒
𝑢 ∩ 𝑣 = ∅

]︀
+ Pr

𝑣⊆𝑤
[𝑢 ∩ 𝑣 ̸= ∅]

]︂
(Lemma B.2.1) ≤ E𝑤⊇𝑢

[︀
E𝑣⊆𝑤

[︀
𝛿(𝑟|𝑣, 𝒞𝑡↗2𝑡)

⃒⃒
𝑢 ∩ 𝑣 = ∅

]︀]︀
+ 𝑞−𝑡

= E𝑣:𝑢∩𝑣=∅[𝛿(𝑟|𝑣, 𝒞𝑡↗2𝑡)] + 𝑞−𝑡

≤ 𝜌

1− 𝑞−(𝑚−3𝑡)
+ 𝑞−𝑡

≤ 𝜌+ 2𝑞−𝑡

Lemma 6.1.21 (Main). For every x ∈ F𝑚
𝑞 , there is a collection 𝑈1 of at least 1 − 𝛿

5
− 𝛿

600

fraction of the 𝑡-dimensional affine subspaces through x, such that 𝑐𝑢(x) = 𝑐𝑢′(x) for every

𝑢, 𝑢′ ∈ 𝑈1.

Proof. Let 𝑈 be the set of all 𝑡-dimensional affine subspaces 𝑢 through x. Partition 𝑈 into

disjoint collections 𝑈1, . . . , 𝑈𝑘 with |𝑈1| ≥ · · · ≥ |𝑈𝑘| according to the value of 𝑐𝑢(x). We will

show that Pr𝑢∋𝑥[𝑢 ∈ 𝑈1] ≥ 1− 𝛿
5
− 𝛿

600
. For every 4𝑡-dimensional subspace 𝑤, let 𝑈𝑤 be the

collection of 𝑡-dimensional subspaces 𝑢 through x, guaranteed by Claim 6.1.19, satisfying

77

𝑐𝑢(x) = 𝑐𝑤(x). Then

Pr
𝑢∋x

[𝑢 ∈ 𝑈1] ≥ Pr
𝑢,𝑢′∋x

[∃𝑖 𝑢, 𝑢′ ∈ 𝑈𝑖]

= Pr
𝑢,𝑢′∋x

[𝑐𝑢(x) = 𝑐𝑢′(x)]

(Lemma B.2.2) ≥ Pr
𝑢∩𝑢′={x}

[𝑐𝑢(x) = 𝑐𝑢′(x)]− 𝑞−(𝑚−2𝑡)

= E𝑤∋x

⎡⎣ Pr
𝑢,𝑢′⊆𝑤

𝑢∩𝑢′={x}

[𝑐𝑢(x) = 𝑐𝑢′(x)]

⎤⎦− 𝑞−(𝑚−2𝑡)
(Lemma B.2.2) ≥ E𝑤∋x

⎡⎣ Pr
𝑢,𝑢′⊆𝑤
𝑢,𝑢′∋x

[𝑐𝑢(x) = 𝑐𝑢′(x)

⎤⎦− 𝑞−2𝑡 − 𝑞−(𝑚−2𝑡)
≥ E𝑤∋x

⎡⎣ Pr
𝑢,𝑢′⊆𝑤
𝑢,𝑢′∋x

[𝑐𝑢(x) = 𝑐𝑢′(x)

⎤⎦− 𝛿

600

≥ E𝑤∋x

⎡⎣ Pr
𝑢,𝑢′⊆𝑤
𝑢,𝑢′∋x

[𝑐𝑢(x) = 𝑐𝑢′(x)]

⃒⃒⃒⃒
⃒⃒ 𝜌𝑤 ≤ 𝛾

⎤⎦ · Pr
𝑤∋x

[𝜌𝑤 ≤ 𝛾]− 𝛿

600

≥ E𝑤∋x

⎡⎣ Pr
𝑢,𝑢′⊆𝑤
𝑢,𝑢′∋x

[𝑢, 𝑢′ ∈ 𝑈𝑤]

⃒⃒⃒⃒
⃒⃒ 𝜌𝑤 ≤ 𝛾

⎤⎦ · Pr
𝑤∋x

[𝜌𝑤 ≤ 𝛾]− 𝛿

600

(Claim 6.1.19) ≥
(︂
1− 𝛿

20

)︂2

· Pr
𝑤∋x

[𝜌𝑤 ≤ 𝛾]− 𝛿

600

(Markov) ≥
(︂
1− 𝛿

20

)︂2

·
(︂
1− E𝑤∋x[𝜌𝑤]

𝛾

)︂
− 𝛿

600

(Claim 6.1.20) ≥
(︂
1− 𝛿

20

)︂2

·
(︂
1− 𝜌+ 2𝑞−𝑡

𝛾

)︂
− 𝛿

600

≥ 1− 𝛿

10
− 𝜌+ 2𝑞−𝑡

𝛾
− 𝛿

600

= 1− 𝛿

10
− 𝜖− 𝛿

600

≥ 1− 𝛿

5
− 𝛿

600

We are now ready to prove the main theorem.

78

Proof of Theorem 6.1.18. We will define a function 𝑐 : F𝑚
𝑞 → F𝑞 and then show that it is

close to 𝑟 and is a codeword of 𝒞𝑡↗𝑚. For x ∈ F𝑚
𝑞 , define 𝑐(x) , Majority𝑢∋x{𝑐𝑢(x)}, where

the majority is over 𝑡-dimensional affine subspaces 𝑢 through x. Since 𝛿
5
+ 𝛿

600
< 1

2
, it follows

from Lemma 6.1.21 that 𝑐 is well-defined.

Next, we show that 𝑐 is close to 𝑟. Indeed,

𝜌 = E𝑣[𝛿(𝑟|𝑣, 𝑐𝑣)]

≥ E𝑢[𝛿(𝑟|𝑢, 𝑐𝑢)]

= E𝑢

[︀
Ex∈𝑢

[︀
1𝑐𝑢(x) ̸=𝑟(x)

]︀]︀
= Ex

[︀
E𝑢∋x

[︀
1𝑐𝑢(x) ̸=𝑟(x)

]︀]︀
≥ Ex

[︀
E𝑢∋x

[︀
1𝑐𝑢(x) ̸=𝑟(x)

]︀ ⃒⃒
𝑐(x) ̸= 𝑟(x)

]︀
· Pr

x
[𝑐(x) ̸= 𝑟(x)]

≥ Ex

[︁
Pr
𝑢∋x

[𝑐𝑢(x) = 𝑐(x)]
⃒⃒⃒
𝑐(x) ̸= 𝑟(x)]

]︁
· 𝛿(𝑟, 𝑐)

(Lemma 6.1.21) ≥
(︂
1− 𝛿

4

)︂
· 𝛿(𝑟, 𝑐).

Finally, we show that 𝑐 ∈ 𝒞𝑡↗𝑚. Let 𝑢 ⊆ F𝑚
𝑞 a 𝑡-dimensional affine subspace. We wish

to show that 𝑐|𝑢 ∈ 𝒞. Let 𝑐′𝑢 ∈ 𝒞 be the codeword of 𝒞 nearest to 𝑐|𝑢 (not to be confused

with 𝑐𝑢, the nearest codeword to 𝑟|𝑢). Let x ∈ 𝑢. We will show that 𝑐′𝑢(x) = 𝑐|𝑢(x). For a

4𝑡-dimensional affine subspace 𝑤 ⊆ F𝑚
𝑞 , we say a point y ∈ 𝑤 is good for 𝑤 if Pr𝑢′⊆𝑤

𝑢′∋y
[𝑐𝑢′(y) =

𝑐(y)] > 𝛿
20
. We will show, by a union bound, that there exists a 4𝑡-dimensional affine

subspace 𝑤 ⊇ 𝑢 such that

1. 𝜌𝑤 ≤ 𝛾;

2. x is good for 𝑤;

3. more than 1− 𝛿
2
fraction of points y ∈ 𝑢 are good for 𝑤.

Observe that for any y ∈ 𝑢, picking a random 4𝑡-dimensional 𝑤 containing 𝑢 and then

picking a random 𝑡-dimensional 𝑢′ ⊆ 𝑤 through y that intersect 𝑢 only on 𝑦 is equivalent to

picking a random 𝑡-dimensional 𝑢′ through y that intersect 𝑢 only on 𝑦 and then picking a

79

random 4𝑡-dimensional 𝑤 containing both 𝑢, 𝑢′. Therefore, for any fixed y ∈ 𝑢

E𝑤⊇𝑢

⎡⎣ Pr
𝑢′⊆𝑤
𝑢′∋y

[𝑐𝑢′(y) ̸= 𝑐(y)]

⎤⎦ = E 𝑤⊇𝑢
𝑢′⊆𝑤,𝑢′∋y

[︀
1𝑐𝑢′ (y) ̸=𝑐(y)

]︀
≤ E 𝑤⊇𝑢

𝑢′⊆𝑤,𝑢′∋y

[︀
1𝑐𝑢′ (y) ̸=𝑐(y) | 𝑢 ∩ 𝑢′ = {y}

]︀
+ Pr

𝑤⊇𝑢
𝑢′⊆𝑤,𝑢′∋y

[𝑢 ∩ 𝑢′ ̸= {y}]

(Lemma B.2.2) ≤ E𝑢′∋y
[︀
1𝑐𝑢′ (y)̸=𝑐(y) | 𝑢 ∩ 𝑢′ = {𝑦}

]︀
+ 𝑞−2𝑡

(Lemma B.2.2) ≤ E𝑢′∋y
[︀
1𝑐𝑢′ (y)̸=𝑐(y)

]︀
+ 𝑞−(𝑚−2𝑡) + 𝑞−2𝑡

(Lemma 6.1.21 and definition of 𝑐) ≤ 𝛿

5
+

𝛿

600
+ 2𝑞−2𝑡 ≤ 𝛿

5
+

𝛿

300
≤ 𝛿

4
.

Therefore, by Markov’s inequality, for any fixed y ∈ 𝑢,

Pr
𝑤⊇𝑢

[y is not good for 𝑤] = Pr
𝑤⊇𝑢

[︂
Pr

𝑢′⊇𝑤,𝑢′∋y
[𝑐𝑢′(y) ̸= 𝑐(y)] ≥ 1− 𝛿

20

]︂
≤

𝛿
4

1− 𝛿
20

≤ 5

19
· 𝛿.

In particular, this applies for y = x. Further applying Markov’s inequality, we find that

Pr
𝑤⊇𝑢

[︂
fraction of not good y in 𝑢 ≥ 𝛿

2

]︂
≤ 5𝛿/19

𝛿/2
=

10

19
.

Finally, since E𝑤⊇𝑢[𝜌𝑤] ≤ 𝜌+ 2𝑞−𝑡 (by Claim 6.1.20), we have

Pr
𝑤⊇𝑢

[𝜌𝑤 > 𝛾] ≤ 𝜌+ 2𝑞−𝑡

𝛾
= 𝜖 ≤ 𝛿

10
.

Since 𝛿 ≤ 1 and 5
19

+ 10
19

+ 1
10
< 1, by the union bound such a desired 𝑤 exists.

Now that we have such a subspace 𝑤, consider 𝑐𝑤. We claim that it suffices to prove

that if y ∈ 𝑢 is good, then 𝑐𝑤(y) = 𝑐(y). Indeed, since more than 1 − 𝛿
2
fraction of points

in 𝑢 are good, we have 𝛿(𝑐𝑤|𝑢, 𝑐|𝑢) < 𝛿
2
. Therefore 𝑐𝑤|𝑢 = 𝑐′𝑢, and since x is good, we

80

have 𝑐(x) = 𝑐𝑤(x) = 𝑐′𝑢(x) as desired. It remains to prove that 𝑐𝑤(y) = 𝑐(y) for good

y ∈ 𝑢. By Claim 6.1.19, at least 1 − 𝛿
20

fraction of 𝑡-dimensional 𝑢′ ⊆ 𝑤 through y satisfy

𝑐𝑢′(y) = 𝑐𝑤(y). Since y is good, more than 𝛿
20

fraction of 𝑡-dimensional 𝑢′ ⊆ 𝑤 through y

satisfy 𝑐𝑢′(y) = 𝑐(y). Therefore, there must be some 𝑡-dimensional 𝑢′ ⊆ 𝑤 through y which

satisfies 𝑐𝑤(y) = 𝑐𝑢′(y) = 𝑐(y).

Finally, for the robustness statement: if 𝑞−𝑡 ≥ 𝛿24

1014
, then by Corollary 6.1.2, the robustness

is at least 𝑞−3𝑡

2
≥ 𝛿72

2·1052 . Otherwise, the robustness is at least 𝛼1𝛿3

57,600·400 − 3𝑞−𝑡 ≥ 𝛿24

2·1014 .

6.2 Technical Algebraic Results

The purpose of this section is to prove Theorem 6.2.6 and its Corollaries 6.2.7 and 6.2.8. If

we allow our robustness in Theorem 6.1.18 to depend on 𝑡, the dimension of the base code,

then proving what we need for Theorem 6.2.6 is easy. However, removing the dependence

on 𝑡 requires some new ideas, including the definition of a new operation (“degree lifting”)

on codes, and the analysis of the distance of degree lifted codes. In Section 6.2.1, we define

degree lifting and analyze the degree lifted codes (Proposition 6.2.4). In Section 6.2.2, we

prove Theorem 6.2.6 and its corollaries.

6.2.1 Degree Lift

In this section, we define the degree lift operation on codes with degree sets. The operation

can be thought of as “Reed-Mullerization”, in the sense that the degree lift of the Reed-

Solomon code of degree 𝑑 is the Reed-Muller code of degree 𝑑. This resembles the degree lift

operation of Ben-Sasson et al. [BGK+13] who defined a “Reed-Mullerization” for algebraic-

geometry codes (in contrast, we want to define it for codes over F𝑚
𝑞 spanned by monomials).

Definition 6.2.1 (Degree lift). Let 𝒞 ⊆ {F𝑚
𝑞 → F𝑞} have degree set Deg(𝒞). For positive

integer 𝑠 ≥ 1, define the 𝑠-wise degree lift 𝒞(𝑠) ⊆ {F𝑚𝑠
𝑞 → F𝑞} of 𝒞 to be the code with

81

degree set

Deg(𝒞(𝑠)) ,

{︃
(d1, . . . ,d𝑠) ∈ {0, 1, . . . , 𝑞 − 1}𝑚×𝑠

⃒⃒⃒⃒
⃒

𝑠∑︁
𝑗=1

d𝑗 ∈ Deg(𝒞)

}︃
.

Our goal with this definition is to prove Proposition 6.2.4, which says that the distance

of 𝒞(𝑠) is nearly the same as the distance of 𝒞. One can show that 𝛿(𝒞(𝑠)) ≥ 𝛿(𝒞) −𝑚𝑞−1

To do so, we will use the following fact.

Proposition 6.2.2. Let 𝑡, 𝑛 ≥ 1 and let 𝑚 = 𝑛𝑡. Let 𝒞0 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-

invariant and let 𝒞 , (𝒞0)⊗𝑛. For each 𝑖 ∈ [𝑛], let X𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑡). If 𝑓(X1, . . . ,X𝑛) ∈ 𝒞,

and 𝐴1, . . . , 𝐴𝑛 : F𝑡
𝑞 → F𝑡

𝑞 are affine transformations, then 𝑓(𝐴1(X1), . . . , 𝐴𝑛(X𝑛)) ∈ 𝒞.

Proof. By linearity, it suffices to consider the case where 𝑓(X1, . . . ,X𝑛) =
∏︀𝑛

𝑖=1 X𝑖
d𝑖 is a

monomial, where d𝑖 = (𝑑𝑖1, . . . , 𝑑𝑖𝑡) ∈ {0, 1, . . . , 𝑞 − 1}𝑡. Each X𝑖
d𝑖 ∈ 𝒞0, so by affine-

invariance 𝐴𝑖(X𝑖)
d𝑖 ∈ 𝒞0. Therefore, by Proposition A.2.2, 𝑓(𝐴1(X1), . . . , 𝐴)𝑛(X𝑛)) =∏︀𝑛

𝑖=1𝐴𝑖(X𝑖)
d𝑖 ∈ (𝒞0)⊗𝑛 = 𝒞.

Overview. To prove Proposition 6.2.4, we show, through Lemma 6.2.3, that there is a

special subset of 𝑚-dimensional subspaces 𝐴, such that for any 𝑓 ∈ 𝒞(𝑠), 𝑓 |𝐴 ∈ 𝒞. Then,

we analyze the distance of from 𝑓 to the zero function by looking at the distance on a

random special 𝑚-dimensional 𝐴. This will yield a distance of 𝛿(𝒞(𝑠)) ≥ 𝛿(𝒞) − 𝑜(1) as

long as the special subspaces sample F𝑚
𝑞 well. However, we require the 𝑜(1) term to be

(𝑛𝑞−𝑡)𝑂(1), otherwise we would not be able to remove the dependence on 𝑡 in the robustness

of Theorem 6.1.18. In order to do so, we need to further assume that 𝒞 is the tensor product

(𝒞0)𝑛 of some 𝑡-dimensional code 𝒞0 (which is satisfied by our use case).

We now describe the special subspaces we consider in Lemma 6.2.3. Label the variables of

F𝑚𝑠
𝑞 = F𝑛𝑡𝑠

𝑞 by 𝑋𝑐𝑖𝑗, where 𝑐 ∈ [𝑛], 𝑖 ∈ [𝑡], 𝑗 ∈ [𝑠]. Let 𝑌𝑐𝑖, for 𝑐 ∈ [𝑛], 𝑖 ∈ [𝑡], be the variables

parameterizing 𝐴. Note that an arbitrary subspace restriction corresponds to substituting,

for each 𝑋𝑐𝑖𝑗, an affine function of all of the variables 𝑌11, . . . , 𝑌𝑛𝑡. This is too much to hope

for. However, if we substitute for 𝑋𝑐𝑖𝑗 an affine function of just 𝑌𝑐1, . . . , 𝑌𝑐𝑡, this works.

82

Lemma 6.2.3. Let 𝑡, 𝑛 ≥ 1 and 𝑚 = 𝑛𝑡. Let 𝒞0 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant

and let 𝒞 , (𝒞0)⊗𝑛. Let 𝑠 ≥ 1, and let 𝑓(X) ∈ 𝒞(𝑠), with variables X = (𝑋𝑐𝑖𝑗)𝑐∈[𝑛],𝑖∈[𝑡],𝑗∈[𝑠].

Let 𝑔(𝑌11, . . . , 𝑌𝑛𝑡) be the 𝑚-variate polynomial obtained from 𝑓(X) by setting, for each 𝑐 ∈

[𝑛], 𝑖 ∈ [𝑡], and 𝑗 ∈ [𝑠], 𝑋𝑐𝑖𝑗 =
∑︀𝑡

𝑘=1 𝑎𝑐𝑖𝑗𝑘𝑌𝑐𝑘 + 𝑏𝑐𝑖𝑗, for some 𝑎𝑐𝑖𝑗𝑘, 𝑏𝑐𝑖𝑗 ∈ F𝑞. That is, for all

(𝑐, 𝑖, 𝑗) ∈ [𝑛]× [𝑡]× [𝑠] 𝑋𝑐𝑖𝑗 is an affine function of 𝑌𝑐1, . . . , 𝑌𝑐𝑡. Then 𝑔 ∈ 𝒞.

Proof. By linearity, it suffices to consider the case where 𝑓(X) =
∏︀𝑛

𝑐=1

∏︀𝑡
𝑖=1

∏︀𝑠
𝑗=1𝑋

𝑑𝑐𝑖𝑗
𝑐𝑖𝑗 is a

monomial, for some 0 ≤ 𝑑𝑐𝑖𝑗 ≤ 𝑞 − 1. For each 𝑗 ∈ [𝑠], define d𝑗 , (𝑑11𝑗, . . . , 𝑑𝑛𝑡𝑗), so that

(d1, . . . ,d𝑠) ∈ Deg(𝒞(𝑠)), i.e.
∑︀𝑠

𝑖=1 d𝑖 ∈ Deg(𝒞). Then

𝑔(𝑌11, . . . , 𝑌𝑛𝑡) =
𝑛∏︁

𝑐=1

𝑡∏︁
𝑖=1

𝑠∏︁
𝑗=1

(︃
𝑡∑︁

𝑘=1

𝑎𝑐𝑖𝑗𝑘𝑌𝑐𝑘 + 𝑏𝑐𝑖𝑗

)︃𝑑𝑐𝑖𝑗

=
𝑛∏︁

𝑐=1

𝑡∏︁
𝑖=1

𝑠∏︁
𝑗=1

∑︁
e𝑐𝑖𝑗≤𝑑𝑐𝑖𝑗

(︂
𝑑𝑐𝑖𝑗
e𝑐𝑖𝑗

)︂
𝑏
𝑒𝑐𝑖𝑗0
𝑐𝑖𝑗

𝑡∏︁
𝑘=1

𝑎
𝑒𝑐𝑖𝑗𝑘
𝑐𝑖𝑗𝑘 𝑌

𝑒𝑐𝑖𝑗𝑘
𝑐𝑘

=
∑︁

e𝑐𝑖𝑗≤𝑝𝑑𝑐𝑖𝑗
∀ 𝑖,𝑗

(· · ·)
𝑛∏︁

𝑐=1

𝑡∏︁
𝑘=1

𝑌
∑︀𝑡

𝑖=1

∑︀𝑠
𝑗=1 𝑒𝑐𝑖𝑗𝑘

𝑐𝑘

where the (· · ·) denotes constants in F𝑞. So, it suffices to show that each monomial of the

form
∏︀𝑛

𝑐=1

∏︀𝑡
𝑘=1 𝑌

∑︀𝑡
𝑖=1

∑︀𝑛
𝑗=1 𝑒𝑐𝑖𝑗𝑘

𝑐𝑘 ∈ 𝒞, which we show in the remainder of the proof.

Let ℎ(𝑌11, . . . , 𝑌𝑛𝑡) be the 𝑚-variate polynomial obtained from 𝑓 by substituting 𝑋𝑐𝑖𝑗 =

𝑌𝑐𝑖 for each 𝑐 ∈ [𝑛], 𝑖 ∈ [𝑡], 𝑗 ∈ [𝑠]. Then ℎ(𝑌11, . . . , 𝑌𝑛𝑡) =
∏︀𝑛

𝑐=1

∏︀𝑡
𝑖=1

∏︀𝑠
𝑗=1 𝑌

𝑑𝑐𝑖𝑗
𝑐𝑖 =∏︀𝑛

𝑐=1

∏︀𝑡
𝑖=1 𝑌

∑︀𝑠
𝑗=1 𝑑𝑐𝑖𝑗

𝑐𝑖 is a monomial with degree
(︁∑︀𝑠

𝑗=1 𝑑11𝑗, . . . ,
∑︀𝑠

𝑗=1 𝑑𝑛𝑡𝑗

)︁
=
∑︀𝑠

𝑗=1 d𝑗 ∈

Deg(𝒞), hence ℎ ∈ 𝒞. Now, consider applying an affine transformation as follows: for each

1 ≤ 𝑐 ≤ 𝑛 and each 1 ≤ 𝑖 ≤ 𝑡, substitute 𝑌𝑐𝑖 ←
∑︀𝑡

𝑘=1 𝛼𝑐𝑖𝑘𝑌𝑐𝑘 + 𝛽𝑐𝑖, and call the new

83

polynomial ℎ′. By Proposition 6.2.2, ℎ′ ∈ 𝒞. On the other hand,

ℎ′(𝑌1, . . . , 𝑌𝑚) =
𝑛∏︁

𝑐=1

𝑡∏︁
𝑖=1

(︃
𝑡∑︁

𝑘=1

𝛼𝑐𝑖𝑘𝑌𝑐𝑘 + 𝛽𝑐𝑖

)︃∑︀𝑠
𝑗=1 𝑑𝑐𝑖𝑗

=
𝑛∏︁

𝑐=1

𝑡∏︁
𝑖=1

𝑠∏︁
𝑗=1

(︃
𝑡∑︁

𝑘=1

𝛼𝑐𝑖𝑘𝑌𝑐𝑘 + 𝛽𝑐𝑖

)︃𝑑𝑐𝑖𝑗

=
𝑛∏︁

𝑐=1

𝑡∏︁
𝑖=1

𝑠∏︁
𝑗=1

∑︁
e𝑐𝑖𝑗≤𝑝𝑑𝑐𝑖𝑗

(︂
𝑑𝑐𝑖𝑗
e𝑐𝑖𝑗𝑘

)︂
𝛽
𝑒𝑐𝑖𝑗0
𝑐𝑖

𝑡∏︁
𝑘=1

𝛼
𝑒𝑐𝑖𝑗𝑘
𝑐𝑖𝑘 𝑌

𝑒𝑐𝑖𝑗𝑘
𝑐𝑘

=
∑︁

e𝑐𝑖𝑗≤𝑝𝑑𝑐𝑖𝑗
∀ 𝑐,𝑖,𝑗

(︃∏︁
𝑐,𝑖,𝑗

(︂
𝑑𝑐𝑖𝑗
e𝑐𝑖𝑗𝑘

)︂
𝛽
𝑒𝑐𝑖𝑗0
𝑐𝑖

)︃
𝑛∏︁

𝑐=1

𝑡∏︁
𝑘=1

(︃
𝑡∏︁

𝑖=1

𝛼
∑︀𝑠

𝑗=1 𝑒𝑐𝑖𝑗𝑘
𝑐𝑖𝑘

)︃
𝑌
∑︀𝑡

𝑖=1

∑︀𝑠
𝑗=1 𝑒𝑐𝑖𝑗𝑘

𝑐𝑘

and since the 𝛼𝑐𝑖𝑘 and the 𝛽𝑐𝑖 are arbitrary and 𝒞 has a degree set Deg(𝒞) = Deg(𝒞0)𝑛, each

monomial
∏︀𝑛−

𝑐=1

∏︀𝑡
𝑘=1 𝑌

∑︀𝑡
𝑖=1

∑︀𝑛
𝑗=1 𝑒𝑐𝑖𝑗𝑘

𝑐𝑘 ∈ 𝒞, as desired.

Proposition 6.2.4. Let 𝑡, 𝑛 ≥ 1 and 𝑚 = 𝑛𝑡. Let 𝒞0 ⊆ {F𝑡
𝑞 → F𝑞} be linear affine-invariant

and let 𝒞 , (𝒞0)⊗𝑛. For any positive integer 𝑠 ≥ 1, 𝛿(𝒞(𝑠)) ≥ 𝛿(𝒞)− 𝑛𝑞−𝑡 = 𝛿(𝒞0)𝑛 − 𝑛𝑞−𝑡.

Proof. Let 𝑓(X) ∈ 𝒞(𝑠) be a nonzero codeword with variables X = (𝑋𝑐𝑖𝑗)𝑐∈[𝑛],𝑖∈𝑡],𝑗∈[𝑠]. For

𝑐 ∈ [𝑛], 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑠], 𝑘 ∈ [𝑡], let 𝑎𝑐𝑖𝑗𝑘, 𝑏𝑐𝑖𝑗 ∈ F𝑞, and let a , (𝑎𝑐𝑖𝑗𝑘)𝑐∈[𝑛],𝑖∈[𝑡],𝑗∈[𝑠],𝑘∈[𝑡] and

b , (𝑏𝑐𝑖𝑗)𝑐∈[𝑛],𝑖∈[𝑡],𝑗∈[𝑠]. Let 𝑔a,b(𝑌11, . . . , 𝑌𝑛𝑡) be the 𝑚-variate polynomial obtained by setting

𝑋𝑐𝑖𝑗 =
∑︀𝑡

𝑘=1 𝑎𝑐𝑖𝑗𝑘𝑌𝑐𝑘 + 𝑏𝑐𝑖𝑗 for each 1 ≤ 𝑐 ≤ 𝑛 and 1 ≤ 𝑖 ≤ 𝑡.

By linearity of 𝒞 and thus of 𝒞(𝑠), it suffices to show that 𝛿(𝑓, 0) ≥ 𝛿(𝒞) − 𝑛𝑞−𝑡. Let

b ∈ F𝑛𝑡𝑠
𝑞 be a point such that 𝑓(b) ̸= 0. Consider choosing a uniformly at random. Then

𝑔a,b ̸= 0 since 𝑔a,b(0) = 𝑓(b) ̸= 0. For fixed 𝑦11, . . . , 𝑦𝑛𝑡, as long as for each 𝑐 ∈ [𝑛] there

is some 𝑘 ∈ [𝑡] such that 𝑦𝑐𝑘 ̸= 0, then the points
∑︀𝑡

𝑘=1 𝑎𝑐𝑖𝑗𝑘𝑦𝑐𝑘 + 𝑏𝑐𝑖𝑗 are independent and

84

uniform over F𝑞. This occurs with probability at least 1− 𝑛𝑞−𝑡. Therefore,

𝛿(𝒞) ≤ Ea [𝛿 (𝑔a,b, 0)]

= Ea

[︀
Ey

[︀
1𝑔a,b(y)̸=0

]︀]︀
= Ey

[︀
Ea

[︀
1𝑔a,b(y)̸=0

]︀]︀
≤ 𝑛𝑞−𝑡 + Ey ̸=0

[︀
1𝑔a,b(y)̸=0

]︀
= 𝑛𝑞−𝑡 + Ey ̸=0

[︁
1𝑓((

∑︀𝑡
𝑘=1 𝑎𝑐𝑖𝑗𝑘𝑦𝑐𝑘+𝑏𝑐𝑖𝑗)) ̸=0

]︁
= 𝑛𝑞−𝑡 + 𝛿(𝑓, 0).

6.2.2 Analysis of Subspace Restrictions

In this section we prove Theorem 6.2.6 and its corollaries.

Overview. Corollary 6.2.7 says that if a codeword 𝑓 of the tensor product 𝒞⊗𝑛 of a 𝑡-

dimensional code 𝒞 is not a codeword of 𝒞𝑡↗𝑛𝑡, then on there is a point b such that on many

𝑡-dimensional subspaces 𝑢 through b, the restriction 𝑓 |𝑢 /∈ 𝒞. We use this in the proof of

Theorem 6.1.4 when arguing that if a tensor codeword 𝑐 ∈ 𝒞⊗𝑚 satisfies 𝑐 ∈ 𝒞a (see overview)

for many a, then 𝑐 ∈
⋂︀

a 𝒞a = 𝒞1↗𝑚. A special case of Corollary 6.2.8 says that if 𝑓 is a

lifted Reed-Solomon codeword but not a Reed-Muller codeword, then on many planes 𝑓 is

not a bivariate Reed-Muller code. The actual corollary merely generalizes this to arbitrary

𝑡 and codes 𝒞0, 𝒞1.

Both Corollaries 6.2.7 and 6.2.8 are proved in a similar manner. Note that both are state-

ments of the form “if 𝑓 is in some big code but not in a lifted code, then on many subspaces

it is not a codeword of the base code”. A natural approach is to write 𝑓 out as a linear

combination of monomials, restrict to an arbitrary subspace of the appropriate dimension,

re-write the restriction as a linear combination of monomials in the parameterizing variables,

and note that the coefficients of the monomials are functions in the parameterization coeffi-

85

cients. Since 𝑓 is not in the lift, there is a monomial outside the base code whose coefficient

(the “offending coefficient”) is a nonzero function. Then, one shows that these functions

belong to a code with good distance, so for many choices of parameterizing coefficients, the

offending coefficient is nonzero.

Theorem 6.2.6 abstracts the above approach and shows that, in the case of Corollary 6.2.7,

the offending coefficient is a codeword of the degree lift (𝒞⊗𝑛)(𝑡) of 𝒞⊗𝑛, and in the case of

Corollary 6.2.8, the offending coefficient is a codeword of a lifted code. This necessitates the

analysis of the distance of degree lifted codes, hence the need for Section 6.2.1.

Lemma 6.2.5. Let 𝒞 ⊆ {F𝑚
𝑞 → F𝑞} be a linear code with a 𝑝-shadow-closed degree set. If

𝑓 ∈ 𝒞, and

𝑓

(︃
𝑎10 +

𝑡∑︁
𝑗=1

𝑎1𝑗𝑌𝑗, . . . , 𝑎𝑚0 +
𝑡∑︁

𝑗=1

𝑎𝑚𝑗𝑌𝑗

)︃
=

∑︁
e∈{0,1,...,𝑞−1}𝑡

𝑓e(a) ·Ye

where a = (𝑎𝑖𝑗)1≤𝑖≤𝑚;0≤𝑗≤𝑡 ∈ F𝑚(𝑡+1)
𝑞 , then, for every e ∈ {0, 1, . . . , 𝑞 − 1}𝑡,

𝑓e(a) =
∑︁
d∈𝐷
E≤𝑝d

‖E*𝑗‖=𝑒𝑗 ∀𝑗

𝑓d ·
𝑚∏︁
𝑖=1

(︂
𝑑𝑖
E𝑖*

)︂
𝑎𝑒𝑖0𝑖0

𝑡∏︁
𝑗=1

𝑎
𝑒𝑖𝑗
𝑖𝑗 .

In particular,

1. 𝑓e ∈ 𝒞(𝑡+ 1), the (𝑡+ 1)-wise degree lift of 𝒞 (see Definition 6.2.1);

2. if 𝒞 = (𝒞0)1↗𝑚 for some linear affine-invariant code 𝒞0 ⊆ {F𝑞 → F𝑞}, then 𝑓e ∈

(𝒞0)1↗𝑚(𝑡+1)

Proof. Let 𝐷 be the degree set of 𝒞. Write 𝑓(X) =
∑︀

d∈𝐷 𝑓d ·Xd. Let 𝐴 : F𝑡
𝑞 → F𝑚

𝑞 be the

86

affine map Y ↦→
(︁
𝑎10 +

∑︀𝑡
𝑗=1 𝑎1𝑗𝑌𝑗, . . . , 𝑎𝑚0 +

∑︀𝑡
𝑗=1 𝑎𝑚𝑗𝑌𝑗

)︁
. Expanding, we get

(𝑓 ∘ 𝐴)(Y) =
∑︁
d∈𝐷

𝑓d ·
𝑚∏︁
𝑖=1

(︃
𝑎𝑖0 +

𝑡∑︁
𝑗=1

𝑎𝑖𝑗𝑌𝑗

)︃𝑑𝑖

=
∑︁
d∈𝐷

𝑓d ·
𝑚∏︁
𝑖=1

⎛⎝ ∑︁
e𝑖≤𝑝𝑑𝑖

(︂
𝑑𝑖
e𝑖

)︂
𝑎𝑒𝑖0𝑖0 ·

𝑡∏︁
𝑗=1

𝑎
𝑒𝑖𝑗
𝑖𝑗 𝑌

𝑒𝑖𝑗
𝑗

⎞⎠
=

∑︁
d∈𝐷

𝑓d ·
∑︁
E≤𝑝d

(︃
𝑚∏︁
𝑖=1

(︂
𝑑𝑖
E𝑖*

)︂
𝑎𝑒𝑖0𝑖0

𝑡∏︁
𝑗=1

𝑎
𝑒𝑖𝑗
𝑖𝑗

)︃
·

𝑡∏︁
𝑗=1

𝑌
‖E*𝑗‖
𝑗

=
∑︁

e∈{0,1,...,𝑞−1}𝑡
Ye ·

∑︁
d∈𝐷
E≤𝑝d

‖E*𝑗‖mod* 𝑞=𝑒𝑗 ∀𝑗

𝑓d ·
𝑚∏︁
𝑖=1

(︂
𝑑𝑖
E𝑖*

)︂
𝑎𝑒𝑖0𝑖0

𝑡∏︁
𝑗=1

𝑎
𝑒𝑖𝑗
𝑖𝑗

and therefore, for each e ∈ {0, 1, . . . , 𝑞 − 1}𝑡,

𝑓e(a) =
∑︁
d∈𝐷
E≤𝑝d

‖E*𝑗‖mod* 𝑞=𝑒𝑗 ∀𝑗

𝑓d ·
𝑚∏︁
𝑖=1

(︂
𝑑𝑖
E𝑖*

)︂
𝑎𝑒𝑖0𝑖0

𝑡∏︁
𝑗=1

𝑎
𝑒𝑖𝑗
𝑖𝑗 .

View the variables a = (𝑎𝑖𝑗) in the order (𝑎10, . . . , 𝑎𝑚0, . . . , 𝑎1𝑡, . . . , 𝑎𝑚𝑡), and interpret E

as (E*0, . . . ,E*𝑡). If E ≤𝑝 d and d ∈ 𝐷 = Deg(𝒞), then E ∈ Deg(𝒞(𝑡 + 1)). Therefore,

𝑓e ∈ 𝒞(𝑡+ 1).

Now suppose 𝒞 = (𝒞0)1↗𝑚 for some linear affine-invariant 𝒞0 ⊆ {F𝑞 → F𝑞}. It suffices to

show that if d = (𝑑1, . . . , 𝑑𝑚) ∈ Deg(𝒞) and E ≤𝑝 d with entries 𝑒𝑖𝑗, 𝑖 ∈ [𝑚], 0 ≤ 𝑗 ≤ 𝑡, then

the length 𝑚(𝑡 + 1) vector (E*0,E*1, . . . ,E*𝑡) ∈ Deg((𝒞0)1↗𝑚(𝑡+1)). By Proposition 5.2.3, it

suffices to show that, if 𝑢𝑖𝑗 ≤𝑝 𝑒𝑖𝑗 for every 𝑖 ∈ [𝑚] and 0 ≤ 𝑗 ≤ 𝑡, then
∑︀

𝑖𝑗 𝑢𝑖𝑗 mod* 𝑞 ∈

Deg(𝒞0). Since d ∈ Deg(𝒞) = Deg((𝒞0)1↗𝑚), this implies that if 𝑒′𝑖 ≤𝑝 𝑑𝑖 for 𝑖 ∈ [𝑚], then∑︀
𝑖 𝑒
′
𝑖 mod* 𝑞 ∈ Deg(𝒞0). Set 𝑒′𝑖 ,

∑︀𝑡
𝑗=0 𝑢𝑖𝑗. Observe that, since (𝑒𝑖0, 𝑒𝑖1, . . . , 𝑒𝑖𝑡) ≤𝑝 𝑑𝑖, this

implies that 𝑒′𝑖 ≤𝑝 𝑑𝑖. Therefore,
∑︀

𝑖𝑗 𝑢𝑖𝑗 mod* 𝑞 =
∑︀

𝑖 𝑒
′
𝑖mod* 𝑞 ∈ Deg(𝒞0), as desired.

Theorem 6.2.6. Let 1 ≤ 𝑡 < 𝑚. Let 𝒞1 ⊆ {F𝑡
𝑞 → F𝑞} be a linear affine-invariant code, and

let 𝒞2 ⊆ {F𝑚
𝑞 → F𝑞} have a 𝑝-shadow-closed degree set. Suppose 𝑓 ∈ 𝒞2 ∖ 𝒞1𝑡↗𝑚. Then the

87

following hold:

1. if 𝒞2 = (𝒞0)⊗𝑛 for some linear affine-invariant code 𝒞0 ⊆ {F𝑡
𝑞 → F𝑞}, where 𝑚 = 𝑛𝑡,

then there exists a point b ∈ F𝑚
𝑞 such that for at least 𝛿(𝒞0)𝑛 − (𝑛 + 1)𝑞−𝑡 fraction of

𝑡-dimensional affine subspaces 𝐴 ⊆ F𝑚
𝑞 passing through b, the restriction 𝑓 |𝐴 /∈ 𝒞1;

2. if 𝒞2 = (𝒞0)1↗𝑚 for some linear affine-invariant code 𝒞0 ⊆ {F𝑞 → F𝑞}, then for at least

𝛿(𝒞0)−𝑞−1 fraction of 𝑡-dimensional affine subspaces 𝐴 ⊆ F𝑚
𝑞 , the restriction 𝑓 |𝐴 /∈ 𝒞1.

Proof. Let 𝑝 be the characteristic of F𝑞. Let 𝐴 be parameterized by 𝑋𝑖 = 𝑎𝑖0 +
∑︀𝑡

𝑗=1 𝑎𝑖𝑗𝑌𝑗,

where the matrix {𝑎𝑖𝑗}𝑚,𝑡
𝑖=1,𝑗=1 ∈ F𝑚×𝑡

𝑞 has full rank. Write

𝑓 |𝐴(Y) =
∑︁

e∈{0,1,...,𝑞−1}𝑡
𝑓e(a) ·Ye.

Since 𝑓 /∈ 𝒞𝑚1 , there exists e /∈ Deg(𝒞1) such that 𝑓e ̸= 0.

1. By Corollary A.2.3, 𝒞2 has a 𝑝-shadow-closed degree set. By Lemma 6.2.5 (1), 𝑓e ∈

𝒞2(𝑡 + 1). For each b = (𝑏1, . . . , 𝑏𝑚) ∈ F𝑚
𝑞 , let 𝑓e,b denote the polynomial 𝑓e with

the variable 𝑎𝑖0 fixed to value 𝑏𝑖 for each 𝑖 ∈ [𝑚] (i.e. insisting that 𝐴 passes through

b). Observe that each 𝑓e,b ∈ 𝒞2(𝑡). Since 𝑓e ̸= 0, there exists b ∈ F𝑚
𝑞 such that

𝑓e,b ̸= 0. By Proposition 6.2.4, for at least 𝛿(𝒞2(𝑡)) ≥ 𝛿(𝒞0)𝑛−𝑛𝑞−𝑡 fraction of matrices

{𝑎𝑖𝑗}𝑖∈[𝑚];𝑗∈[𝑡], we have 𝑓e,b({𝑎𝑖𝑗}𝑖∈[𝑚];𝑗∈[𝑡]) ̸= 0. Since, by Lemma B.2.2, at least 1−𝑞𝑡−𝑚

fraction of such matrices have full rank, we get that for at least 𝛿(𝒞0)𝑛−𝑛𝑞−𝑡− 𝑞𝑡−𝑚 ≥

𝛿(𝒞0)𝑛−(𝑛+1)𝑞−𝑡 of the full rank matrices satisfy 𝑓e,b

(︁
{𝑎𝑖𝑗}𝑚,𝑡

𝑖=1,𝑗=1

)︁
̸= 0 , and therefore

𝑓 |𝐴(Y) /∈ 𝒞1.

2. By Proposition 4.1.3 it has a 𝑝-shadow-closed degree set. By Lemma 6.2.5 (2), 𝑓e ∈

(𝒞0)1↗𝑚(𝑡+1), so 𝑓e(a) ̸= 0 for at least 𝛿((𝒞0)1↗𝑚(𝑡+1)) ≥ 𝛿(𝒞0)−𝑞−1 fraction of choices a

(including such that the corresponding matrix does not have full rank), and therefore,

by Lemma B.2.2, 𝑓 |𝐴(Y) /∈ 𝒞1 for at least 𝛿(𝒞0)− 𝑞−1 − 𝑞𝑡−𝑚 ≥ 𝛿(𝒞0)− 2𝑞−1.

88

Corollary 6.2.7. Let 𝑡, 𝑛 ≥ 1 and let 𝑚 = 𝑛𝑡. Let 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} be a linear affine-

invariant code. If 𝑓 ∈ 𝒞⊗𝑛∖𝒞𝑡↗𝑚, then there is a point b ∈ F𝑚
𝑞 such that for 𝛿(𝒞)𝑛−(𝑛+1)𝑞−𝑡

fraction of 𝑡-dimensional subspaces 𝑢 through b, the restriction 𝑓 |𝑢 /∈ 𝒞.

Proof. Follows immediately from Theorem 6.2.6 (1) with 𝒞0 = 𝒞1 = 𝒞, and 𝒞2 = 𝒞⊗𝑛.

Corollary 6.2.8. Let 1 ≤ 𝑡 ≤ 𝑚. Let 𝒞0 ⊆ {F𝑞 → F𝑞} be a linear affine-invariant code.

Let 𝒞1 ((𝒞0)1↗𝑡 be a linear affine-invariant code that is a strict subcode of (𝒞0)1↗𝑡. If

𝑓 ∈ (𝒞0)1↗𝑚 ∖ (𝒞1)𝑡↗𝑚, then for at least 𝛿(𝒞0) − 2𝑞−1 fraction of 𝑡-dimensional subspaces

𝐴 ⊆ F𝑚
𝑞 , the restriction 𝑓 |𝐴 /∈ 𝒞1.

Proof. Follows immediately from Theorem 6.2.6 (2) with 𝒞2 = (𝒞0)1↗𝑚.

89

90

Chapter 7

Applications

7.1 Lifted Reed-Solomon Code

We begin by describing the central construction of the thesis — the lifted Reed-Solomon. As

its name suggests, the lifted Reed-Solomon is simply obtained by lifting the Reed-Solomon

code. With judicious choice of parameters, the lifted Reed-Solomon code is the first code

to achieve a combination of parameters never achieved by one code before. For now, we

describe our construction for an arbitrary choice of parameters.

Let 𝑞 be a prime power, let 𝑚 ≥ 2 be an integer, and let 𝑑 < 𝑞. Let RS , RS(𝑞, 𝑑) and let

𝒞 , RS1↗𝑚. The code 𝒞 is the lifted Reed-Solomon code. It automatically inherits distance, a

well-structured degree set, local correctability, decodability, and robust testability by virtue

of being a lifted code.

Proposition 7.1.1. The distance of 𝒞 is 𝛿(𝒞) ≥ 1− 𝑑+1
𝑞
.

Proof. By Proposition 5.2.4, 𝛿(𝒞) ≥ 𝛿(RS)− 𝑞−1, and by Proposition 3.4.2, 𝛿(RS) = 1− 𝑑
𝑞
,

so 𝛿(𝒞) ≥ 𝛿(RS)− 𝑞−1 ≥ 1− 𝑑+1
𝑞
.

Proposition 7.1.2. The code 𝒞 is linear affine-invariant and d ∈ Deg(𝒞) if and only if, for

every e ≤𝑝 d, the sum
∑︀𝑚

𝑖=1 𝑒𝑖 mod* 𝑞 ≤ 𝑑.

Proof. Follows immediately from Proposition 5.2.3.

91

Proposition 7.1.3. For every 𝜖, 𝜂 > 0, the code 𝒞 is
(︀
𝑄, (1

2
− 𝜖)𝛿 − 𝑞−1, 𝜂

)︀
-locally correctable

and decodable, where 𝛿 , 1− 𝑑
𝑞
and 𝑄 = 𝑂(ln(1/𝜂)/𝜖2).

Proof. The local correctability follows immediately from Theorem 5.3.2 while local decod-

ability follows from Theorem 5.3.4.

Proposition 7.1.4. Let 𝛿 , 1− 𝑑
𝑞
. The code 𝒞 has a 𝑞2-local tester that is 𝛿72

2·1052 -robust.

Proof. Follows immediately from Theorem 5.4.3.

7.1.1 Relationship to Reed-Muller

We proceed by examining the relationship between the lifted Reed-Solomon code and the

Reed-Muller code. It follows immediately from definitions that the Reed-Muller code is

contained in the lifted Reed-Solomon code, i.e. RM(𝑞, 𝑑,𝑚) ⊆ RS(𝑞, 𝑑)1↗𝑚. Kaufman and

Ron [KR06] proved the following characterization: a polynomial over F𝑚
𝑞 has degree 𝑑 if and

only if on every 𝑡-dimensional affine subspace its restriction has degree 𝑑, where 𝑡 =
⌈︁

𝑑+1
𝑞−𝑞/𝑝

⌉︁
and 𝑝 is the characteristic of F𝑞. This generalizes a result of Friedl and Sudan [FS95], which

says that if 𝑑 ≤ 𝑞 − 𝑞/𝑝 and a polynomial has degree 𝑑 on every line, then its global degree

is 𝑑, and that this is not necessarily true if 𝑑 ≥ 𝑞 − 𝑞/𝑝. Observe that, in the language of

lifting, this statement simply says that RS(𝑞, 𝑑)1↗𝑚 = RM(𝑞, 𝑑,𝑚) if and only if 𝑑 < 𝑞−𝑞/𝑝.

In Theorem 7.1.6, we give a more efficient proof of the above result of [FS95] using the

technology of affine-invariance and lifting. In Theorem 7.1.8, we prove a specialization of

the characterization of [KR06]: if 𝑞 − 𝑞/𝑝 ≤ 𝑑 < 𝑞, then polynomials of degree 𝑑 are

characterized by having degree 𝑑 on planes, i.e. RM(𝑞, 𝑑, 2)2↗𝑚 = RM(𝑞, 𝑑,𝑚), again using

affine-invariance and lifting.

First, we prove a handy lemma.

Lemma 7.1.5. Let 𝑚 ≥ 𝑡, let 𝑞 be a prime power, and let 𝑑 < 𝑞. If RM(𝑞, 𝑑,𝑚) =

RM(𝑞, 𝑑, 𝑡)𝑡↗𝑚, then RM(𝑞, 𝑑− 1,𝑚) = RM(𝑞, 𝑑− 1, 𝑡)𝑡↗𝑚.

Proof. Let 𝑓 ∈ RM(𝑞, 𝑑− 1, 𝑡)𝑡↗𝑚. Define 𝑔 : F𝑚
𝑞 → F𝑞 by 𝑔(X) , 𝑋1 · 𝑓(X). Since

𝑓 ∈ RM(𝑞, 𝑑− 1, 𝑡)𝑡↗𝑚, by Proposition 5.1.2 it follows that deg(𝑓 ∘ 𝐴) ≤ 𝑑 − 1 < 𝑞 − 1

92

for every affine 𝐴 : F𝑡
𝑞 → F𝑚

𝑞 Note that (𝑔 ∘ 𝐴)(Y) = 𝑔(𝐴(Y)) = (𝐴(Y))1 · (𝑓 ∘ 𝐴)(Y), so

deg(𝑔 ∘ 𝐴) ≤ deg(𝑓 ∘ 𝐴) + 1 ≤ 𝑑 for every affine 𝐴 : F𝑡
𝑞 → F𝑚

𝑞 , hence 𝑔 ∈ RM(𝑞, 𝑑, 𝑡)𝑡↗𝑚 =

RM(𝑞, 𝑑,𝑚), so deg(𝑔) ≤ 𝑑. Therefore, deg(𝑓) = deg(𝑔)− 1 ≤ 𝑑− 1.

Theorem 7.1.6. Let 𝑝 be a prime and let 𝑞 be a power of 𝑝. Let 𝑑 < 𝑞. Let 𝑚 ≥ 2. Then

RM(𝑞, 𝑑,𝑚) = RS(𝑞, 𝑑)1↗𝑚 if and only if 𝑑 < 𝑞 − 𝑞/𝑝.

Proof. By Lemma 7.1.5, it suffices to show that equality holds for 𝑑 = 𝑞 − 𝑞/𝑝− 1 and does

not hold for 𝑑 = 𝑞 − 𝑞/𝑝. Let 𝑑 = 𝑞 − 𝑞/𝑝 − 1 = (1 − 𝑝−1)𝑞 − 1. This corresponds to the

construction of 𝒞 , RS(𝑞, 𝑑)1↗𝑚 in Section 7.1 with 𝑐 = 1. Let 𝑠 ≥ 1 be such that 𝑞 = 𝑝𝑠.

Let d = (𝑑1, . . . , 𝑑𝑚) ∈ Deg(𝒞). We will show that
∑︀𝑚

𝑖=1 𝑑𝑖 ≤ 𝑑 = 𝑞 − 𝑞/𝑝 − 1. Suppose,

for the sake of contradiction, that
∑︀𝑚

𝑖=1 𝑑𝑖 ≥ 𝑞 − 𝑞/𝑝. We will exhibit e ≤𝑝 d such that

𝑞 − 𝑞/𝑝 ≤
∑︀𝑚

𝑖=1 𝑒𝑖 < 𝑞, which contradicts the fact that d ∈ Deg(𝒞) by Proposition 5.2.3. If∑︀𝑚
𝑖=1 𝑑𝑖 < 𝑞, then we are done by taking e = d, so assume

∑︀𝑚
𝑖=1 𝑑𝑖 ≥ 𝑞. Let 𝑎 ,

∑︀𝑚
𝑖=1 𝑑

(𝑠)
𝑖 .

By Claim 7.1.9, 𝑎 ≤ 𝑝− 2. For each 𝑖 ∈ [𝑚], let 𝑑𝑖 = 𝑑𝑖 − 𝑑(𝑠)𝑖 𝑝𝑠−1. Then

𝑚∑︁
𝑖=1

𝑑𝑖 =
𝑚∑︁
𝑖=1

𝑑𝑖 − 𝑝𝑠−1
𝑚∑︁
𝑖=1

𝑑
(𝑠)
𝑖 ≥ (𝑝− 𝑎)𝑝𝑠−1.

Let 𝑘 ∈ [𝑚] be the minimal integer such that
∑︀𝑘

𝑖=1 𝑑𝑖 ≥ (𝑝−𝑎−1)𝑝𝑠−1. Since each 𝑑𝑖 < 𝑝𝑠−1,

this implies that
∑︀𝑘

𝑖=1 𝑑𝑖 < (𝑝− 𝑎)𝑝𝑠−1. Now, for 𝑖 ∈ [𝑘], define 𝑒𝑖 , 𝑑𝑖, and for 𝑖 > 𝑘, define

𝑒𝑖 , 𝑑
(𝑠)
𝑖 𝑝𝑠−1. By construction, e ≤𝑝 d. On the other hand,

𝑚∑︁
𝑖=1

𝑒𝑖 =
𝑘∑︁

𝑖=1

𝑑𝑖 + 𝑝𝑠−1
𝑚∑︁
𝑖=1

𝑑
(𝑠)
𝑖 =

𝑘∑︁
𝑖=1

𝑑𝑖 + 𝑎𝑝𝑠−1

which is at least (𝑝 − 𝑎 − 1)𝑝𝑠−1 + 𝑎𝑝𝑠−1 = (𝑝 − 1)𝑝𝑠−1 = 𝑞 − 𝑞/𝑝 and strictly less than

(𝑝− 𝑎)𝑝𝑠−1 + 𝑎𝑝𝑠−1 = 𝑝𝑠 = 𝑞.

Now, let 𝑑 = 𝑞− 𝑞/𝑝. Let 𝑓(X) = 𝑋
𝑞−𝑞/𝑝
1 𝑋

𝑞−𝑞/𝑝
2 . Clearly deg(𝑓) = 2(𝑞− 𝑞/𝑝) > 𝑞− 𝑞/𝑝.

93

We claim that 𝑓 ∈ RS(𝑞, 𝑑)1↗𝑚. For any a,b ∈ F𝑚
𝑞 , we have

𝑓(a𝑇 + b) = (𝑎1𝑇 + 𝑏1)
𝑞−𝑞/𝑝(𝑎2𝑇 + 𝑏2)

𝑞−𝑞/𝑝 (7.1)

= (𝑎
𝑞/𝑝
1 𝑇 𝑞/𝑝 + 𝑏

𝑞/𝑝
1)𝑝−1(𝑎

𝑞/𝑝
2 𝑇 𝑞/𝑝 + 𝑏

𝑞/𝑝
2)𝑝−1 (7.2)

(7.3)

so, since 𝑇 𝑞 = 𝑇 , every monomial in 𝑓(a𝑇 + b) is of the form 𝑇 𝑐·𝑞/𝑝 for some 0 ≤ 𝑐 ≤ 𝑝− 1,

thus deg(𝑓(a𝑇 + b)) ≤ 𝑞 − 𝑞/𝑝 = 𝑑.

As a corollary, we see that, over prime fields, lifting the Reed-Solomon code simply yields

the Reed-Muller code.

Corollary 7.1.7. If 𝑝 is a prime and 𝑑 < 𝑞, then RS(𝑝, 𝑑)1↗𝑚 = RM(𝑝, 𝑑,𝑚) for every

𝑚 ≥ 1.

Proof. If 𝑚 = 1, then both codes are equal to RS(𝑝, 𝑑), so there is nothing to prove. Assume

𝑚 ≥ 2. If 𝑑 = 𝑝 − 1, then both codes are equal to everything, so again there is nothing to

prove. If 𝑑 < 𝑝− 1, then the result follows from Theorem 7.1.6.

Theorem 7.1.8. Let 𝑞 be a prime power, let 𝑑 < 𝑞, and let 𝑚 ≥ 2. Then RM(𝑞, 𝑑, 2)2↗𝑚 =

RM(𝑞, 𝑑,𝑚).

Proof. By Lemma 7.1.5, it suffices to consider the case where 𝑑 = 𝑞−1. It follows immediately

from definitions that RM(𝑞, 𝑑,𝑚) ⊆ RM(𝑞, 𝑑, 2)2↗𝑚, so it only remains to show the reverse

inclusion. We do so by showing that if d ∈ Deg(RM(𝑞, 𝑑, 2)2↗𝑚), then ‖d‖ ≤ 𝑑. Actually,

we show the converse. By Proposition 5.2.3, it suffices to show that if ‖d‖ ≥ 𝑞, then there

exists E ≤𝑝 d such that (‖E*1‖mod* 𝑞) + (‖E*2‖mod* 𝑞) ≥ 𝑞 where E has rows [𝑚] and

columns {0, 1, 2}.

Without loss of generality, assume 𝑑1 ≥ 𝑑2 ≥ · · · ≥ 𝑑𝑚. Let 𝑘 ≥ 2 be the smallest integer

such that 𝑑2 + · · · + 𝑑𝑘 ≥ 𝑞 − 𝑑1. Then 𝑑2 + · · · + 𝑑𝑘 ≤ 𝑞 − 1, for otherwise 𝑑𝑘 ≥ 𝑑1 + 1,

which is impossible. Construct E as follows. Define E1* , (0, 𝑑1, 0) and for 𝑖 ∈ {2, . . . , 𝑘},

define E𝑖* , (0, 0, 𝑑𝑖). Finally, for 𝑖 > 𝑘, define E𝑖* = (0, 0, 0). By construction, E ≤𝑝 d,

94

and moreover ‖E*1‖ = 𝑑1 and ‖E*2‖ = 𝑑2 + · · · + 𝑑𝑘. Since ‖E*1‖, ‖E*2‖ ≤ 𝑞 − 1, applying

mod* 𝑞 does not reduce them, hence (‖E*1‖mod* 𝑞) + (‖E*2‖mod* 𝑞) = ‖E*1‖ + ‖E*2‖ ≥

𝑑1 + (𝑞 − 𝑑1) = 𝑞, as desired.

7.1.2 Rate

Rate is the one key parameter that is not guaranteed by the lifting operator. However, the

potential in lifted codes comes from the fact that it is possible to get extremely dense codes

by lifting. From Section 7.1.1, we see that if 𝑞 − 𝑞/𝑝 ≤ 𝑑 < 𝑞, then there are lifted Reed-

Solomon codewords that are not Reed-Muller codewords. We show that, in fact, there are

many such codewords. Our strategy is to lower bound the rate of the code. Observe that

the lifted Reed-Solomon code, being a linear affine-invariant code, is spanned by monomials,

i.e. has a degree set. Therefore, its dimension is equal to the size of its degree set. We use

our knowledge of the structure of its degree set to lower bound the number of such degrees.

In this section, we analyze the rate of 𝒞 for special values of 𝑑. Let 𝑝 be the characteristic

of F𝑞, let 𝑠 ≥ 1 be such that 𝑞 = 𝑝𝑠, let 𝑐 ≤ 𝑠 and let 𝑑 = (1− 𝑝−𝑐)𝑞 − 1.

We begin by re-interpreting what it means for a number 𝑒 to be less than 𝑑, in terms of

the 𝑝-ary expansion of 𝑒. Through this section, for any 𝑎 ∈ N, let 𝑎 =
∑︀

𝑖≥0 𝑎
(𝑖)𝑝𝑖 be the

𝑝-ary expansion of 𝑎.

Claim 7.1.9. If 𝑒 ∈ J𝑞K, then 𝑒 ≤ 𝑑 if and only if 𝑒(𝑖) < 𝑝− 1 for some 𝑠− 𝑐 ≤ 𝑖 < 𝑠.

Proof. Since 𝑒 < 𝑞, 𝑒(𝑖) = 0 for 𝑖 ≥ 𝑠. Note that if 𝑒(𝑖) = 𝑝 − 1 for 𝑠 − 𝑐 ≤ 𝑖 < 𝑠, then

𝑒 ≥ (𝑝 − 1)
∑︀𝑠−1

𝑖=𝑠−𝑐 𝑝
𝑖 = 𝑝𝑠−𝑐(𝑝 − 1)

∑︀𝑐−1
𝑖=0 𝑝

𝑖 = (1 − 𝑝−𝑐)𝑞, while if 𝑒(𝑖) < 𝑝 − 1 for some

𝑠− 𝑐 ≤ 𝑖 < 𝑠, this only decreases the value of 𝑒.

Next, we use our knowledge of the degree set of the lifted Reed-Solomon code to provide

a sufficient condition for a degree to be in the degree set.

Claim 7.1.10. Let 𝑏 =
⌈︀
log𝑝𝑚

⌉︀
+ 1 and let d ∈ J𝑞K𝑚. If there is some 𝑠 − 𝑐 ≤ 𝑗 ≤ 𝑠 − 𝑏

such that 𝑑
(𝑘)
𝑖 = 0 for every 𝑖 ∈ [𝑚] and every 𝑗 ≤ 𝑘 < 𝑗 + 𝑏, then d ∈ Deg(𝒞).

95

Proof. Let e ≤𝑝 d, and let 𝑒 =
∑︀𝑚

𝑖=1 𝑒𝑖 mod* 𝑞. We claim that 𝑒(𝑗+𝑏−1) = 0, which implies

𝑒 ≤ 𝑑 Claim 7.1.9 since 𝑠− 𝑐 ≤ 𝑗 + 𝑏− 1 < 𝑠. Note that 𝑎 ↦→ 𝑝 · 𝑎mod* 𝑞 results in a cyclic

permutation of the digits 𝑎(𝑖). So we may multiply d and e by an appropriate power of 𝑝,

namely 𝑝𝑠−𝑏−𝑗, so that 𝑗 = 𝑠− 𝑏. Therefore, we may assume without loss of generality that

𝑗 = 𝑠−𝑏, and we wish to show that 𝑒(𝑠−1) = 0, i.e. 𝑒 < 𝑝𝑠−1. Note that since e ≤𝑝 d, for each

𝑖 ∈ [𝑚] and 𝑠 − 𝑏 ≤ 𝑘 ≤ 𝑠 − 1 we have 𝑒
(𝑘)
𝑖 = 0, i.e. 𝑒𝑖 < 𝑝𝑠−𝑏 for every 𝑖 ∈ [𝑚]. Therefore∑︀𝑚

𝑖=1 𝑒𝑖 < 𝑚𝑝𝑠−𝑏 < 𝑝𝑏−1𝑝𝑠−𝑏 = 𝑝𝑠−1.

Finally, we lower bound the rate.

Theorem 7.1.11. Let 𝑏 =
⌈︀
log𝑝𝑚

⌉︀
+ 1 The rate of the code 𝒞 is at least 1− 𝑒−(𝑐+𝑏)/(𝑏𝑝𝑚𝑏).

Proof. Consider choosing d ∈ J𝑞K𝑚 uniformly at random. Let 𝑎 = ⌊𝑐/𝑏⌋. For 𝑗 ∈ [𝑎], let 𝐸𝑗

be the event that 𝑑
(𝑘)
𝑖 = 0 for every 𝑖 ∈ [𝑚] and 𝑠− 𝑗𝑏 ≤ 𝑘 < 𝑠− (𝑗 − 1)𝑏. By Claim 7.1.10,⋁︀𝑎

𝑗=1𝐸𝑗 is sufficient for d ∈ Deg(𝒞), so we wish to lower bound Pr
[︁⋁︀𝑎

𝑗=1𝐸𝑗

]︁
. We have

Pr[𝐸𝑗] = 𝑝−𝑚𝑏 for every 𝑗 ∈ [𝑎], therefore

Pr

[︃
𝑎⋁︁

𝑗=1

𝐸𝑗

]︃
= 1− Pr

[︃
𝑎⋀︁

𝑗=1

𝐸𝑗

]︃
(7.4)

= 1−
𝑎∏︁

𝑗=1

Pr
[︀
𝐸𝑗

]︀
(7.5)

= 1−
𝑎∏︁

𝑗=1

(1− Pr[𝐸𝑗]) (7.6)

= 1− (1− 𝑝−𝑚𝑏)𝑎 (7.7)

≥ 1− (1− 𝑝−𝑚𝑏)(𝑐+𝑏)/𝑏 (7.8)

≥ 1− 𝑒−(𝑐+𝑏)/(𝑏𝑝𝑚𝑏). (7.9)

96

7.1.3 Global List-Decoding

In this section, we present an efficient global list decoding algorithm for RS(𝑞, 𝑑)1↗𝑚. Define

𝛼1, . . . , 𝛼𝑚 ∈ F𝑞𝑚 , 𝜑, and 𝜑* as in Section 5.3.3. Our main result states that RS(𝑞, 𝑑)1↗𝑚

is isomorphic to a subcode of RS(𝑞𝑚, (𝑑 +𝑚)𝑞𝑚−1) ⊆ {F𝑞𝑚 → F𝑞}. In particular, one can

simply list decode RS(𝑞, 𝑑)1↗𝑚 by list-decoding RS(𝑞𝑚, (𝑑 + 𝑚)𝑞𝑚−1) up to the Johnson

radius. We will use this algorithm for 𝑚 = 2 as a subroutine in our local list decoding

algorithm in Section 7.1.4.

Theorem 7.1.12. If 𝑓 ∈ RS(𝑞, 𝑑)1↗𝑚, then deg(𝜑*(𝑓)) ≤ (𝑑+𝑚)𝑞𝑚−1.

Proof. By linearity, it suffices to prove this for a monomial 𝑓(𝑋1, . . . , 𝑋𝑚) =
∏︀𝑚

𝑖=1𝑋
𝑑𝑖
𝑖 . We

have

𝜑*(𝑓)(𝑍) =
∑︁

(𝑒11,...,𝑒1𝑚)≤𝑝𝑑1
...

(𝑒𝑚1,...,𝑒𝑚𝑚)≤𝑝𝑑𝑚

(· · ·)𝑍
∑︀

𝑖𝑗 𝑒𝑖𝑗𝑞
𝑚−𝑖

,

so it suffices to show that
∑︀𝑚

𝑗=1

∑︀𝑚
𝑖=1 𝑒𝑖𝑗𝑞

𝑚−𝑗 mod* 𝑞𝑚 ≤ (𝑑+𝑚)𝑞𝑚−1. By Proposition 7.1.2,

for every 𝑒𝑖 ≤𝑝 𝑑𝑖, 𝑖 ∈ [𝑚], we have
∑︀𝑚

𝑖=1 𝑒𝑖 mod* 𝑞 ≤ 𝑑. Therefore, there is some integer

0 ≤ 𝑘 < 𝑚 such that
∑︀𝑚

𝑖=1 𝑒𝑖1 ∈ [𝑘𝑞, 𝑘(𝑞 − 1) + 𝑑]. Thus,

𝑘𝑞𝑚 ≤ 𝑞𝑚−1
𝑚∑︁
𝑖=1

𝑒𝑖1 +
𝑚∑︁
𝑗=2

𝑚∑︁
𝑖=1

𝑒𝑖𝑗𝑞
𝑚−𝑗 (7.10)

≤ 𝑞𝑚−1
𝑚∑︁
𝑖=1

𝑒𝑖1 + 𝑞𝑚−2
𝑚∑︁
𝑗=2

𝑚∑︁
𝑖=1

𝑒𝑖𝑗 (7.11)

≤ (𝑘(𝑞 − 1) + 𝑑)𝑞𝑚−1 +𝑚𝑞𝑚−1 (7.12)

= 𝑘(𝑞𝑚 − 1) + (𝑑+𝑚− 𝑘)𝑞𝑚−1 + 𝑘 (7.13)

≤ 𝑘(𝑞𝑚 − 1) + (𝑑+𝑚)𝑞𝑚−1 (7.14)

and hence
∑︀𝑚

𝑗=1

∑︀𝑚
𝑖=1 𝑒𝑖𝑗𝑞

𝑚−𝑗 mod* 𝑞𝑚 ≤ (𝑑+𝑚)𝑞𝑚−1.

Corollary 7.1.13. For every 𝑚 ≥ 2 and ever 𝜖 > 0, there is a polynomial time algorithm

that takes as input a function 𝑟 : F𝑚
𝑞 → F𝑞 and outputs a list ℒ of size |ℒ| = 𝑂(1/𝜖2) which

97

contains all 𝑐 ∈ RS(𝑞, 𝑑)1↗𝑚 such that 𝛿(𝑟, 𝑐) < 1−
√︁

𝑑+𝑚
𝑞
− 𝜖.

Proof. Given 𝑟 : F𝑚
𝑞 → F𝑞, convert it to 𝑟′ = 𝜑*(𝑟), and then run the Guruswami-Sudan

list decoder (Theorem 3.4.3) for RS , RS(𝑞𝑚, (𝑑 +𝑚)𝑞𝑚−1) on 𝑟′ to obtain a list ℒ of size

|ℒ| = 𝑂(1/𝜖2) with the guarantee that any 𝑐 ∈ RS with 𝛿(𝑟′, 𝑐) < 1 −
√︁

𝑑+𝑚
𝑞
− 𝜖 lies in ℒ.

We require that any 𝑐 ∈ RS(𝑞, 𝑑)1↗𝑚 satisfying 𝛿(𝑟′, 𝑐) < 1 −
√︁

𝑑+𝑚
𝑞
− 𝜖 lies in ℒ, and this

follows immediately from Theorem 7.1.12.

7.1.4 Local List-Decoding

In this section, we present a local list decoding algorithm for LiftedRS(𝑞, 𝑑,𝑚), where 𝑑 =

(1 − 𝛿)𝑞 which decodes up to radius 1 −
√
1− 𝛿 − 𝜖 for any constant 𝜖 > 0, with list size

𝑂(1/𝜖2) and query complexity 𝑞3.

Theorem 7.1.14. For every 𝑚 ≥ 2 and every 𝛿, 𝜖 > 0, setting 𝑑 = (1− 𝛿)𝑞, RS(𝑞, 𝑑)1↗𝑚 is(︁
𝑞, 𝑞3, 1−

√
1− 𝛿 − 𝜖, 𝑂(1/𝜖2), 0.2 + 2

𝛿𝑞
, 𝑂
(︁

1
𝜖6𝑞𝛿

)︁)︁
-locally list-decodable.

Proof. The following algorithm is the outer local list-decoding algorithm.

Local list decoder: Oracle access to received word 𝑟 : F𝑚
𝑞 → F𝑞.

1. Pick an affine transformation ℓ : F𝑞 → F𝑚
𝑞 uniformly at random.

2. Run Reed-Solomon list decoder (e.g. Guruswami-Sudan) on 𝑟 ∘ ℓ from 1−
√
1− 𝛿 − 𝜖

2

fraction errors to get list 𝑔1, . . . , 𝑔𝐿 : F𝑞 → F𝑞 of Reed-Solomon codewords.

3. For each 𝑖 ∈ [𝐿], output Correct(𝐴ℓ,𝑔𝑖)

where Correct is a local correction algorithm for the lifted codes for 0.1𝛿 fraction errors

given by Theorem 5.3.1, which has a failure probability of 0.2+ 2
𝛿𝑞
, and 𝐴 is an oracle which

takes as advice a univariate affine map and a univariate polynomial and simulates oracle

access to a function which is supposed to be ≪ 0.1𝛿 close to a lifted RS codeword.

98

Oracle 𝐴ℓ,𝑔(x):

1. Let 𝑃 : F2
𝑞 → F𝑚

𝑞 be the unique affine map such that 𝑃 (𝑡, 0) = ℓ(𝑡) for 𝑡 ∈ F𝑞 and

𝑃 (0, 1) = x.

2. Use the global list decoder for RS(𝑞, 𝑑)1↗2 given by Corollary 7.1.13 to decode 𝑟 ∘ 𝑃

from 1−
√
1− 𝛿 − 𝜖

2
fraction errors and obtain a list ℒ.

3. If there exists a unique ℎ ∈ ℒ such that ℎ ∘ ℓ = 𝑔, output ℎ(0, 1), otherwise fail.

Analysis: For the query complexity, note that the local list-decoder makes 𝑞 queries to 𝑟

to output its oracles. For each oracle, Correct makes 𝑞 queries to 𝐴ℓ,𝑔𝑖 , which itself makes 𝑞2

queries to 𝑟, so the entire oracle makes 𝑞3 queries to 𝑟.

To show correctness, we just have to show that, with high probability over the choice of

ℓ, for every lifted RS codeword 𝑓 such that 𝛿(𝑟, 𝑓) < 1 −
√
1− 𝛿 − 𝜖, there is 𝑖 ∈ [𝐿] such

that Correct(𝐴ℓ,𝑔𝑖) = 𝑓 , i.e. 𝛿(𝐴ℓ,𝑔𝑖 , 𝑓) ≤ 0.1𝛿.

Fix such a function 𝑓 . We will proceed in two steps:

1. First, we show that with high probability over ℓ, there is some 𝑖 ∈ [𝐿] such that 𝑓 |ℓ = 𝑔𝑖.

2. Next, we show that 𝛿(𝐴ℓ,𝑓∘ℓ, 𝑓) ≤ 0.1𝛿 with high probability.

For the first step, note that 𝑓 |ℓ ∈ {𝑔1, . . . , 𝑔𝐿} if 𝛿(𝑓 ∘ ℓ, 𝑟 ∘ ℓ) ≤ 1 −
√
1− 𝛿 − 𝜖

2
. By

Proposition B.1.4, 𝛿(𝑓 ∘ ℓ, 𝑟 ∘ ℓ) has mean less than 1 −
√
1− 𝛿 − 𝜖 and variance less than

1/(4𝑞). By Chebyshev’s inequality, the probability that 𝛿(𝑓 |ℓ, 𝑟|ℓ) ≤ 1 −
√
1− 𝛿 − 𝜖

2
is at

least 1− 1
𝜖2𝑞

.

For the second step, we want to show that Prx∈F𝑚
𝑞
[𝐴ℓ,𝑓∘ℓ(x) ̸= 𝑓(x)] ≤ 0.1𝛿. First consider

the probability when we randomize ℓ as well. Then 𝑃 : F2
𝑞 → F𝑚

𝑞 is a uniformly random

affine map. We get 𝐴ℓ,𝑓∘ℓ(x) = 𝑓(x) as long as 𝑓 ∘ 𝑃 ∈ ℒ and no other element ℎ ∈ ℒ has

ℎ ∘ ℓ = 𝑓 ∘ ℓ. By Proposition B.1.4, 𝛿(𝑓 ∘ 𝑃, 𝑟 ∘ 𝑃) has mean less than 1 −
√
1− 𝛿 − 𝜖 and

variance less than 1/(4𝑞2). By Chebychev’s inequality, with probability at least 1− 1
𝜖2𝑞2

over

ℓ and x , we have 𝛿(𝑓 |𝑃 , 𝑟|𝑃) ≤ 1 −
√
1− 𝛿 − 𝜖

2
and hence 𝑓 |𝑃 ∈ ℒ. For the probability

99

that no two codewords in ℒ agree on ℓ, view this as first choosing a random affine map

𝑃 : F2
𝑞 → F𝑚

𝑞 and then choosing random affine ℓ′ : F𝑞 → F2
𝑞 and defining ℓ , 𝑃 ′ ∘ ℓ′. For

any distinct 𝜑, 𝜓 : F2
𝑞 → F𝑞, the probability over ℓ′ that 𝜑 ∘ ℓ′ = 𝜓 ∘ ℓ′ is at most 2/𝑞, by

Proposition B.1.5. Since |ℒ| = 𝑂(1/𝜖2), there are at most 𝑂(1/𝜖4) pairs of functions from ℒ,

so by the union bound, with probability at least 1 − 𝑂(1/(𝜖4𝑞)), all the functions in ℒ are

distinct on ℓ and hence 𝑓 ∘ 𝑃 is the unique codeword in ℒ which is consistent with 𝑓 ∘ ℓ.

Therefore, the probability, over ℓ and x, that 𝐴ℓ.𝑓∘ℓ(x) ̸= 𝑓(x) is 𝑂
(︁

1
𝜖4𝑞

)︁
, and thus

Pr
ℓ
[𝛿(𝐴ℓ,𝑓∘ℓ, 𝑓 ∘ ℓ) > 0.1𝛿] = Pr

ℓ

[︁
Pr
x
[𝐴ℓ,𝑓∘ℓ(x) ̸= 𝑓(x)] > 0.1𝛿

]︁
≤ Prℓ,x[𝐴ℓ,𝑓∘ℓ(x) ̸= 𝑓(x)]

0.1𝛿

= 𝑂

(︂
1

𝜖4𝑞𝛿

)︂
.

So, for a fixed codeword 𝑓 ∈ RS(𝑞, 𝑑)1↗𝑚 such that 𝛿(𝑟, 𝑓) < 1−
√
1− 𝛿−𝜖, the probability

of success is 𝑂
(︁

1
𝜖4𝑞𝛿

)︁
. Since there are 𝑂(1/𝜖2) such codewords, the overall probability of

success is 𝑂
(︁

1
𝜖6𝑞𝛿

)︁
.

As a corollary, we get the following testing result.

Theorem 7.1.15. For every 𝛿 > 0 and for any 𝛼 < 𝛽 < 1 −
√
1− 𝛿, there is an algo-

rithm which, given oracle access to a function 𝑟 : F𝑚
𝑞 → F𝑞, distinguishes between the cases

where 𝑟 is 𝛼-close to RS(𝑞, 𝑑)1↗𝑚 (where 𝑑 , (1− 𝛿)𝑞), and where 𝑟 is 𝛽-far, while making

𝑂
(︁

ln(1/(𝛽−𝛼))𝑞4
(𝛽−𝛼)4𝛿72

)︁
queries to 𝑟.

Proof. Let 𝜌 , (𝛼 + 𝛽)/2, and let 𝜖 , (𝛽 − 𝛼)/8, so that 𝛼 = 𝜌 − 4𝜖 and 𝛽 = 𝜌 + 4𝜖.

Set 𝜂 , 𝑂(𝜖2), where the constant is sufficiently large. Let 𝑇 ′ be the 𝑞2-query Ω(𝛿72)-robust

tester algorithm for 𝑅𝑆(𝑞, 𝑑)1↗𝑚 , which rejects words that are 𝜖-far with probability Ω(𝜖𝛿72),

by Proposition 3.3.2. Let 𝑇 be the 𝑂(ln(1/𝜂)𝑞2/(𝜖𝛿72))-query tester which runs 𝑇 ′ repeatedly

𝑂(ln(1/𝜂)𝑞2/(𝜖𝛿72)) times and accepts if and only if every iteration accepts, to increase the

rejection probability for 𝜖-far words to 1− 𝜂. Our algorithm is to run the local list-decoding

100

algorithm on 𝑟 with error radius 𝜌, to obtain a list of oracles 𝑀1, . . . ,𝑀𝐿. For each 𝑀𝑖,

we use random sampling to compute an estimate ̃︀𝛿(𝑟, 𝑓𝑖) of the distance between 𝑟 and the

function 𝑓𝑖 computed by 𝑀𝑖 to within 𝜖 additive error with failure probability 𝜂, and keep

only the ones with estimated distance less than 𝜌+ 𝜖. Then, for each remaining 𝑀𝑖, we run

𝑇 on 𝑀𝑖. We accept if 𝑇 accepts some 𝑀𝑖, otherwise we reject.

The number of queries required to run the local list-decoding algorithm is 𝑞. For each

𝑖 ∈ [𝐿], the number of queries to𝑀𝑖 we need to make for computing ̃︀𝛿(𝑟, 𝑓𝑖) is 𝑂(ln(1/𝜂)/𝜖2),
by Proposition 2.2.4. Each query to 𝑀𝑖 makes 𝑞2 queries to 𝑟, for a total of 𝑂(ln(1/𝜂)𝑞2/𝜖2)

queries for each 𝑀𝑖 and therefore 𝑂(ln 1/𝜂)𝑞2/𝜖4) queries for the distance estimation step.

The tester 𝑇 makes 𝑂(ln(1/𝜂)𝑞2/(𝜖𝛿72)) queries to each𝑀𝑖, for a total of 𝑂(ln(1/𝜂)𝑞
4/(𝜖𝛿72))

queries to 𝑟 for each 𝑖 ∈ [𝐿] and therefore a grand total of 𝑂(ln(1/𝜂)𝑞4/(𝜖3𝛿72)) queries to

𝑟 made by 𝑇 . Therefore, the total number of queries to 𝑟 made by our testing algorithm is

𝑂
(︁

ln(1/𝜂)𝑞4

𝜖4𝛿72

)︁
= 𝑂

(︁
ln(1/𝜖)𝑞4

𝜖4𝛿72

)︁
.

If 𝑟 is 𝛼-close to RS(𝑞, 𝑑)1↗𝑚, then it is 𝛼-close to some codeword 𝑓 , and by the guarantee

of the local list-decoding algorithm, there is some 𝑗 ∈ [𝐿] such that 𝑀𝑗 computes 𝑓 . Since,

𝛿(𝑟, 𝑓) ≤ 𝛼, with probability at least 1 − 𝜂 we have ̃︀𝛿(𝑟, 𝑓) ≤ 𝛼 + 𝜖 < 𝜌, in which case 𝑀𝑗

will not be pruned by our distance estimation. Since 𝑓 is a codeword, this 𝑀𝑗 will pass

the testing algorithm 𝑇 and so our algorithm will accept. The total failure probability is

therefore 𝜂 +𝑂
(︁

1
𝜖6𝑞𝛿

)︁
.

Now suppose 𝑟 is 𝛽-far from RS(𝑞, 𝑑)1↗𝑚. With probability 1− 𝑂
(︁

1
𝜖6𝑞𝛿

)︁
, the local list-

decoding algorithm succeeds, so let us condition on its success. With probability 1−𝑂(𝜂/𝜖2),

all the distance estimations for all the𝑀𝑖 simultaneously succeed, and let us condition on this

as well. Consider any oracle 𝑀𝑖 output by the local list-decoding algorithm and not pruned

by our distance estimation. Let 𝑓𝑖 be the function computed by 𝑀𝑖. Then the estimated

distance is ̃︀𝛿(𝑟, 𝑓𝑖) < 𝜌+ 𝜖, so the true distance is 𝛿(𝑟, 𝑓𝑖) < 𝜌+ 2𝜖. Since 𝑟 is 𝛽-far from any

codeword, that means the distance from 𝑓𝑖 to any codeword is at least 𝛽 − (𝜌+2𝜖) > 𝜖, and

hence 𝑇 will reject 𝑀𝑖 with probability 1 − 𝜂. By the union bound, all the 𝑀𝑖 not pruned

will be rejected with probability 1− 𝑂(𝜂/𝜖2). So the total failure probability in this case is

101

at most 𝑂(𝜂/𝜖2) +𝑂
(︁

1
𝜖6𝑞𝛿

)︁
.

In either case, the failure probability is at most some constant.

7.1.5 Main Result: The Code That Does It All

The following is our main theorem, Theorem 7.1.16, a more precise restatement of Theo-

rem 1.2.1, which is the culmination of the lifting technology results of Chapters 5 and 6. It

states that there is a high-rate code that is simultaneously locally correctable and decodable,

locally list-decodable, and robustly testable.

Theorem 7.1.16. For every 𝛼, 𝛽 > 0 there exists 𝛿 > 0 such that the following holds: For

infinitely many 𝑛 ∈ N, there is 𝑞 = 𝑞(𝑛) = 𝑂(𝑛𝛽) and a linear code 𝒞 ⊆ F𝑛
𝑞 with distance

𝛿(𝒞) ≥ 𝛿, rate at least 1− 𝛼, that is locally correctable and decodable up to 𝛿
2
fraction errors

with 𝑂(𝑞) queries, locally list-decodable up to the Johnson bound with 𝑂(𝑞3) queries, and

Ω(𝛿72)-robustly testable with 𝑞2 queries.

Proof. Let 𝑚 = ⌈1/𝛽⌉ and let 𝑏 = ⌈log2𝑚⌉+1. Let 𝑐 = 𝑏2𝑚𝑏 · ⌈ln(1/𝛼)⌉+ 𝑏, and set 𝛿 , 2−𝑐.

For 𝑠 ≥ 𝑐, set 𝑞 = 2𝑠 and 𝑛 , 𝑞𝑚. Set 𝑑 , (1− 𝛿)𝑞 − 1. Let 𝒞 , RS(𝑞, 𝑑)1↗𝑚.

By Proposition 7.1.1, 𝛿(𝒞) ≥ 𝛿. By Theorem 7.1.11, the rate is at least 1 − 𝛼. By

Proposition 7.1.3, 𝒞 is locally correctable and decodable up to 𝛿
2
fraction errors with 𝑞

queries. By Theorem 7.1.14, 𝒞 is locally list-decodable up to the Johnson bound with 𝑞3

queries. By Proposition 7.1.4, 𝒞 is Ω(𝛿72)-robustly testable with 𝑞2 queries.

7.2 Robust Low-Degree Testing

In this section, we prove Theorem 7.2.2, which is simply a more precise restatement of The-

orem 1.2.3. We do so by proving Theorem 7.2.1, a generalization from which Theorem 7.2.2

follows immediately. Theorem 7.2.1 replaces the Reed-Solomon code with an arbitrary uni-

variate linear affine-invariant code 𝒞0 and replaces the bivariate Reed-Muller code with an

arbitrary 𝑡-variate linear affine-invariant code 𝒞1 which is a strict subcode of (𝒞0)1↗𝑡.

102

Theorem 7.2.1. Let 𝑡 > 1 and let 𝑚 ≥ 3. Let 𝒞0 ⊆ {F𝑞 → F𝑞} and 𝒞1 ⊆ {F𝑡
𝑞 → F𝑞} be

linear affine-invariant codes such that 𝒞1 ((𝒞0)1↗𝑡. Let 𝛿 , 𝛿(𝒞0). Fix 𝑟 : F𝑚
𝑞 → F𝑞. Let 𝜌 ,

E𝑢 [𝛿 (𝑟|𝑢, 𝒞1)], where the expectation is taken over random 𝑡-dimensional 𝑢 ⊆ F𝑚
𝑞 . Let 𝛼2 be

the 𝑡-dimensional robustness of (𝒞0)1↗𝑚. Then 𝜌 ≥ min
{︁

𝛼2𝛿2

4
,
(︀
𝛿
2
− 2𝑞−1

)︀
· 𝛿
2

}︁
·𝛿(𝑟, (𝒞1)𝑡↗𝑚).

Theorem 7.2.2 (Robust plane testing for Reed-Muller). Let 𝑚 ≥ 3. Fix a positive

constant 𝛿 > 0 and a degree 𝑑 = (1− 𝛿) · 𝑞. Let RM(𝑚) be the 𝑚-variate Reed-Muller codes

of degree 𝑑 over F𝑞. Then RM(𝑚) is
(︁

𝛿74

8·1052 , 2
)︁
-robust.

Proof. Let RS be the Reed-Solomon code over F𝑞 of degree 𝑑. Let 𝑝 be the characteristic of

𝑞. Let 𝛼1 be the 2-dimensional robustness of RS1↗𝑚. Then 𝛼2 ≥ 𝛿72

2·1052 by Theorem 6.1.4 if

𝑚 = 3, and by Theorem 6.1.18 if 𝑚 ≥ 4.

If 𝑑 < 𝑞− 𝑞/𝑝, then RM(𝑚) = RS1↗𝑚 by Theorem 7.1.6, and so in this case the theorem

follows immediately from Theorem 6.1.18. If 𝑑 ≥ 𝑞 − 𝑞/𝑝 and 𝑞 ≥ 8
𝛿
, then RM(2) (RS1↗2

(by Theorem 7.1.6) but RM(𝑚) = RM(2)2↗𝑚 (by Theorem 7.1.8), and so in this case the

theorem follows immediately from Theorem 7.2.1, with 𝒞0 = RS, 𝑡 = 2, and 𝒞1 = RM(2). If

𝑞 < 8
𝛿
then the theorem follows from Corollary 6.1.2.

Overview of Proof of Theorem 7.2.1. We illustrate the idea for the case where 𝑡 = 2,

𝒞0 is the Reed-Solomon code, and 𝒞1 is the bivariate Reed-Muller code of the same degree.

The generalization to arbitrary 𝑡 and codes 𝒞0, 𝒞1 is straightforward. If 𝑟 is far from the

lifted code, then on random planes 𝑟 will be far from the bivariate lifted code and hence also

from the bivariate Reed-Muller code. So the remaining case is when 𝑟 is close to the lifted

code. If the nearest function is a Reed-Muller codeword, then the theorem follows from the

robustness of the lifted code. Otherwise, if the nearest function 𝑐 is not Reed-Muller, then

we show (through Corollary 6.2.8) that on many planes 𝑐 is not a bivariate Reed-Muller

codeword, and so 𝑟 (being close to 𝑐) is not close to a bivariate Reed-Muller codeword (by

the distance of the code).

Proof of Theorem 7.2.1. Observe that, since (𝒞1)𝑡↗𝑚 ⊂ (𝒞0)1↗𝑚, we have 𝛿(𝑟, (𝒞0)1↗𝑚) ≤

103

𝛿(𝑟, (𝒞1)𝑡↗𝑚). If 𝛿(𝑟, (𝒞0)1↗𝑚) ≥ min
{︁

𝛿2

4
, 𝛿(𝑟, (𝒞1)𝑡↗𝑚)

}︁
, then we are done since

𝜌 = E𝑢 [𝛿 (𝑟|𝑢, 𝒞1)]

≥ E𝑢

[︁
𝛿
(︁
𝑟|𝑢, (𝒞0)1↗𝑡

)︁]︁
≥ 𝛼2 · 𝛿(𝑟, (𝒞0)1↗𝑚)

≥ 𝛼2 ·min

{︂
𝛿2

4
, 𝛿(𝑟, (𝒞1)𝑡↗𝑚)

}︂
≥ 𝛼2𝛿

2

4
· 𝛿(𝑟, (𝒞1)𝑡↗𝑚).

Therefore, suppose 𝛿(𝑟, (𝒞0)1↗𝑚) < min
{︁

𝛿2

4
, 𝛿(𝑟, (𝒞1)𝑡↗𝑚)

}︁
. Let 𝑓 ∈ (𝒞0)1↗𝑚 be the nearest

codeword to 𝑟, so that 𝑓 /∈ (𝒞1)𝑡↗𝑚 and 𝛿(𝑟, 𝑓) < 𝛿2

4
. If 𝑢 is a 𝑡-dimensional subspace for

which 𝑓 |𝑢 /∈ 𝒞1, then, since 𝒞1 is a subcode of (𝒞0)1↗𝑡, 𝛿(𝑟|𝑢, 𝒞1) ≥ 𝛿 − 𝛿(𝑟|𝑢, 𝑓 |𝑢). Since

E𝑢 [𝛿 (𝑟|𝑢, 𝑓 |𝑢)] = 𝛿(𝑟, 𝑓) <
𝛿2

4
,

by Markov,

Pr
𝑢

[︂
𝛿(𝑟|𝑢, 𝑓 |𝑢) ≥

𝛿

2

]︂
≤ 𝛿

2

By Corollary 6.2.8,

Pr
𝑢
[𝑓 |𝑢 ∈ 𝒞1] ≤ 1− 𝛿 + 2𝑞−1.

By the union bound, it follows that for at least 𝛿
2
−2𝑞−1 fraction of the 𝑡-dimensional 𝑢 ⊆ F𝑚

𝑞 ,

it holds that

𝛿(𝑟|𝑢, 𝒞1) ≥ 𝛿 − 𝛿(𝑟|𝑢, 𝑓 |𝑢) ≥
𝛿

2
.

Therefore,

𝜌 = E𝑢 [𝛿 (𝑟|𝑢, 𝒞1)] ≥
(︂
𝛿

2
− 2𝑞−1

)︂
· 𝛿
2
.

104

7.3 Nikodym Sets

In this section, we use the lifted Reed-Solomon code to improve upon the polynomial method

to show that Nikodym sets are large.

Definition 7.3.1. A subset 𝑆 ⊆ F𝑚
𝑞 is a Nikodym set if for every x ∈ F𝑚

𝑞 there exists a

nonzero a ∈ F𝑚
𝑞 such that x+ 𝑡a ∈ 𝑆 for every nonzero 𝑡 ∈ F𝑞.

Before we prove our lower bound, let us recall how the polynomial method yields a good

lower bound in the first place. Let 𝑆 be a Nikodym set. Let 𝑅 be the rate of the code

RM(𝑞, 𝑞− 2,𝑚), which is approximately 𝑅 ≈ 1
𝑚!
. Now, assume for the sake of contradiction

that |𝑆| < 𝑅𝑞𝑚. Then there exists a nonzero 𝑓 with deg(𝑓) ≤ 𝑞 − 2 that vanishes on every

point of 𝑆. This is because the coefficients of 𝑓 provide 𝑅𝑞𝑚 degrees of freedom, but we only

have |𝑆| linear constraints. Now, we claim that 𝑓 actually vanishes everywhere, contradicting

the fact that it is nonzero. To see this, let x ∈ F𝑚
𝑞 be an arbitrary point. By the Nikodym

property of 𝑆, there is a line 𝐿 through 𝑆 such that (𝐿 ∖ {x}) ⊆ 𝑆. Consider the univariate

polynomial 𝑓 |𝐿. It vanishes on 𝑞 − 1 points 𝐿 ∖ {x} but has degree deg(𝑓 |𝐿) < 𝑞 − 1, so 𝑓 |𝐿
is identically zero. But then 𝑓(x) = 𝑓 |𝐿(x) = 0. Therefore |𝑆| ≥ 𝑅𝑞𝑚 ≈ 𝑞𝑚

𝑚!
.

Observe that, in the above argument, the only property we actually used was the fact

that, on every line 𝐿, the restriction 𝑓 |𝐿 has degree deg(𝑓 |𝐿) < 𝑞 − 1. So pulling 𝑓 from

the Reed-Muller code was needlessly restrictive. We could use a larger code if possible, and

in fact the largest code satisfying this property is none other than the lifted Reed-Solomon

code!

Theorem 7.3.2. Let 𝑝 be a prime and let 𝑞 = 𝑝𝑠. If 𝑆 ⊆ F𝑚
𝑞 is a Nikodym set, then

|𝑆| ≥
(︁
1− 𝑒−(𝑠+𝑏)/(𝑏𝑝𝑚𝑏)

)︁
· 𝑞𝑚 where 𝑏 =

⌈︀
log𝑝𝑚

⌉︀
+1. In particular, if 𝑝 is fixed and 𝑞 →∞,

then |𝑆| ≥ (1− 𝑜(1)) · 𝑞𝑚.

Proof. Let 𝑅 = 1−𝑒−(𝑠+𝑏)/(𝑏𝑝𝑚𝑏). Suppose, for the sake of contradiction, that |𝑆| < 𝑅𝑞𝑚. Let

𝒞 = RS(𝑞, 𝑞 − 2)1↗𝑚. This is the construction of Section 7.1 with 𝑐 = 𝑠. By Theorem 7.1.11,

dimF𝑞(𝒞) ≥ 𝑅𝑞𝑚 > |𝑆|, so there exists a nonzero 𝑐 ∈ 𝒞 such that 𝑐(x) = 0 for every x ∈ 𝑆.

This follows from the fact that each equation of the form 𝑐(x) = 0 is a linear constraint on

105

𝑐, and there are |𝑆| linear constraints on 𝑐 which has dimF𝑞(𝒞) > |𝑆| degrees of freedom. We

proceed to show that 𝑐 = 0, a contradiction. Let x ∈ F𝑚
𝑞 . Since 𝑆 is a Nikodym set, there is

a nonzero a ∈ F𝑚
𝑞 such that x + 𝑡a ∈ 𝑆 for every nonzero 𝑡 ∈ F𝑞. Define 𝑐a(𝑡) , 𝑐(x + 𝑡a).

Since 𝑐 ∈ 𝒞, we have deg(𝑐a) ≤ 𝑞 − 2. However, 𝑐a(𝑡) = 0 for every 𝑡 ̸= 0, so 𝑐a vanishes on

𝑞 − 1 > deg(𝑐a) points, so 𝑐a = 0. In particular, 𝑐(x) = 𝑐a(0) = 0.

106

Appendix A

Algebra Background

This appendix contains well-known facts about arithmetic over finite fields and tensor codes

that are used in the thesis.

A.1 Arithmetic over finite fields

Much of our work involves manipulating polynomials over finite fields. Expanding multino-

mials over a finite field, which has positive characteristic, is different from expanding over a

field of zero characteristic, because binomial coefficients may vanish due to the characteristic

of the field. For example, over a field of characteristic 2, the binomial (𝑋 + 𝑌)2 expands to

𝑋2 + 2𝑋𝑌 + 𝑌 2 = 𝑋2 + 𝑌 2.

The key fact we will use is (a generalization of) Lucas’ Theorem, which tells us what a

multinomial coefficient looks like modulo a prime 𝑝.

Theorem A.1.1 (Generalized Lucas’ Theorem). Let 𝑎0, 𝑎1, . . . , 𝑎𝑚 ∈ N and let 𝑝 be a prime.

Write 𝑎𝑗 =
∑︀𝑛

𝑖=1 𝑎
(𝑖) · 𝑝𝑖 where 𝑎(𝑖)𝑗 , 𝑏

(𝑖)
𝑗 ∈ J𝑝K for every 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑗 ≤ 𝑚. Then

(︂
𝑎0

𝑎1, . . . , 𝑎𝑚

)︂
≡

𝑛∏︁
𝑖=0

(︂
𝑎
(𝑖)
0

𝑎
(𝑖)
1 , . . . , 𝑎

(𝑖)
𝑚

)︂
(mod 𝑝).

Proof. Let 𝑆 = {1, . . . , 𝑎0}. Partition 𝑆 into 𝑆𝑖,𝑗 ⊂ 𝑆, for each 𝑖 ∈ J𝑛 + 1K and 𝑗 ∈
[︁
𝑎
(𝑖)
0

]︁
,

107

of size |𝑆𝑖,𝑗| = 𝑝𝑖. For each 𝑖 ∈ J𝑛 + 1K and 𝑗 ∈
[︁
𝑎
(𝑖)
0

]︁
, let 𝐺𝑖,𝑗 = Z𝑎

(𝑖)
0

𝑝𝑖
act on 𝑆𝑖,𝑗 be cyclic

permutation. Let 𝐺 =
⨁︀𝑛

𝑖=0

⨁︀𝑎
(𝑖)
0

𝑗=1𝐺𝑖,𝑗, which acts on 𝑆. Let 𝐶 be the collection of all

𝑚-colorings 𝑐 : 𝑆 → [𝑚] such that |𝑐−1(𝑘)| = 𝑎𝑘. Observe that |𝐶| =
(︀

𝑎0
𝑎1,...,𝑎𝑚

)︀
, and the

action of 𝐺 on 𝑆 naturally induces an action of 𝐺 on 𝐶, as follows: if 𝑐 ∈ 𝐶, and 𝑔 ∈ 𝐺,

then for 𝑥 ∈ 𝑆, (𝑔𝑐)(𝑥) = 𝑐(𝑔−1𝑥). Since |𝐺| is a power of 𝑝, so is the size of any orbit of 𝐶

under 𝐺. So, to compute
(︀

𝑎0
𝑎1,...,𝑎𝑚

)︀
(mod 𝑝), it suffices to count the number of fixed points

of 𝐶 under 𝐺. Since 𝐺 fixes each 𝑆𝑖,𝑗, it is easy to see that a coloring is fixed under 𝐺 if

and only if each 𝑆𝑖,𝑗 is monochromatic. It therefore suffices to show that for each 𝑖 ∈ J𝑛+1K

and each 𝑘 ∈ [𝑚], there are exactly 𝑎
(𝑖)
𝑘 values for 𝑗 such that 𝑆𝑖,𝑗 has color 𝑘. Fix 𝑘 ∈ [𝑚].

Observe that there are 𝑎𝑘 =
∑︀𝑛

𝑖=1 𝑎
(𝑖)
𝑘 elements of color 𝑘 in total, and each set 𝑆𝑖,𝑗 of color

𝑘 contributes 𝑝𝑖 elements. The claim then follows easily by induction on 𝑛− 𝑖.

In particular, it characterizes which multinomial coefficients are nonzero modulo 𝑝.

Corollary A.1.2. If 𝑑, 𝑒1, . . . , 𝑒𝑛 ∈ N, then
(︀

𝑑
𝑒1,...,𝑒𝑛

)︀
̸≡ 0 (mod 𝑝) only if (𝑒1, . . . , 𝑒𝑛) ≤𝑝 𝑑.

This allows us to expand multinomials over a finite field and know which terms of the

usual expansion disappear.

Corollary A.1.3. Let 𝑝 be a prime and let F be a field of characteristic 𝑝. Let 𝑑 ∈ N and

let 𝑥1, . . . , 𝑥𝑛 ∈ F. Then

(︃
𝑛∑︁

𝑖=1

𝑥𝑖

)︃𝑑

=
∑︁

(𝑒1,...,𝑒𝑛)≤𝑝𝑑

(︂
𝑑

𝑒1, . . . , 𝑒𝑛

)︂ 𝑛∏︁
𝑖=1

𝑥𝑒𝑖𝑖

Expanding multinomials over finite fields is particularly important for us since we fre-

quently look at the restricting polynomials to affine subspaces, which entails composing with

an affine function.

Proposition A.1.4. Let 𝑝 be a prime and let F be a field of characteristic 𝑝. Let X =

(𝑋1, . . . , 𝑋𝑚) and let Y ∈ (𝑌1, . . . , 𝑌𝑡). Let 𝑓(X) ∈ F[X], and let A ∈ F𝑚×𝑡 and b ∈ F𝑚
𝑞 . If

108

𝑓(X) =
∑︀

d∈𝐷 𝑓d ·Xd, then

𝑓(AY + b) =
∑︁

d∈supp(𝑓)

𝑓d ·
∑︁
E≤𝑝d

(︂
d

E

)︂ 𝑚∏︁
𝑖=1

(︃
𝑏𝑒𝑖0𝑖

𝑡∏︁
𝑗=1

𝑎
𝑒𝑖𝑗
𝑖𝑗

)︃
·

𝑡∏︁
𝑗=1

𝑌
‖E*𝑗‖
𝑗

where E in the summation is a 𝑚 × (𝑡 + 1) matrix with rows indexed by [𝑚] and columns

indexed by J𝑡+ 1K.

Proof.

𝑓(AY + b) =
∑︁
d∈𝐷

𝑓d · (AY + b)d

=
∑︁
d∈𝐷

𝑓d ·
𝑚∏︁
𝑖=1

(︃
𝑡∑︁

𝑗=1

𝑎𝑖𝑗𝑌𝑗 + 𝑏𝑖

)︃𝑑𝑖

(Corollary A.1.3) =
∑︁
d∈𝐷

𝑓d ·
𝑚∏︁
𝑖=1

∑︁
(𝑒𝑖0,𝑒𝑖1,...,𝑒𝑖𝑡)≤𝑝𝑑𝑖

(︂
𝑑𝑖

𝑒𝑖0, 𝑒𝑖1, . . . , 𝑒𝑖𝑡

)︂
𝑏𝑒𝑖0𝑖

𝑡∏︁
𝑗=1

𝑎
𝑒𝑖𝑗
𝑖𝑗 𝑌

𝑒𝑖𝑗
𝑗

=
∑︁
d∈𝐷

𝑓d ·
∑︁
E≤𝑝d

(︂
d

E

)︂ 𝑚∏︁
𝑖=1

(︃
𝑏𝑒𝑖0𝑖

𝑡∏︁
𝑗=1

𝑎
𝑒𝑖𝑗
𝑖𝑗

)︃
·

𝑡∏︁
𝑗=1

𝑌
‖E*𝑗‖
𝑗

A.2 Tensor codes

The tensor product is a natural operation in linear algebra that, when applied to two linear

codes, produces a new linear code in a natural way. There are many equivalent ways to define

the tensor product of two codes. Since in this thesis we think of codes as linear subspaces

of functions in {F𝑚
𝑞 → F𝑞}, we define the tensor product in this context.

Definition A.2.1. Let 𝑛 ≥ 2, let 𝑡1, . . . , 𝑡𝑛 ≥ 1 and 𝑚 =
∑︀𝑛

𝑖=1 𝑡𝑖, and for each 𝑖 ∈ [𝑛],

let the code 𝒞𝑖 ⊆ {F𝑡𝑖
𝑞 → F𝑞} be linear and let 𝑉𝑖,a ⊆ F𝑚

𝑞 be the 𝑡𝑖 dimensional subspace

consisting of all points where the 𝑖-th block (of 𝑡𝑖 coordinates) is free and all the [𝑛] ∖ {𝑖}

blocks are fixed to a ∈
∏︀

𝑗 ̸=𝑖 F
𝑡𝑗
𝑞 . The tensor product code 𝒞1 ⊗ · · · ⊗ 𝒞𝑛 ⊆ {F𝑚

𝑞 → F𝑞} is the

109

code

𝒞1 ⊗ · · · ⊗ 𝒞𝑛 ,

{︃
𝑓 : F𝑚

𝑞 → F𝑞

⃒⃒⃒⃒
⃒ 𝑓 |𝑉𝑖,a

∈ 𝒞𝑖 for every 𝑖 ∈ [𝑛] and a ∈
∏︁
𝑗 ̸=𝑖

F𝑡𝑗
𝑞

}︃

Define 𝒞⊗𝑛 ,

𝑛⏞ ⏟
𝒞 ⊗ · · · ⊗ 𝒞.

The following characterization of tensor product codes will be helpful.

Proposition A.2.2. Let 𝑛 ≥ 2, let 𝑡1, . . . , 𝑡𝑛 ≥ 1 and 𝑚 =
∑︀𝑛

𝑖=1 𝑡𝑖, and for each 𝑖 ∈ [𝑛], let

the code 𝒞𝑖 ⊆ {F𝑡𝑖
𝑞 → F𝑞} be linear, and let X𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑡𝑖) be variables. Then

𝒞1 ⊗ · · · ⊗ 𝒞𝑛 = spanF𝑞

{︃
𝑛∏︁

𝑖=1

𝑓𝑖(X𝑖)

⃒⃒⃒⃒
⃒ 𝑓𝑖 ∈ 𝒞𝑖

}︃

Corollary A.2.3. If 𝒞 ⊆ {F𝑡
𝑞 → F𝑞} has a degree set Deg(𝒞), and 𝑛 ≥ 1, then 𝒞⊗𝑛 has

degree set Deg(𝒞⊗𝑛) = Deg(𝒞)𝑛. In particular, if 𝒞 is linear affine-invariant, and F𝑞 has

characteristic 𝑝, then 𝒞⊗𝑛 has a 𝑝-shadow-closed degree set.

Proposition A.2.4. Let 𝒞1 and 𝒞2 be codes with distance 𝛿1 and 𝛿2 repectively. Then 𝛿(𝒞1⊗

𝒞2) is at least 𝛿1𝛿2. In particular, 𝛿 (𝒞⊗𝑛) ≥ 𝛿(𝒞)𝑛.

The following is a statement about the erasure decoding properties of tensor product

codes.

Proposition A.2.5. Let 𝒞 = 𝒞1 ⊗ . . . 𝒞𝑛 ∈
{︀
F𝑚
𝑞 → F𝑞

}︀
and 𝑆 ⊆ F𝑚

𝑞 be a subset such that

for every 𝑖 ∈ [𝑛] and a ∈
∏︀

𝑗 ̸=𝑖 F
𝑡𝑗
𝑞 satisfy |𝑆 ∩ 𝑉𝑖,a| ≥ (1− 𝛿(𝒞𝑖))𝑞𝑡𝑖. Let 𝑟 : 𝑆 → F𝑞 be such

that for every 𝑖 ∈ [𝑛] and a ∈
∏︀

𝑗 ̸=𝑖 F
𝑡𝑗
𝑞 satisfy that 𝑟|𝑆∩𝑉𝑖,a

can be extended into a codeword

of 𝒞𝑖 on 𝑉𝑖,a. Then there exists a unique 𝑟′ ∈ 𝒞 such that 𝑟′|𝑆 = 𝑟.

110

Appendix B

Finite field geometry

This appendix describes some basic structural facts about affine maps, as well as basic

geometry of affine subspaces over finite fields.

B.1 Affine maps

The following proposition allows us to decompose an arbitrary affine map (not necessarily

injective) into a composition of a linear map and an injective affine map.

Proposition B.1.1. Let 𝑡 ≤ 𝑚. For every affine map 𝐴 : F𝑡
𝑞 → F𝑚

𝑞 , there exists a linear

map 𝐴′ : F𝑡
𝑞 → F𝑡

𝑞 and injective affine map 𝐴′′ : F𝑡
𝑞 → F𝑚

𝑞 such that 𝐴 = 𝐴′′ ∘ 𝐴′.

Proof. If 𝐴 : x ↦→ 𝐴𝐿(x)+b for some linear 𝐴𝐿 : F𝑡
𝑞 → F𝑚

𝑞 and b ∈ F𝑚
𝑞 , and if 𝐴𝐿 = 𝐴′′𝐿 ∘𝐴′

for some injective affine 𝐴′′𝐿 : F𝑡
𝑞 → F𝑚

𝑞 and linear 𝐴′ : F𝑡
𝑞 → F𝑡

𝑞, then 𝐴 = 𝐴′′ ∘ 𝐴′ where

𝐴′′ : x ↦→ 𝐴′′𝐿(x) + b. Therefore, we reduce to the case where 𝐴 is linear, i.e. 𝐴(0) = 0.

Fix a basis e1, . . . , e𝑡 ∈ F𝑡
𝑞. For 𝑗 ∈ [𝑡], let v𝑗 , 𝐴(e𝑖). After re-labeling, we may

assume without loss of generality that, for some 0 ≤ 𝑟 ≤ 𝑡, the vectors v1, . . . ,v𝑟 are linearly

independent and v𝑟+1, . . . ,v𝑡 ∈ span{v1, . . . ,v𝑟}. There exist (unique) 𝑎𝑖𝑗 ∈ F𝑞, for 𝑖 ∈ [𝑟]

and 𝑟 + 1 ≤ 𝑗 ≤ 𝑡, such that v𝑗 =
∑︀𝑟

𝑖=1 𝑎𝑖𝑗v𝑗. Define 𝐴
′ : F𝑡

𝑞 → F𝑡
𝑞 as the unique linear map

such that 𝐴′(e𝑖) = e𝑖 for 𝑖 ∈ [𝑟] and 𝐴′(e𝑗) =
∑︀𝑟

𝑖=1 𝑎𝑖𝑗e𝑖 for 𝑟 + 1 ≤ 𝑗 ≤ 𝑡. For 𝑖 ∈ [𝑟], set

111

w𝑖 , v𝑖, and extend w1, . . . ,w𝑟 to a set of linearly independent vectors w1, . . . ,w𝑡 ∈ F𝑚
𝑞 .

Define 𝐴′′ : F𝑡
𝑞 → F𝑚

𝑞 to be the unique linear map such that 𝐴′′(e𝑗) = w𝑗.

By construction, 𝐴′′ is injective since its image is span{w1, . . . ,w𝑡}. Moreover, for every

𝑖 ∈ [𝑟],

(𝐴′′ ∘ 𝐴′)(e𝑖) = 𝐴′′(𝐴′(e𝑖)) = 𝐴′′(e𝑖) = w𝑖 = v𝑖 = 𝐴(e𝑖)

and for every 𝑟 + 1 ≤ 𝑗 ≤ 𝑡,

(𝐴′′ ∘ 𝐴′)(e𝑗) = 𝐴′′(𝐴′(e𝑗)) = 𝐴′′

(︃
𝑟∑︁

𝑖=1

𝑎𝑖𝑗e𝑖

)︃
=

𝑟∑︁
𝑖=1

𝑎𝑖𝑗𝐴
′′(e𝑖) =

𝑟∑︁
𝑖=1

𝑎𝑖𝑗v𝑖 = v𝑗 = 𝐴(e𝑗),

so, by linearity, 𝐴′′ ∘ 𝐴′ = 𝐴.

The next three propositions describe the behavior of random affine maps. We are par-

ticularly interested in how 𝛿(𝑓 ∘ 𝐴, 𝑔 ∘ 𝐴) behaves, where 𝑓, 𝑔 are distinct functions and 𝐴

is a random subspace. Proposition B.1.3 covers the case where 𝐴(0) is fixed, while Proposi-

tion B.1.4 allows 𝐴 to be truly free.

Proposition B.1.2. Let 𝑡 ≤ 𝑚, let x ∈ F𝑚
𝑞 , and let 𝐴 : F𝑡

𝑞 → F𝑚
𝑞 be a random affine map

such that 𝐴(0) = x. For any fixed nonzero y ∈ F𝑡
𝑞, 𝐴(y) is a uniformly random point in F𝑚

𝑞 .

Proof. We can choose 𝐴 by choosing 𝑎𝑖𝑗 ∈ F𝑞 for 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑡] independently and uniformly

at random, and setting

𝐴(y) = x+

⎡⎢⎢⎢⎣
𝑎11 · · · 𝑎1𝑡
...

. . .
...

𝑎𝑚1 · · · 𝑎𝑚𝑡

⎤⎥⎥⎥⎦y

The 𝑖-th coordinate of 𝐴(y) is therefore 𝑥𝑖 +
∑︀𝑡

𝑗=1 𝑎𝑖𝑗𝑦𝑗 which is uniformly random in F𝑞,

and the coordinates of 𝐴(y) are independent since the 𝑎𝑖𝑗 are independent.

Proposition B.1.3. Let 𝑡 ≤ 𝑚, let x ∈ F𝑚
𝑞 , and let 𝐴 : F𝑡

𝑞 → F𝑚
𝑞 be a random affine map

such that 𝐴(0) = x. If 𝑓, 𝑔 : F𝑚
𝑞 → F𝑞, then E𝐴 [𝛿(𝑓 ∘ 𝐴, 𝑔 ∘ 𝐴)] ≤ 𝛿(𝑓, 𝑔) + 𝑞−𝑡.

112

Proof. We have

E𝐴 [𝛿(𝑓 ∘ 𝐴, 𝑔 ∘ 𝐴)] = E𝐴

[︁
Ey∈F𝑡

𝑞

[︀
1𝑓(𝐴(y)) ̸=𝑔(𝐴(y))

]︀]︁
(B.1)

= Ey∈F𝑡
𝑞

[︀
E𝐴

[︀
1𝑓(𝐴(y))̸=𝑔(𝐴(y))

]︀]︀
(B.2)

≤ 𝑞−𝑡 + Ey∈F𝑡
𝑞∖{0}

[︀
E𝐴

[︀
1𝑓(𝐴(y))̸=𝑔(𝐴(y))

]︀]︀
(B.3)

(Proposition B.1.2) = 𝑞−𝑡 + 𝛿(𝑓, 𝑔). (B.4)

Proposition B.1.4. Let 𝑡 ≤ 𝑚, and let 𝐴 : F𝑡
𝑞 → F𝑚

𝑞 be a uniformly random affine map. If

𝑓, 𝑔 : F𝑚
𝑞 → F𝑞 and 𝛿 , 𝛿(𝑓, 𝑔), then 𝛿(𝑓 ∘ 𝐴, 𝑔 ∘ 𝐴) has mean 𝛿 and variance 𝛿(1− 𝛿)𝑞−𝑡 ≤

𝑞−𝑡/4.

Proof. Observe that for any fixed y ∈ F𝑚
𝑞 , if 𝐴 : F𝑡

𝑞 → F𝑚
𝑞 is uniformly random, then

𝐴(y) is a uniformly random point in F𝑚
𝑞 , and for distinct y, the 𝐴(y) are pairwise indepen-

dent. Therefore, 1𝑓(𝐴(y))̸=𝑔(𝐴(y)) has mean 𝛿 and variance 𝛿(1 − 𝛿). Since 𝛿(𝑓 ∘ 𝐴, 𝑔 ∘ 𝐴) =

𝑞−𝑡
∑︀

y∈F𝑡
𝑞
1𝑓(𝐴(y))̸=𝑔(𝐴(y)), it follows that the mean is 𝛿 and variance is 𝛿(1−𝛿)𝑞−𝑡 ≤ 𝑞−𝑡/4.

Finally, we prove that if 𝑓, 𝑔 are distinct polynomials on a plane, then they cannot agree

on too many lines.

Proposition B.1.5. Let 𝑓, 𝑔 : F2
𝑞 → F𝑞 be distinct. For any a,b ∈ F2

𝑞, define 𝑓a,b, 𝑔a,b :

F𝑞 → F𝑞 by 𝑓a,b(𝑇) , 𝑓(a𝑇 +b) and similarly 𝑔a,b(𝑇) , 𝑔(a𝑇 +b). Then 𝑓a,b = 𝑔a,b for at

most 2𝑞3 pairs (a,b) ∈ F2
𝑞 × F2

𝑞.

Proof. Let ℎ = 𝑓 − 𝑔 and ℎa,b = 𝑓a,b − 𝑔a,b. We have four cases to consider.

1. 𝑎1, 𝑎2 ̸= 0: if ℎa,b = 0, then the polynomial ℎ(𝑋, 𝑌) is divisible by 𝑌 − 𝑎2
𝑎1
𝑋− 𝑎2𝑏1

𝑎1
− 𝑏2.

There are 𝑞(𝑞− 1) pairs (a,b) which correspond to this factor (𝑞− 1 choices for a and

then 𝑞 choices for b given a).

2. 𝑎1 ̸= 0, 𝑎2 = 0: if ℎa,b = 0, then the polynomial ℎ(𝑋, 𝑌) is divisible by 𝑌 − 𝑏2. There

are 𝑞2 pairs corresponding to this factor (𝑞 choices for 𝑎1 and 𝑞 choices for 𝑏1).

113

3. 𝑎1 = 0, 𝑎2 ̸= 0: same as previous case, by symmetry.

4. 𝑎1 = 𝑎2 = 0: there are at most 𝑞2 such pairs (𝑞2 choices for b).

Say a pair (a,b) is bad if ℎa,b = 0. Trivially, deg(ℎ) ≤ 2(𝑞− 1), so ℎ has at most 2(𝑞− 1)

linear factors. Each factor from cases 1, 2, and 3 corresponds to at most 𝑞2 pairs (a,b),

resulting in at most 2𝑞2(𝑞 − 1) bad pairs (a,b) from those cases, and there are at most 𝑞2

bad pairs from case 4. So, the total number of bad pairs is at most 2𝑞2(𝑞−1)+𝑞2 ≤ 2𝑞3.

B.2 Affine subspaces

The next two lemmas analyze the behavior of random affine subspaces in F𝑚
𝑞 . Lemma B.2.1

shows that a low-dimensional subspace is disjoint from almost all low-dimensional affine

subspaces.

Lemma B.2.1. Let 𝑡 ≤ 𝑘 < 𝑚. Let 𝑢 ⊆ F𝑚
𝑞 be a fixed affine subspace of dimension 𝑡, and

let 𝑣 ⊆ F𝑚
𝑞 be a uniformly random affine subspace of dimension 𝑘. Then Pr𝑣 [𝑢 ∩ 𝑣 ̸= ∅] <

𝑞−(𝑚−𝑘−𝑡).

Proof. By affine symmetry, we may assume that 𝑣 is fixed and 𝑢 is random. Furthermore,

we can assume that 𝑣 = (0, 𝐵), where 𝐵 is a basis and hence |𝐵| = 𝑘. We choose 𝑢 by

choosing random x ∈ F𝑚
𝑞 , random basis 𝐴 = {a1, . . . , a𝑡}, and setting 𝑢 , (x, 𝐴). Let 𝐸 be

the event that 𝑢 ∩ 𝑣 ̸= ∅.

Re-arrange a1, . . . , a𝑡 so that for some 0 ≤ 𝑠 ≤ 𝑡 − 1, a𝑖 ∈ span(𝐵) if and only if 𝑖 ≤ 𝑠.

Note that 𝐸 holds if and only if there exist 𝑐1, . . . , 𝑐𝑡 ∈ F𝑚
𝑞 such that x+ 𝑐1a1 + · · ·+ 𝑐𝑡a𝑡 ∈

span(𝐵). Let 𝑃 : F𝑚
𝑞 → F𝑚−𝑘

𝑞 be the linear map that projects onto the last𝑚−𝑘 coordinates.

Note that ker(𝑃) = 𝐵. For each 𝑖 ∈ [𝑡], let a′𝑖 , 𝑃a𝑖 ∈ F𝑚−𝑘
𝑞 . Then 𝐸 holds if and only if

𝑃x ∈ span(a′𝑠+1, . . . , a
′
𝑡). Therefore, there are at most 𝑞𝑡 choices for 𝑃x, hence at most 𝑞𝑘+𝑡

choices for x, out of 𝑞𝑚 total choices for x, so Pr[𝐸] ≤ 𝑞𝑘+𝑡

𝑞𝑚
= 𝑞−(𝑚−𝑘−𝑡).

Lemma B.2.2 shows that if 𝑘 ≪ 𝑚, then 𝑘 random vectors are likely to be linearly

independent, and in particular two random low-dimensional subspaces through a fixed point

114

x are likely to intersect only at x.

Lemma B.2.2. Let 𝑘 < 𝑚 and a1, . . . , a𝑘 ∈ F𝑚
𝑞 be uniformly chosen vectors. Then the

probability that {a𝑖}𝑘𝑖=1 are linearly independent is at least 1 − 𝑞−(𝑚−𝑘). In particular, the

probability that two 𝑡-dimensional subspaces through a point x ∈ F𝑚
𝑞 will intersect only on x

is at least 1− 𝑞−(𝑚−2𝑡).

Proof. The probability that a𝑖+1 /∈ span {a1, . . . , a𝑖} given that the latter are linearly inde-

pendent is 1− 𝑞−(𝑚−𝑖). Therefore the probability that all of them are independent is

𝑘−1∏︁
𝑖=0

(1− 𝑞−(𝑚−𝑖)) ≥ 1−
𝑘−1∑︁
𝑖=0

𝑞−(𝑚−𝑖) = 1− 𝑞−(𝑚−𝑘)
𝑘∑︁

𝑖=1

𝑞−𝑖 ≥ 1− 𝑞−(𝑚−𝑘) .

For the last part, observe that choosing two 𝑡-dimensional subspaces through x is equivalent

to choose 2𝑡 basis vectors, given that each 𝑡 are linearly independent. So the probability that

they intersect only on x, is the same as that those vectors are linearly independent. Hence,

by the first part, this probability is at least 1− 𝑞−(𝑚−2𝑡).

115

116

Bibliography

[AKK+05] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana
Ron. Testing Reed-Muller codes. IEEE Transactions on Information Theory,
51(11):4032–4039, 2005.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. Jour-
nal of the ACM, 45(3):501–555, May 1998.

[Aro94] Sanjeev Arora. Probabilistic checking of proofs and the hardness of approxima-
tion problems. PhD thesis, University of California at Berkeley, 1994.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new
characterization of NP. Journal of the ACM, 45(1):70–122, January 1998.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low degree testing and its applica-
tions. Combinatorica, 23(3):365–426, 2003. Preliminary version in Proceedings
of ACM STOC 1997.

[BET10] Avraham Ben-Aroya, Klim Efremenko, and Amnon Ta-Shma. Local list decod-
ing with a constant number of queries. In 51st IEEE Symposium on Foundations
of Computer Science (FOCS), 2010.

[BGK+13] Eli Ben-Sasson, Ariel Gabizon, Yohay Kaplan, Swastik Kopparty, and Shub-
hangi Saraf. A new family of locally correctable codes based on degree-lifted
algebraic geometry codes. In Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 833–842. ACM, 2013.

[BGM+11a] Eli Ben-Sasson, Elena Grigorescu, Ghid Maatouk, Amir Shpilka, and Madhu
Sudan. On sums of locally testable affine invariant properties. In APPROX-
RANDOM, pages 400–411, 2011.

[BGM+11b] Eli Ben-Sasson, Elena Grigorescu, Ghid Maatouk, Amir Shpilka, and Madhu
Sudan. On sums of locally testable affine invariant properties. Electronic Col-
loquium on Computational Complexity (ECCC), 18:79, 2011.

117

[BK09] K. Brander and S. Kopparty. List-decoding Reed-Muller over large fields upto
the Johnson radius. Manuscript, 2009.

[BKS+10] Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan,
and David Zuckerman. Optimal testing of Reed-Muller codes. In FOCS, pages
488–497. IEEE Computer Society, 2010.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. Journal of Computer and System Sciences,
47(3):549–595, 1993.

[BSGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil
Vadhan. Robust PCPs of proximity, shorter PCPs and applications to coding.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
pages 1–10, New York, 2004. ACM Press.

[BSMSS11] Eli Ben-Sasson, Ghid Maatouk, Amir Shpilka, and Madhu Sudan. Symmet-
ric LDPC codes are not necessarily locally testable. In IEEE Conference on
Computational Complexity, pages 55–65. IEEE Computer Society, 2011.

[BSS06] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products
of codes. Random Structures and Algorithms, 28(4):387–402, 2006.

[BSV09a] Eli Ben-Sasson and Michael Viderman. Composition of semi-LTCs by two-
wise tensor products. In Irit Dinur, Klaus Jansen, Joseph Naor, and José
D. P. Rolim, editors, APPROX-RANDOM, volume 5687 of Lecture Notes in
Computer Science, pages 378–391. Springer, 2009.

[BSV09b] Eli Ben-Sasson and Michael Viderman. Tensor products of weakly smooth codes
are robust. Theory of Computing, 5(1):239–255, 2009. Preliminary version in
Proc. APPROX-RANDOM 2008.

[DKSS09] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions
to the method of multiplicities, with applications to kakeya sets and mergers.
In FOCS, pages 181–190. IEEE Computer Society, 2009.

[DR04] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial
proof of the PCP-theorem. In Proceedings of the 45th Annual IEEE Symposium
on Foundations of Computer Science, pages 155–164, Loc Alamitos, CA, USA,
2004. IEEE Press.

[DS07] Zeev Dvir and Amir Shpilka. An improved analysis of linear mergers. Compu-
tational Complexity, 16(1):34–59, 2007.

[DSW06] Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of tensor
products of LDPC codes. In Josep Dı́az, Klaus Jansen, José D. P. Rolim,

118

and Uri Zwick, editors, APPROX-RANDOM, volume 4110 of Lecture Notes in
Computer Science, pages 304–315. Springer, 2006.

[Dvi08] Zeev Dvir. On the size of Kakeya sets in finite fields. Journal of the American
Mathematical Society, (to appear), 2008. Article electronically published on
June 23, 2008.

[DW11] Zeev Dvir and Avi Wigderson. Kakeya sets, new mergers, and old extractors.
SIAM J. Comput., 40(3):778–792, 2011.

[FS95] Katalin Friedl and Madhu Sudan. Some improvements to total degree
tests. In Proceedings of the 3rd Annual Israel Symposium on Theory of
Computing and Systems, pages 190–198, Washington, DC, USA, 4-6 Jan-
uary 1995. IEEE Computer Society. Corrected version available online at
http://people.csail.mit.edu/madhu/papers/friedl.ps.

[GGR09] Parikshit Gopalan, Venkatesan Guruswami, and Prasad Raghavendra. List
decoding tensor products and interleaved codes. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, pages 13–22, 2009.

[GHS15] Alan Guo, Elad Haramaty, and Madhu Sudan. Robust testing of lifted codes
with applications to low-degree testing. Electronic Colloquium on Computa-
tional Complexity (ECCC), 22:34, 2015.

[GK14] Alan Guo and Swastik Kopparty. List-decoding algorithms for lifted codes.
CoRR, abs/1412.0305, 2014.

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes
from lifting. In Robert D. Kleinberg, editor, Innovations in Theoretical Com-
puter Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 529–
540. ACM, 2013.

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for multivariate
polynomials. Information Processing Letters, 43(4):169–174, September 1992.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-
Solomon and algebraic-geometric codes. IEEE Transactions on Information
Theory, 45:1757–1767, 1999. Preliminary version appeared in Proc. of FOCS
1998.

[HRS13] Elad Haramaty, Noga Ron-Zewi, and Madhu Sudan. Absolutely sound testing
of lifted codes. In Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen,
and José D. P. Rolim, editors, Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques - 16th International Workshop,
APPROX 2013, and 17th International Workshop, RANDOM 2013, Berkeley,

119

CA, USA, August 21-23, 2013. Proceedings, volume 8096 of Lecture Notes in
Computer Science, pages 671–682. Springer, 2013.

[HSS11] Elad Haramaty, Amir Shpilka, and Madhu Sudan. Optimal testing of multi-
variate polynomials over small prime fields. In Rafail Ostrovsky, editor, IEEE
52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011, pages 629–637. IEEE, 2011.

[JPRZ09] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman.
Testing low-degree polynomials over prime fields. Random Struct. Algorithms,
35(2):163–193, 2009.

[Kop12] Swastik Kopparty. List-decoding multiplicity codes. Electronic Colloquium on
Computational Complexity (ECCC), 19:44, 2012.

[KR06] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM
Journal of Computing, 36(3):779–802, 2006.

[KS07] Tali Kaufman and Madhu Sudan. Algebraic property testing: The role of invari-
ance. Electronic Colloquium on Computational Complexity (ECCC), 14(111),
2007.

[KS08] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of in-
variance. In STOC, pages 403–412, 2008.

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes
with sublinear-time decoding. J. ACM, 61(5):28, 2014.

[MR06] Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-
linear size. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, Seattle, WA, USA, May 21-23, 2006, pages 21–30, 2006.

[PW04] Ruud Pellikaan and Xin-Wen Wu. List decoding of q-ary reed-muller codes.
IEEE Transactions on Information Theory, 50(4):679–682, 2004.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials
with applications to program testing. SIAM Journal on Computing, 25(2):252–
271, April 1996.

[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test,
and a sub-constant error-probability PCP characterization of NP. In Proceed-
ings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,
pages 475–484, New York, NY, 1997. ACM Press.

[SS08] Shubhangi Saraf and Madhu Sudan. Improved lower bound on the size of
Kakeya sets over finite fields. ArXiv e-prints, August 2008.

120

[STV99] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators
without the XOR lemma. Proceedings of the 31st Annual ACM Symposium on
Theory of Computing, pages 537–546, 1999.

[Val05] Paul Valiant. The tensor product of two codes is not necessarily robustly
testable. In Chandra Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Tre-
visan, editors, APPROX-RANDOM, volume 3624 of Lecture Notes in Computer
Science, pages 472–481. Springer, 2005.

[Vid12] Michael Viderman. A combination of testability and decodability by tensor
products. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques - 15th International Workshop, APPROX 2012, and
16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August
15-17, 2012. Proceedings, pages 651–662, 2012.

[WB86] Lloyd R. Welch and Elwyn R. Berlekamp. Error correction of algebraic block
codes. US Patent Number 4,633,470, December 1986.

121

	Introduction
	Background
	Error Correcting Codes
	PCPs and Local Algorithms
	Affine-Invariance

	This Thesis
	Main Result
	Lifting
	Robust Testing
	Applications
	Organization

	Preliminaries
	Notation
	Probability and Concentration bounds

	Error Correcting Codes
	Classical Parameters
	Local decoding, correcting, and list-decoding
	Local testing and robust testing
	Codes
	Reed-Solomon code
	Reed-Muller code

	Affine-invariance
	Affine-invariant Codes
	Equivalence of Invariance under Affine Transformations and Permutations

	Lifting Codes
	The Lift Operator
	Algebraic and Combinatorial Properties
	Algebraic Properties
	Distance of Lifted Codes

	Local Decoding and Correcting
	Local Correcting up to 1/4 Distance
	Local Correcting up to 1/2 Distance
	Local Decoding

	Local Testing and Robust Testing
	Local Testing
	Robust Testing

	Robust Testing of Lifted Codes
	Robustness of Lifted Codes
	Preliminaries
	Robustness for Small Dimension
	Robustness of Special Tensor Codes
	Robustness for Large Dimension

	Technical Algebraic Results
	Degree Lift
	Analysis of Subspace Restrictions

	Applications
	Lifted Reed-Solomon Code
	Relationship to Reed-Muller
	Rate
	Global List-Decoding
	Local List-Decoding
	Main Result: The Code That Does It All

	Robust Low-Degree Testing
	Nikodym Sets

	Algebra Background
	Arithmetic over finite fields
	Tensor codes

	Finite field geometry
	Affine maps
	Affine subspaces

