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Abstract

Highly optimized programs are prone to bit rot, where performance quickly becomes sub-
optimal in the face of new hardware and compiler techniques. In this paper we show how
to automatically lift performance-critical stencil kernels from a stripped x86 binary and
generate the corresponding code in the high-level domain-specific language Halide. Using
Halide’s state-of-the-art optimizations targeting current hardware, we show that new opti-
mized versions of these kernels can replace the originals to rejuvenate the application for
newer hardware.

The original optimized code for kernels in stripped binaries is nearly impossible to analyze
statically. Instead, we rely on dynamic traces to regenerate the kernels. We perform buffer
structure reconstruction to identify input, intermediate and output buffer shapes. We ab-
stract from a forest of concrete dependency trees which contain absolute memory addresses
to symbolic trees suitable for high-level code generation. This is done by canonicalizing
trees, clustering them based on structure, inferring higher-dimensional buffer accesses and
finally by solving a set of linear equations based on buffer accesses to lift them up to simple,
high-level expressions.

Helium can handle highly optimized, complex stencil kernels with input-dependent con-
ditionals. We lift seven kernels from Adobe Photoshop giving a 75% performance improve-
ment, four kernels from IrfanView, leading to 4.97× performance, and one stencil from the
miniGMG multigrid benchmark netting a 4.25× improvement in performance. We manually
rejuvenated Photoshop by replacing eleven of Photoshop’s filters with our lifted implemen-
tations, giving 1.12× speedup without affecting the user experience.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

While lowering a high-level algorithm into an optimized binary executable is well understood,

going in the reverse direction—lifting an optimized binary into the high-level algorithm it

implements—remains nearly impossible. This is not surprising: lowering eliminates infor-

mation about data types, control structures, and programmer intent. Inverting this process

is far more challenging because stripped binaries lack high-level information about the pro-

gram. Because of the lack of high-level information, lifting is only possible given constraints,

such as a specific domain or limited degree of abstraction to be reintroduced. Still, lifting

from a binary program can help reverse engineer a program, identify security vulnerabilities,

or translate from one binary format to another.

In this thesis, we lift algorithms from existing binaries for the sake of program rejuve-

nation. Highly optimized programs are especially prone to bit rot. While a program binary

often executes correctly years after its creation, its performance is likely suboptimal on newer

hardware due to changes in hardware and the advancement of compiler technology since its

creation. Re-optimizing production-quality kernels by hand is extremely labor-intensive,

requiring many engineer-months even for relatively simple parts of the code [22]. Our goal

is to take an existing legacy binary, lift the performance-critical components with sufficient

accuracy to a high-level representation, re-optimize them with modern tools, and replace

the bit-rotted component with the optimized version. To automatically achieve best perfor-

mance for the algorithm, we lift the program to an even higher level than the original source

code, into a high-level domain-specific language (DSL). At this level, we express the original

programmer intent instead of obscuring it with performance-related transformations, let-
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ting us apply domain knowledge to exploit modern architectural features without sacrificing

performance portability.

Though this is an ambitious goal, aspects of the problem make this attainable. Program

rejuvenation only requires transforming performance-critical parts of the program, which of-

ten apply relatively simple computations repeatedly to large amounts of data. Even though

this high-level algorithm may be simple, the generated code is complicated due to compiler

and programmer optimizations such as tiling, vectorization, loop specialization, and un-

rolling. In this thesis, we introduce dynamic, data-flow driven techniques to abstract away

optimization complexities and get to the underlying simplicity of the high-level intent.

We focus on stencil kernels, mainly in the domain of image-processing programs. Sten-

cils, prevalent in image processing kernels used in important applications such as Adobe

Photoshop, Microsoft PowerPoint and Google Picasa, use enormous amounts of compu-

tation and/or memory bandwidth. As these kernels mostly perform simple data-parallel

operations on large image data, they can leverage modern hardware capabilities such as

vectorization, parallelization, and graphics processing units (GPUs).

Furthermore, recent programming language and compiler breakthroughs have dramati-

cally improved the performance of stencil algorithms [23, 27, 26, 17]; for example, Halide has

demonstrated that writing an image processing kernel in a high level DSL and autotuning

it to a specific architecture can lead to 2–10× performance gains compared to hand-tuned

code by expert programmers. In addition, only a few image-processing kernels in Photoshop

and other applications are hand-optimized for the latest architectures; many are optimized

for older architectures, and some have little optimization for any architecture. Reformulat-

ing these kernels as Halide programs makes it possible to rejuvenate these applications to

continuously provide state-of-the-art performance by using the Halide compiler and auto-

tuner to optimize for current hardware and replacing the old code with the newly-generated

optimized implementation.

Helium is able to lift the underlying simple algorithm from highly optimized stencil

kernels to a set of tree representations before it generates Halide code. These simple repre-

sentations of complex, heavily optimized codes enable users as well as developers to easily

understand the computation and could possibly be used as a debugging aid.

Overall, we lift seven filters and portions of four more from Photoshop, four filters from

IrfanView, and the smooth stencil from the miniGMG [32] high-performance computing

16



benchmark into Halide code. We then autotune the Halide schedules and compare per-

formance against the original implementations, delivering an average speedup of 1.75 on

Photoshop, 4.97 on IrfanView, and 4.25 on miniGMG. The entire process of lifting and re-

generation is completely automated. We also manually replace Photoshop kernels with our

rejuvenated versions, obtaining a speedup of 1.12× even while constrained by optimization

decisions (such as tile size) made by the Photoshop developers.

In addition, lifting can provide opportunities for further optimization. For example,

power users of image processing applications create pipelines of kernels for batch processing

of images. Hand-optimizing kernel pipelines does not scale due to the combinatorial explo-

sion of possible pipelines. We demonstrate how our techniques apply to a pipeline kernels

by creating pipelines of lifted Photoshop and IrfanView kernels and generating optimized

code in Halide, obtaining 2.91× and 5.17× faster performance than the original unfused

pipelines.
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Chapter 2

Overview

In this chapter, we give the workflow, a high-level view of the challenges and how we address

them in Helium.

2.1 Workflow

Helium lifts stencils from stripped binaries to high-level code. While static analysis is the

only sound way to lift a computation, doing so on a stripped x86 binary is extremely difficult,

if not impossible. In x86 binaries, code and data are not necessarily separated, and deter-

mining separation in stripped binaries is known to be equivalent to the halting problem [16].

Statically, it is difficult to even find which kernels execute as they are located in different

dynamic linked libraries (DLLs) loaded at runtime. Therefore, we use a dynamic data flow

analysis built on top of DynamoRIO [8], a dynamic binary instrumentation framework.

Helium is fully automated, only prompting the user to perform any GUI interactions

required to run the program under analysis with and without the target stencil. In total,

the user runs the program five times for each stencil lifted. Figure 2-1 shows the workflow

Helium follows to implement the translation. Overall, the flow is divided into two stages:

code localization, described in Chapter 3, and expression extraction, covered in Chapter 4.

Details of DynamoRIO instrumentation are given in Chapter 5. Figure 2-2 shows the flow

through the system for a blur kernel.

Chapter 6 evaluates Helium’s performance, while Chapter 7 gives out the extracted trees

and Halide code for the Photoshop filters which Helium lift. Chapter 8 discusses the related

work.
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Figure 2-1: Helium workflow.

2.2 Challenges & Contributions

Isolating performance critical kernels We find that profiling information alone is un-

able to identify performance-critical kernels. For example, a highly vectorized kernel of an

element-wise operation, such as the invert image filter, may be invoked far fewer iterations

than the number of data items. On the other hand, we find that kernels touch all data in

input and intermediate buffers to produce a new buffer or the final output. Thus, by using a

data-driven approach (described in Section 3.1) and analyzing the extent of memory regions

touched by static instructions, we identify kernel code blocks more accurately than through

profiling.

Extracting optimized kernels While these stencil kernels may perform logically simple

computations, optimized kernel code found in binaries is far from simple. In many applica-

tions, programmers expend considerable effort in speeding up performance-critical kernels;

such optimizations often interfere with determining the program’s purpose. For example,

many kernels do not iterate over the image in a simple linear pattern but use smaller tiles

for better locality. In fact, Photoshop kernels use a common driver that provides the image

as a set of tiles to the kernel. However, we avoid control-flow complexities due to iteration
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push   ebp
mov    ebp, esp
sub    esp, 0x10
mov    eax, dword ptr [ebp+0x0c]
mov    ecx, dword ptr [ebp+0x18]
push   ebx
mov    ebx, dword ptr [ebp+0x14]
sub    dword ptr [ebp+0x1c], ebx
mov    dword ptr [ebp+0x0c], eax
mov    eax, dword ptr [ebp+0x08]
push   esi
mov    esi, eax
push   edi
lea    edi, [eax+ecx]
sub    esi, ecx
lea    edx, [ebx-0x02]
sub    ecx, ebx
sub    ebx, edx
inc    eax
dec    dword ptr [ebp+0x10]
mov    dword ptr [ebp-0x0c], edi
mov    dword ptr [ebp-0x10], edx
mov    dword ptr [ebp+0x18], ecx
mov    dword ptr [ebp+0x14], ebx
js     0x024d993f
push   ebp
mov    ebp, esp
sub    esp, 0x10
mov    eax, dword ptr [ebp+0x0c]
mov    ecx, dword ptr [ebp+0x18]
push   ebx
mov    ebx, dword ptr [ebp+0x14]
sub    dword ptr [ebp+0x1c], ebx
mov    dword ptr [ebp+0x0c], eax
mov    eax, dword ptr [ebp+0x08]
push   esi
mov    esi, eax
push   edi
lea    edi, [eax+ecx]
sub    esi, ecx
lea    edx, [ebx-0x02]
sub    ecx, ebx
sub    ebx, edx
inc    eax
dec    dword ptr [ebp+0x10]
mov    dword ptr [ebp-0x0c], edi
mov    dword ptr [ebp-0x10], edx
mov    dword ptr [ebp+0x18], ecx
mov    dword ptr [ebp+0x14], ebx
js     0x024d993f
jmp    0x024d9844
movzx  ecx, byte ptr [eax-0x02]
add    edx, eax
mov    dword ptr [ebp+0x08], ecx
movzx  ecx, byte ptr [eax-0x01]
mov    dword ptr [ebp-0x08], edx
cmp    eax, edx
jnb    0x024d98e7
lea    esp, [esp+0x00]
movzx  ebx, byte ptr [edi]
movzx  edx, byte ptr [eax]
add    ebx, edx
mov    dword ptr [ebp-0x04], edx
movzx  edx, byte ptr [esi]
lea    ebx, [ebx+ecx*4+0x04]
add    edx, ebx
add    edx, dword ptr [ebp+0x08]
mov    ebx, dword ptr [ebp+0x0c]
shr    edx, 0x03
mov    byte ptr [ebx], dl
movzx  edx, byte ptr [eax+0x01]
mov    ebx, dword ptr [ebp-0x04]
mov    dword ptr [ebp+0x08], edx
movzx  edx, byte ptr [edi+0x01]
add    edx, ecx
movzx  ecx, byte ptr [esi+0x01]
lea    edx, [edx+ebx*4+0x04]
mov    ebx, dword ptr [ebp+0x0c]
add    ecx, edx
mov    edx, dword ptr [ebp+0x08]
add    ecx, edx
shr    ecx, 0x03
mov    byte ptr [ebx+0x01], cl
movzx  edi, byte ptr [edi+0x02]
add    edi, dword ptr [ebp-0x04]
movzx  ebx, byte ptr [esi+0x02]
movzx  ecx, byte ptr [eax+0x02]
lea    edx, [edi+edx*4+0x04]
mov    edi, dword ptr [ebp-0x0c]
add    ebx, edx
mov    edx, dword ptr [ebp+0x0c]
add    ebx, ecx
shr    ebx, 0x03
mov    byte ptr [edx+0x02], bl
add    edx, 0x03
mov    dword ptr [ebp+0x0c], edx
mov    edx, dword ptr [ebp-0x08]
add    eax, 0x03
add    edi, 0x03
add    esi, 0x03
mov    dword ptr [ebp-0x0c], edi
cmp    eax, edx
jb     0x024d9860
movzx  ebx, byte ptr [edi]
movzx  edx, byte ptr [eax]
add    ebx, edx
mov    dword ptr [ebp-0x04], edx
movzx  edx, byte ptr [esi]
lea    ebx, [ebx+ecx*4+0x04]
add    edx, ebx
add    edx, dword ptr [ebp+0x08]
mov    ebx, dword ptr [ebp+0x0c]
shr    edx, 0x03
mov    byte ptr [ebx], dl
movzx  edx, byte ptr [eax+0x01]
mov    ebx, dword ptr [ebp-0x04]
mov    dword ptr [ebp+0x08], edx
movzx  edx, byte ptr [edi+0x01]
add    edx, ecx
movzx  ecx, byte ptr [esi+0x01]
lea    edx, [edx+ebx*4+0x04]
mov    ebx, dword ptr [ebp+0x0c]
add    ecx, edx
mov    edx, dword ptr [ebp+0x08]
add    ecx, edx
shr    ecx, 0x03
mov    byte ptr [ebx+0x01], cl
movzx  edi, byte ptr [edi+0x02]
add    edi, dword ptr [ebp-0x04]
movzx  ebx, byte ptr [esi+0x02]
movzx  ecx, byte ptr [eax+0x02]
lea    edx, [edi+edx*4+0x04]
mov    edi, dword ptr [ebp-0x0c]
add    ebx, edx
mov    edx, dword ptr [ebp+0x0c]
add    ebx, ecx
shr    ebx, 0x03
mov    byte ptr [edx+0x02], bl
add    edx, 0x03
mov    dword ptr [ebp+0x0c], edx
mov    edx, dword ptr [ebp-0x08]
add    eax, 0x03
add    edi, 0x03
add    esi, 0x03
mov    dword ptr [ebp-0x0c], edi
cmp    eax, edx
jb     0x024d9860
add    edx, dword ptr [ebp+0x14]
mov    dword ptr [ebp-0x08], edx
cmp    eax, edx
jz     0x024d9924
movzx  edx, byte ptr [eax]
movzx  ebx, byte ptr [edi]
add    ebx, edx
mov    dword ptr [ebp-0x04], edx
movzx  edx, byte ptr [esi]
lea    ebx, [ebx+ecx*4+0x04]
add    edx, ebx
add    edx, dword ptr [ebp+0x08]
inc    eax
shr    edx, 0x03
mov    ebx, edx
mov    edx, dword ptr [ebp+0x0c]
mov    byte ptr [edx], bl
inc    edx
inc    esi
inc    edi
mov    dword ptr [ebp+0x08], ecx
mov    ecx, dword ptr [ebp-0x04]
mov    dword ptr [ebp+0x0c], edx
cmp    eax, dword ptr [ebp-0x08]
jnz    0x024d98f1
mov    ecx, dword ptr [ebp+0x18]
add    edi, ecx
add    esi, ecx
add    eax, ecx
mov    ecx, dword ptr [ebp+0x1c]
add    dword ptr [ebp+0x0c], ecx
dec    dword ptr [ebp+0x10]
mov    dword ptr [ebp-0x0c], edi

jns    0x024d9841
mov    edx, dword ptr [ebp-0x10]
movzx  ecx, byte ptr [eax-0x02]
add    edx, eax
mov    dword ptr [ebp+0x08], ecx
movzx  ecx, byte ptr [eax-0x01]
mov    dword ptr [ebp-0x08], edx
cmp    eax, edx
jnb    0x024d98e7
movzx  ebx, byte ptr [edi]
movzx  edx, byte ptr [eax]
add    ebx, edx
mov    dword ptr [ebp-0x04], edx
movzx  edx, byte ptr [esi]
lea    ebx, [ebx+ecx*4+0x04]
add    edx, ebx
add    edx, dword ptr [ebp+0x08]
mov    ebx, dword ptr [ebp+0x0c]
shr    edx, 0x03
mov    byte ptr [ebx], dl
movzx  edx, byte ptr [eax+0x01]
mov    ebx, dword ptr [ebp-0x04]
mov    dword ptr [ebp+0x08], edx
movzx  edx, byte ptr [edi+0x01]
add    edx, ecx
movzx  ecx, byte ptr [esi+0x01]
lea    edx, [edx+ebx*4+0x04]
mov    ebx, dword ptr [ebp+0x0c]
add    ecx, edx
mov    edx, dword ptr [ebp+0x08]
add    ecx, edx
shr    ecx, 0x03
mov    byte ptr [ebx+0x01], cl
movzx  edi, byte ptr [edi+0x02]
add    edi, dword ptr [ebp-0x04]
movzx  ebx, byte ptr [esi+0x02]
movzx  ecx, byte ptr [eax+0x02]
lea    edx, [edi+edx*4+0x04]
mov    edi, dword ptr [ebp-0x0c]
add    ebx, edx
mov    edx, dword ptr [ebp+0x0c]
add    ebx, ecx
shr    ebx, 0x03
mov    byte ptr [edx+0x02], bl
add    edx, 0x03
mov    dword ptr [ebp+0x0c], edx
mov    edx, dword ptr [ebp-0x08]
add    eax, 0x03
add    edi, 0x03
add    esi, 0x03
mov    dword ptr [ebp-0x0c], edi
cmp    eax, edx
jb     0x024d9860
movzx  edx, byte ptr [eax]
movzx  ebx, byte ptr [edi]
add    ebx, edx
mov    dword ptr [ebp-0x04], edx
movzx  edx, byte ptr [esi]
lea    ebx, [ebx+ecx*4+0x04]
add    edx, ebx
add    edx, dword ptr [ebp+0x08]
inc    eax
shr    edx, 0x03
mov    ebx, edx
mov    edx, dword ptr [ebp+0x0c]
mov    byte ptr [edx], bl
inc    edx
inc    esi
inc    edi
mov    dword ptr [ebp+0x08], ecx
mov    ecx, dword ptr [ebp-0x04]
mov    dword ptr [ebp+0x0c], edx
cmp    eax, dword ptr [ebp-0x08]
jnz    0x024d98f1
mov    ecx, dword ptr [ebp+0x18]
add    edi, ecx
add    esi, ecx
add    eax, ecx
mov    ecx, dword ptr [ebp+0x1c]
add    dword ptr [ebp+0x0c], ecx
dec    dword ptr [ebp+0x10]
mov    dword ptr [ebp-0x0c], edi
jns    0x024d9841
pop    edi
pop    esi
pop    ebx
mov    esp, ebp
pop    ebp
ret    
dd    esp, 0x20
mp    0x0170b07b
mov    edx, dword ptr [ebp-0x10]
movzx  ecx, byte ptr [eax-0x02]
add    edx, eax
mov    dword ptr [ebp+0x08], ecx
movzx  ecx, byte ptr [eax-0x01]
mov    dword ptr [ebp-0x08], edx
cmp    eax, edx
jnb    0x024d98e7
lea    esp, [esp+0x00]
movzx  ebx, byte ptr [edi]
movzx  edx, byte ptr [eax]
add    ebx, edx
mov    dword ptr [ebp-0x04], edx
movzx  edx, byte ptr [esi]
lea    ebx, [ebx+ecx*4+0x04]
add    edx, ebx
add    edx, dword ptr [ebp+0x08]
mov    ebx, dword ptr [ebp+0x0c]
shr    edx, 0x03
mov    byte ptr [ebx], dl
movzx  edx, byte ptr [eax+0x01]
mov    ebx, dword ptr [ebp-0x04]
mov    dword ptr [ebp+0x08], edx
movzx  edx, byte ptr [edi+0x01]
add    edx, ecx
movzx  ecx, byte ptr [esi+0x01]
lea    edx, [edx+ebx*4+0x04]
mov    ebx, dword ptr [ebp+0x0c]
add    ecx, edx
mov    edx, dword ptr [ebp+0x08]
add    ecx, edx
shr    ecx, 0x03
mov    byte ptr [ebx+0x01], cl
movzx  edi, byte ptr [edi+0x02]
add    edi, dword ptr [ebp-0x04]
movzx  ebx, byte ptr [esi+0x02]
movzx  ecx, byte ptr [eax+0x02]
lea    edx, [edi+edx*4+0x04]
mov    edi, dword ptr [ebp-0x0c]
add    ebx, edx
mov    edx, dword ptr [ebp+0x0c]
add    ebx, ecx
shr    ebx, 0x03
mov    byte ptr [edx+0x02], bl
add    edx, 0x03
mov    dword ptr [ebp+0x0c], edx
mov    edx, dword ptr [ebp-0x08]
add    eax, 0x03
add    edi, 0x03
add    esi, 0x03
mov    dword ptr [ebp-0x0c], edi
cmp    eax, edx
jb     0x024d9860
add    edx, dword ptr [ebp+0x14]
mov    dword ptr [ebp-0x08], edx
cmp    eax, edx
jz     0x024d9924
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Figure 2-2: Stages of expression extraction for Photoshop’s 2D blur filter, reduced to 1D
in this figure for brevity. We instrument assembly instructions (a) to recover a forest of
concrete trees (b), which we then canonicalize (c). We use buffer structure reconstruction to
obtain abstract trees (d). Merging the forest of abstract trees into compound trees (e) gives
us linear systems (f) to solve to obtain symbolic trees (g) suitable for generating Halide code
(h).
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order optimization by only focusing on data flow. For each data item in the output buffer,

we compute an expression tree with input and intermediate buffer locations and constants

as leaves.

Handling complex control flow A dynamic trace can capture only a single path through

the maze of complex control flow in a program. Thus, extracting full control-flow using

dynamic analysis is challenging. However, high performance kernels repeatedly execute the

same computations on millions of data items. By creating a forest of expression trees,

each tree calculating a single output value, we use expression forest reconstruction to find a

corresponding tree for all the input-dependent control-flow paths. The forest of expression

trees shown in Figure 2-2(b) is extracted from execution traces of Photoshop’s 2D blur filter

code in Figure 2-2(a).

Identifying input-dependent control flow Some computations such as image threshold

filters update each pixel differently depending on properties of that pixel. As we create our

expression trees by only considering data flow, we will obtain a forest of trees that form

multiple clusters without any pattern to identify cluster membership. The complex control

flow of these conditional updates is interleaved with the control flow of the iteration ordering,

and is thus difficult to disentangle. We solve this problem, as described in Section 4.6, by

first doing a forward propagation of input data values to identify instructions that are

input-dependent and building expression trees for the input conditions. Then, if a node in

our output expression tree has a control flow dependency on the input, we can predicate

that tree with the corresponding input condition. During this forward analysis, we also

mark address calculations that depend on input values, allowing us to identify lookup tables

during backward analysis.

Handling code duplication Many optimized kernels have inner loops unrolled or some

iterations peeled off to help optimize the common case. Thus, not all data items are processed

by the same assembly instructions. Furthermore, different code paths may compute the

same output value using different combinations of operations. We handle this situation

by canonicalizing the trees and clustering trees representing the same canonical expression

during expression forest reconstruction, as shown in Figure 2-2(c).
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Identifying boundary conditions Some stencil kernels perform different calculations

at boundaries. Such programs often include loop peeling and complex control flow, making

them difficult to handle. In Helium these boundary conditions lead to trees that are different

from the rest. By clustering trees (described in Section 4.8), we separate the common stencil

operations from the boundary conditions.

Determining buffer dimensions and sizes Accurately extracting stencil computations

requires determining dimensionality and the strides of each dimension of the input, interme-

diate and output buffers. However, at the binary level, multi-dimensional arrays appear to be

allocated as one linear block. We introduce buffer structure reconstruction, a method which

creates multiple levels of coalesced memory regions for inferring dimensions and strides by

analyzing data access patterns (Section 3.2). Many stencil computations have ghost regions

or padding between dimensions for alignment or graceful handling of boundary conditions.

We leverage these regions in our analysis.

Recreating index expressions & generating Halide code Recreating stencil com-

putations requires reconstructing logical index expressions for the multi-dimensional input,

intermediate and output buffers. We use access vectors from a randomly selected set of

expression trees to create a linear system of equations that can be solved to create the alge-

braic index expressions, as in Figure 2-2(f). Our method is detailed in Section 4.10. These

algebraic index expressions can be directly transformed into a Halide function, as shown in

Figure 2-2(g)-(h).

Visualizing and understanding algorithm from optimized code With the inclu-

sion of performance optimizations such as loop unrolling, blocking, tiling, vectorization,

parallelization etc. the underlying simple algorithm of stencil kernels become almost in-

distinguishable from the code which does the performance optimizations. Helium lifts the

underlying algorithm of these simple computations from the optimized codes as a set of

data dependency trees (Figure 2-2(g)). These trees produced by Helium can be used as a

visualization and debugging aid for developers to check whether their optimizations preserve

the original programmer intent.
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Chapter 3

Code Localization

Helium’s first step is to find the code that implements the kernel we want to lift, which

we term code localization. While the code performing the kernel computation should be

frequently executed, Helium cannot simply assume the most frequently executed region of

code (which is often just memcpy) is the stencil kernel. More detailed profiling is required.

However, performing detailed instrumentation on the entirety of a large application such

as Photoshop is impractical, due to both large instrumentation overheads and the sheer

volume of the resulting data. Photoshop loads more than 160 binary modules, most of which

are unrelated to the filter we wish to extract. Thus the code localization stage consists of

a coverage difference phase to quickly screen out unrelated code, followed by more invasive

profiling to determine the kernel function and the instructions reading and writing the input

and output buffers. The kernel function and set of instructions are then used for even more

detailed profiling in the expression extraction stage (in Section 4).

3.1 Screening Using Coverage Difference

To obtain a first approximation of the kernel code location, our tool gathers code coverage

(at basic block granularity) from two executions of the program that are as similar as possible

except that one execution runs the kernel and the other does not. The difference between

these executions consists of basic blocks that only execute when the kernel executes. This

technique assumes the kernel code is not executed in other parts of the application (e.g., to

draw small preview images), and data-reorganization or UI code specific to the kernel will

still be captured, but it works well in practice to quickly screen out most of the program
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code (such as general UI or file parsing code). For Photoshop’s blur filter, the coverage

difference contains only 3,850 basic blocks out of 500,850 total blocks executed.

Helium then asks the user to run the program again (including the kernel), instrumenting

only those basic blocks in the coverage difference. The tool collects basic block execution

counts, predecessor blocks and call targets, which will be used to build a dynamic control-

flow graph in the next step. Instrumentation is done by the profiling DynamoRIO client (see

Section 5.3). Helium also collects a dynamic memory trace by instrumenting all memory

accesses performed in those basic blocks. Instrumentation is done by the memory trace

DynamoRIO client (see Section 5.4). The trace contains the instruction address, the absolute

memory address, the access width and whether the access is a read or a write. The result

of this instrumentation step enables Helium to analyze memory access patterns and detect

the filter function.

3.2 Buffer Structure Reconstruction

Helium proceeds by first processing the memory trace to recover the memory layout of

the program. Using the memory layout, the tool determines instructions that are likely

accessing input and output buffers. Helium then uses the dynamic control-flow graph to

select a function containing the highest number of such instructions.

We represent the memory layout as address regions (lists of ranges) annotated with the

set of static instructions that access them. For each static instruction, Helium first coalesces

any immediately-adjacent memory accesses and removes duplicate addresses, then sorts the

resulting regions. The tool then merges regions of different instructions to correctly detect

unrolled loops accessing the input data, where a single instruction may only access part

of the input data but the loop body as a whole covers the data. Next, Helium links any

group of three or more regions separated by a constant stride and of same size to form a

single larger region. This proceeds recursively, building larger regions until no regions can

be coalesced (see Figure 3-1). Recursive coalescing may occur if e.g. an image filter accesses

the R channel of an interleaved RGB image with padding to align each scanline on a 16-byte

boundary; the channel stride is 3 and the scanline stride is the image width rounded up to

a multiple of 16.

Helium selects all regions of size comparable to or larger than the input and output data
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sizes and records the associated candidate instructions that potentially access the input and

output buffers in memory.

2 1 2 1 2 3 2 1 2 1 2 3 2 1 2 1 2 5 1 2 1 2 1 2 1 2

22 13× 42 13× 2 2 13×

accessed data
memory

layout

1st-level
grouping

2nd-level
grouping

3rd-level
grouping

4× 1 2

4× 1 2222 13×3×

Figure 3-1: During buffer structure reconstruction, Helium groups the absolute addresses
from the memory trace into regions, recursively combining regions of the same size separated
by constant stride (Linking).

Element Size Helium detects element size based on access width. Some accesses are

logically greater than the machine word size, such as a 64-bit addition using an add/adc

instruction pair. If a buffer is accessed at multiple widths, the tool uses the most common

width, allowing it to differentiate between stencil code operating on individual elements and

memcpy-like code treating the buffer as a block of bits.

Non-rectangular Stencil Kernels When a stencil kernel is non-rectangular, the first

and last few regions of contiguous access (before linking) are not of the same size as the

middle regions of the buffer. (see Figure 3-2(b),(c)) Hence, these hanging regions are not

linked with the regions which access the middle part of the buffer during linking.

However, in most cases, the hanging regions are still accessed by a subset of instructions

which access the much larger middle region. Therefore, if a particular region is accessed

by a subset of instructions annotated to another region of greater size, Helium extends the

greater region equal to a multiple of the stride of the smallest sub-region within it (after

linking) sufficient to cover the hanging regions (see Figure 3-2(d),(e)). Helium further checks

whether the hanging regions are sufficiently close before they are merged to rule out repeat-

edly used functions like memcpy, which access logically different regions which should not

be merged. This process helps us to reconstruct buffers correctly when a non-rectangular

kernel is used.

27



hanging
regions

unaccessed scanline regions (non-image)
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Figure 3-2: Merging hanging regions for non-rectangular stencils (a) 5-point stencil kernel
(b) memory layout of the buffer in 2D (c) linearized memory layout (d) after linking (e)
after merging hanging regions.

Figure 3-3 depicts the complete process of reconstructing the input buffer of Photoshop’s

5-point blur filter (with a non-rectangular stencil) for a 32 × 32 padded image.

3.3 Filter Function Selection

Helium maps each basic block containing candidate instructions to its containing function

using a dynamic control-flow graph built from the profile, predecessor, and call target in-

formation collected during screening. The tool considers the function containing the most

candidate static instructions to be the kernel. Tail call optimization may fool Helium into

selecting a parent function, but this still covers the kernel code; we just instrument more

code than necessary.

The chosen function does not always contain the most frequently executed basic block,

as one might naïvely assume. For example, Photoshop’s invert filter processes four image

bytes per loop iteration, so other basic blocks that execute once per pixel execute more

often.

Helium selects a filter function for further analysis, rather than a single basic block

or a set of functions, as a tradeoff between capturing all the kernel code and limiting the
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Figure 3-3: Buffer structure reconstruction for Photoshop’s 5-point blur filter input buffer
for a 32 × 32 padded image (one pixel vertical and horizontal padding) with a scanline
stride of 48 (a) initial memory accesses annotated with respective instructions (b) memory
regions after coalescing immediately-adjacent memory accesses (c) larger memory region
after linking individual memory regions separated by constant stride. The first and last
hanging regions are merged. All numbers except the gap values are in hexadecimal.
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instrumentation during the expression extraction phase to a manageable amount of code.

Instrumenting smaller regions risks not capturing all kernel code, but instrumenting larger

regions generates more data that must be analyzed during expression extraction and also

increases the likelihood that expression extraction will extract code that does not belong

to the kernel (false data dependencies). Empirically, function granularity strikes a good

balance. Helium localizes Photoshop’s blur to 328 static instructions in 14 basic blocks

in the filter function and functions it calls, a manageable number for detailed dynamic

instrumentation during expression extraction.

3.4 Localization Results

During localization, we progressively localize the filter code. We increase the level of detail

in instrumentation as we progressively narrow the scope of instrumentation. Figure 3-4

shows how code localization phase is able to narrow down the location of the filter code for

eleven Photoshop filters.

For these experiments we used a 120 × 144 image for all filters except the sharpen filter.

For Photoshop’s sharpen filter, we had to use a smaller image (32 × 32), because the code

segment for sharpen was used while loading larger images even before the application of the

sharpen filter.

Filter total
BB

diff
BB

filter func
BB

Invert 490663 3401 11
Blur 500850 3850 14
Blur More 499247 2825 16
Sharpen 492433 3027 30
Sharpen More 493608 3054 27
Threshold 491651 2728 60
Box Blur (radius 1) 500297 3306 94
Sharpen Edges 499086 2490 11
Despeckle 499247 2825 16
Equalize 501669 2771 47
Brightness 499292 3012 10

Figure 3-4: Code localization statistics for Photoshop filters, showing the total static basic
blocks executed, the static basic blocks surviving screening (Section 3.1), the static basic
blocks in the filter function selected at the end of localization (Section 3.3). The filters below
the line were not entirely extracted. The total number of basic blocks executed varies due
to unknown background code in Photoshop.
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In seven out of the eleven filters listed in Figure 3-4, the localized function contains the

entire computation of the filter. For other four filters, Helium captures the data intensive

parts of the filter. The parts of the filter lying outside the localized function for these four

filters are used for computations such as table calculations which do not depend on the input

data.

For blur, blur more, invert and despeckle filters the localized function differed from the

function that contained the basic block which was executed the most number of times.

For Photoshop’s brightness filter, we localized two functions having the same number of

candidate instructions where one was the same as that for equalize. The reported numbers

are for the other function which performs a table lookup.
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Chapter 4

Expression Extraction

In this phase, we recover the stencil computation from the filter function found during code

localization. Stencils can be represented as relatively simple data-parallel operations with

few input-dependent conditionals. Thus, instead of attempting to understand all control

flow, we focus on data flow from the input to the output, plus a small set of input-dependent

conditionals which affect computation, to extract only the actual computation being per-

formed.

For example, we are able to go from the complex unrolled static disassembly listing in

Figure 2-2 (a) for a 1D blur stencil to the simple representation of the filter in Figure 2-2 (g)

and finally to DSL code in Figure 2-2 (h).

During expression extraction, Helium performs detailed instrumentation of the filter

function, using the captured data for buffer structure reconstruction and dimensionality

inference, and then applies expression forest reconstruction to build expression trees suitable

for DSL code generation.

4.1 Instruction Trace Capture and Memory Dump

During code localization, Helium determines the entry point of the filter function. The tool

now prompts the user to run the program again, applying the kernel to known input data

(if available), and collects a trace of all dynamic instructions executed from that function’s

entry to its exit, along with the absolute addresses of all memory accesses performed by the

instructions in the trace. For instructions with indirect memory operands, our tool records

the address expression (some or all of 𝑏𝑎𝑠𝑒+𝑠𝑐𝑎𝑙𝑒×𝑖𝑛𝑑𝑒𝑥+𝑑𝑖𝑠𝑝). Necessary instrumentation
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is done by the instruction trace DynamoRIO client (see Section 5.5). Helium also collects

a page-granularity memory dump of all memory accessed by candidate instructions found

in Chapter 3. Read pages are dumped immediately, but written pages are dumped at the

filter function’s exit to ensure all output has been written before dumping. Instrumentation

needed for this part is done by the memory dump DynamoRIO client (see Section 5.6).

The filter function may execute many times; both the instruction trace and memory dump

include all such executions.

4.2 Buffer Structure Reconstruction

Because the user ran the program again during instruction trace capture, we cannot assume

buffers have the same location as during code localization. Using the memory addresses

recorded as part of the instruction trace, Helium repeats buffer structure reconstruction

(Section 3.2) to find memory regions with contiguous memory accesses which are likely the

input and output buffers.

4.3 Dimensionality, Stride and Extent Inference

Buffer structure reconstruction finds buffer locations in memory, but to accurately recover

the stencil, Helium must infer the buffers’ dimensionality, and for each dimension, the stride

and extent. For image processing filters (or any domain where the user can provide input

and output data), Helium can use the memory dump to recover this information. Otherwise,

the tool falls back to generic inference that does not require the input and output data.

Inference using input and output data Helium searches the memory dump for the

known input and output data and records the starting and ending locations of the corre-

sponding memory buffers together with any alignment padding. Inputs and outputs for

image processing applications are the input and output images, while for other high perfor-

mance stencil applications which explicitly require input data, the user need to specify to

Helium which data was used as input and what was the resultant output after running the

program.

Helium next validates that the buffers found through memory dump search are actually

accessed by the filter function, by finding whether there are any overlaps between the buffers
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recovered by performing buffer structure reconstruction and buffers recovered by memory

dump search. The memory footprint may include regions which carry the image, but are

never accessed by the actual execution of the function and this step ensures that these regions

are filtered out. Dimensionality, stride and extents inferred by Helium for the surviving

buffers depend on the application’s memory layout.

For example, when Photoshop blurs a 32×32 image, it pads each edge by one pixel, then

rounds each scanline up to 48 bytes for 16-byte alignment. Photoshop stores the R, G and

B planes of a color image separately, so Helium infers three input buffers and three output

buffers with two dimensions. All three planes are the same size, so the tool infers each

dimension’s stride to be 48 (the distance between scanlines) and the extent to be 32. Our

other example image processing application, IrfanView, stores the RGB values interleaved,

so Helium automatically infers that IrfanView’s single input and output buffers have three

dimensions.

Generic inference If we do not have input and output data (as in the miniGMG bench-

mark, which generates simulated input at runtime), or the data cannot be recognized in the

memory dump, Helium falls back to generic inference based on buffer structure reconstruc-

tion. The dimensionality is equal to the number of levels of recursion needed to coalesce

memory regions. Helium can infer buffers of arbitrary dimensionality so long padding exists

between dimensions. For the dimension with least stride, the extent is equal to the number

of adjacent memory locations accessed in one grouping and the stride is equal to the memory

access width of the instructions affecting this region. For all other dimensions, the stride is

the difference between the starting addresses of two adjacent memory regions in the same

level of coalescing and the extent is equal to the number of independent memory regions

present at each level.

For example, consider Figure 3-1. Helium would infer two buffers with dimensions,

strides and extents as listed in Figure 4-1.

Buffer Dimensions Strides Extents
Blue buffer 3 1, 3, 11 2, 3, 3
Green buffer 2 1, 3 1, 4

Figure 4-1: Inferred dimensions, strides and extents for example buffer structures presented
in Figure 3-1.
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If there are no gaps in the reconstructed memory regions, this inference will treat the

memory buffer as single-dimensional, regardless of the actual dimensionality.

Inference by forward analysis We have yet to encounter a stencil for which we lack

input and output data and for which the generic inference fails, but in that case the appli-

cation must be handling boundary conditions on its own. In this case, Helium could infer

dimensionality and stride by looking at different tree clusters (Section 4.8) and calculating

the stride between each tree in a cluster containing the boundary conditions.

When inference is unnecessary If generic inference fails but the application does not

handle boundary conditions on its own, the stencil is pointwise (uses only a single input point

for each output point). The dimensionality is irrelevant to the computation, so Helium can

assume the buffer is linear with a stride of 1 and extent equal to the memory region’s size.

4.4 Input/Output Buffer Selection

Helium considers buffers that are read, not written, and not accessed using indices derived

from other buffer values to be input buffers. If output data is available, Helium identifies

output buffers by locating the output data in the memory dump. Otherwise (or if the output

data cannot be found), Helium assumes buffers that are written to with values derived from

the input buffers to be output buffers, even if they do not live beyond the function (e.g.,

temporary buffers).

4.5 Instruction Trace Preprocessing

Before analyzing the instruction trace, Helium preprocesses it by renaming the x87 floating-

point register stack using a technique similar to that used in [13]. More specifically, we

recreate the floating point stack from the dynamic instruction trace to find the top of

the floating point stack, which is necessary to recover non-relative floating-point register

locations. Helium also maps registers into memory so the analysis can treat them identically;

this is particularly helpful to handle dependencies between partial register reads and writes

(e.g., writing to eax then reading from ah).
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Next, Helium transforms each CISC x86 instruction in the instruction trace into a set

of RISC like instructions each of which is limited to two sources and one destination. We

also make the implicit operands explicit in the reduced form. This allows Helium to treat

the transformed instructions in a similar way while preserving the original semantics of the

complex instructions. Further, Helium maintains the mapping from x86 instructions to the

set of reduced instructions to facilitate any instruction annotations (flagging) that happen

in subsequent analysis.

temp ← eax * r/m32
imul r/m32 → edx ← high_32(temp)

eax ← low_32(temp)

Figure 4-2: Reduction of one operand flavor of x86’s imul instruction.

4.6 Forward Analysis for Input-Dependent Conditionals

While we focus on recovering the stencil computation, we cannot ignore control flow com-

pletely because some branches may be part of the computation. Helium must distinguish

these input-dependent conditionals that affect what the stencil computes from the control

flow arising from optimized loops controlling when the stencil computes.

To capture these conditionals, the tool first identifies which instructions read the in-

put directly using the reconstructed memory layout. Next, Helium does a forward pass

through the instruction trace identifying instructions which are affected by the input data,

either directly (through data) or through the flags register (control dependencies). The

input-dependent conditionals are the input-dependent instructions reading the flag registers

(conditional jumps plus a few math instructions such as adc and sbb). Figure 4-3 and 4-4

shows annotated disassembly for IrfanView’s solarize filter and Photoshop’s threshold filter

after the above analysis.

Then for each static instruction in the filter function, Helium records the sequence of

taken/not-taken branches of the input-dependent conditionals required to reach that instruc-

tion from the filter function entry point. The result of the forward analysis is a mapping

from each static instruction to the input-dependent conditionals (if any) that must be taken

or not taken for that instruction to be executed. This mapping is used during backward
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...
jnb 0x1000c2fd
mov cl, byte ptr [eax+esi+0x01] I
cmp cl, 0x80 ID, SF
jnb 0x1000c30f ID, RF
...

Figure 4-3: Code snippet from IrfanView’s solarize filter; instruction flagging during forward
analysis, I - input, SF - sets flags, ID - input dependent, RF - reads flags, O - output.

...
cmp byte ptr [ecx+eax], dl I, SF
sbb bl, bl ID, RF
and bl, 0x01 ID
dec bl ID
mov byte ptr [esi+eax], bl ID, O
...

Figure 4-4: Code snippet from Photoshop’s threshold filter; instruction flagging during
forward analysis, I - input, SF - sets flags, ID - input dependent, RF - reads flags, O -
output

analysis to build predicate trees (see Figure 4-7).

Further, Helium needs to account for dependencies that occur through indirect buffer

indexing done using the values of another buffer. To correctly capture these, Helium flags

instructions which access buffers using indices derived from other buffers during forward

analysis. These flags are used during backward analysis to correctly generate dependencies

for indirect buffer accesses.

4.7 Backward Analysis for Data-Dependency Trees

In this step, the tool builds data-dependency trees to capture the exact computation of

a given output location. Helium walks backwards through the instruction trace, starting

from instructions which write output buffer locations (identified during buffer structure

reconstruction). We build a data-dependency tree for each output location by maintaining a

frontier of nodes on the leaves of the tree. When the tool finds an instruction that computes
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the value of a leaf in the frontier, Helium adds the corresponding operation node to the tree,

removes the leaf from the frontier and adds the instruction’s sources to the frontier if not

already present.

We call these concrete trees because they contain absolute memory addresses. Figure 2-

2 (b) shows a forest of concrete trees for a 1D blur stencil.

Indirect buffer access Table lookups give rise to indirect buffer accesses, in which a

buffer is indexed using values read from another buffer (buffer_1(input(x,y))). Figure 4-

5 shows an example code snippet.

...
movzx ebx, byte ptr [esi+eax] I
mov bl, byte ptr [ebx+edx] ID, IA
dec ecx
mov byte ptr [eax], bl ID, O
...

Figure 4-5: Code snippet from Photoshop’s brightness filter which performs an indirect
buffer access, I - input, ID - input dependent, IA - indirect buffer access, O - output. dec
ecx instruction is not dependent on the input.

If one of the instructions flagged during forward analysis as performing indirect buffer

access computes the value of a leaf in the frontier, Helium adds additional operation nodes

to the tree describing the address calculation expression (see Figure 4-6). The sources of

these additional nodes are added to the frontier along with the other source operands of the

instruction to ensure we capture both data and address calculation dependencies.

Recursive trees If Helium adds a node to the data-dependency tree describing a location

from the same buffer as the root node, the tree is recursive. To avoid expanding the tree,

Helium does not insert that node in the frontier. Instead, the tool builds an additional non-

recursive data-dependency tree for the initial write to that output location to capture the

base case of the recursion (see Figure 4-6). If all writes to that output location are recursively

defined, Helium assumes that the buffer has been initialized outside the function.
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output( )
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output(x0)

input(r0.x,r0.y)

output( )

input(r0.x,r0.y)

(a) Recursive tree (b) Initial update tree (c) Generated Halide code

  Var x_0;
  ImageParam input(UInt(8),2);
  Func output;
  output(x_0) = 0;

  RDom r_0(input);
  output(input(r_0.x,r_0.y)) =
    cast<uint64_t>(output(input(r_0.x,r_0.y)) + 1);

Figure 4-6: The trees and lifted Halide code for the histogram computation in Photoshop’s
histogram equalization filter. The initial update tree (b) initializes the histogram counts to
0. The recursive tree (a) increments the histogram bins using indirect access based on the
input image values. The Halide code generated from the recursive tree is highlighted and
indirect accesses are in bold.

Known library calls When Helium adds the return value of a call to a known external

library function (e.g., sqrt, floor) to the tree, instead of continuing to expand the tree

through that function, it adds an external call node that depends on the call arguments.

Handling known calls specially allows Helium to emit corresponding Halide intrinsics instead

of presenting the Halide optimizer with the library’s optimized implementation (which is

often not vectorizable without heroic effort). Helium recognizes these external calls by their

symbol, which is present even in stripped binaries because it is required for dynamic linking.

Canonicalization Helium canonicalizes the trees during construction to cope with the

vagaries of instruction selection and ordering. For example, if the compiler unrolls a loop,

it may commute some but not all of the resulting instructions in the loop body; Helium

sorts the operands of commutative operations so it can recognize these trees as similar in

the next step. Section 4.12.2 shows specific examples. It also applies simplification rules to

these trees to account for effects of fix-up loops inserted by the compiler to handle leftover

iterations of the unrolled loop. Figure 2-2 (c) shows the forest of canonicalized concrete

trees.

Data types As Helium builds concrete trees, it records the sizes and kinds (signed/un-

signed integer or floating-point) of registers and memory to emit the correct operation during

Halide code generation (Section 4.11). Narrowing operations are represented as downcast

nodes and overlapping dependencies are represented with full or partial overlap nodes. See

Section 4.12.1 for more details.
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Figure 4-7: Each computational tree (four right trees) has zero or more predicate trees (two
left trees) controlling its execution. Code generated for the predicate trees controls the
execution of the code generated for the computational trees, like a multiplexer.

Predication Each time Helium adds an instruction to the tree, if that instruction is

annotated with one or more input-dependent conditionals identified during the forward

analysis, it records the tree as predicated on those conditionals. Once it finishes constructing

the tree for the computation of the output location, Helium builds similar concrete trees for

the dependencies of the predicates the tree is predicated on (that is, the data dependencies

that control whether the branches are taken or not taken). At the end of the backward

analysis, Helium has built a concrete computational tree for each output location (or two

trees if that location is updated recursively), each with zero or more concrete predicate trees

attached. During code generation, Helium uses predicate trees to generate code that selects

which computational tree code to execute (see Figure 4-7).

4.8 Tree Clustering and Buffer Inference

Helium groups the concrete canonicalized computational trees into clusters, where two trees

are placed in the same cluster if they are the same, including all predicate trees they depend

on, modulo constants and memory addresses in the leaves of the trees. (Recall that registers

were mapped to special memory locations during preprocessing.) The number of clusters

depends on the control dependency paths taken during execution for each output location.

Each control dependency path will have its own cluster of computational trees. Most kernels

have very few input-dependent conditionals relative to the input size, so there will usually
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be a small number of clusters each containing many trees. Figure 4-7 shows an example

of clustering (only one computational tree is shown for brevity). For the 1D blur example,

there is only one cluster as the computation is uniform across the padded image. For the

threshold filter in Photoshop, we get two clusters.

Next, our goal is to abstract these trees. Using the dimensions, strides and extents

inferred in 4.3, Helium can convert memory addresses to concrete indices (e.g., memory

address 0xD3252A0 to output_1(7,9)). We call this buffer inference. Algorithm 1 outlines

the process followed.

Algorithm 1 Buffer Indices Calculation
Input: 𝑀 - memory location to be abstracted
Output: 𝑥 - vector of buffer indices (least strided dimension first)
1: Find buffer (𝐵) which contains address 𝑀
2: Let 𝑆 = start address of 𝐵
3: Let 𝐷 = dimensionality of 𝐵
4: offset = 𝑀 − 𝑆
5: for 𝑖 = 𝐷 to 1 do
6: 𝑥𝑖 = offset / stride𝐵,𝑖 (integer divide)
7: offset -= 𝑥𝑖 × stride𝐵,𝑖

At this stage the tool also detects function parameters, assuming that any register or

memory location that is not in a buffer is a parameter. After performing buffer inference on

the concrete computational trees and attached predicate trees, we obtain a set of abstract

computational and predicate trees for each cluster. Figure 2-2 (d) shows the forest of abstract

trees for the 1D blur stencil. The leaves of these trees are buffers, constants or parameters.

4.9 Reduction Domain Inference

If a cluster contains recursive trees, Helium must infer a reduction domain specifying the

range in each dimension for which the reduction is to be performed. If the root nodes of the

recursive trees are indirectly accessed using the values of another buffer, then the reduction

domain is the bounds of that other buffer. If the initial update tree depends on values

originating outside the function, Helium assumes the reduction domain is the bounds of

that input buffer.

Otherwise, the tool records the minimum and maximum buffer indices observed in trees

in the cluster for each dimension as the bounds of the reduction domain. Helium abstracts
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these concrete indices using the assumption that the bounds are a linear combination of the

buffer extents or constants. This heuristic has been sufficient for our applications, but a

more precise determination could be made by applying the analysis to multiple sets of input

data with varying dimensions and solving the resulting set of linear equations.

4.10 Symbolic Tree Generation

At this stage, the abstract trees contain many relations between different buffer locations

(e.g., output(3,4) depends on input(4,4), input(3,3), and input(3,4)). To convert

these dependencies between specific index values into symbolic dependencies between buffer

coordinate locations, Helium assumes an affine relationship between indices and solves a

linear system. The rest of this section details the procedure that Helium applies to the

abstract computational and predicate trees to convert them into symbolic trees.

We represent a stencil with the following generic formulation. For the sake of brevity,

we use a simple addition as our example and conditionals are omitted.

f o r 𝑥1 = . . .

. . .

f o r 𝑥𝐷 = . . .

output[𝑥1] . . . [𝑥𝐷] =

buffer1[𝑓1,1(𝑥1, . . . , 𝑥𝐷)] . . . [𝑓1,𝑘(𝑥1, . . . , 𝑥𝐷)]+

· · ·+ buffer𝑛[𝑓𝑛,1(𝑥1, . . . , 𝑥𝐷)] . . . [𝑓𝑛,𝑘(𝑥1, . . . , 𝑥𝐷)]

where buffer refers to the buffers that appear in leaf nodes in an abstract tree and output

is the root of that tree. The functions 𝑓1,1, . . . , 𝑓𝑛,𝑘 are index functions that describe the

relationship between the buffer indices and the output indices. Each index function is

specific to a given leaf node and to a given dimension. In our work, we consider only affine

index functions, which covers many practical scenarios. We also define the access vector

�⃗� = (𝑥1, . . . 𝑥𝐷).

For a 𝐷-dimensional output buffer at the root of the tree with access vector �⃗�, a general

affine index function for the leaf node ℓ and dimension 𝑑 is 𝑓ℓ,𝑑(�⃗�) = [�⃗�; 1] · �⃗� where �⃗� is

the (𝐷 + 1)-dimensional vector of the affine coefficients that we seek to estimate. For a

single abstract tree, this equation is underconstrained but since all the abstract trees in

a cluster share the same index functions for each leaf node and dimension, Helium can
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accumulate constraints and make the problem well-posed. In each cluster, for each leaf node

and dimension, Helium formulates a set of linear equations with �⃗� as unknown.

In practice, for data-intensive applications, there are always at least 𝐷+ 1 trees in each

cluster, which guarantees that our tool can solve for �⃗�. To prevent slowdown from a hugely

overconstrained problem, Helium randomly selects a few trees to form the system. 𝐷 + 1

trees would be enough to solve the system, but we use more to detect cases where the index

function is not affine. Helium checks that the rank of the system is 𝐷 + 1 and generates

an error if it is not. In theory, 𝐷 + 2 random trees would be sufficient to detect such cases

with some probability; in our experiments, our tool uses 2𝐷 + 1 random trees to increase

detection probability.

Helium solves similar sets of linear equations to derive affine relationships between the

output buffer indices and constant values in leaf nodes.

As a special case, if a particular cluster’s trees have an index in any dimension which

does not change for all trees in that cluster, Helium assumes that dimension is fixed to that

particular value instead of solving a linear system.

Once the tool selects a random set of abstract trees, a naïve solution to form the systems

of equations corresponding to each leaf node and each dimension would be to go through

all the trees each time. However, all the trees in each cluster have the same structure.

This allows Helium to merge the randomly selected trees into a single compound tree with

the same structure but with extended leaf and root nodes that contain all relevant buffers

(Figure 2-2(e)). With this tree, generating the systems of equations amounts to a single

traversal of its leaf nodes.

At the end of this process, for each cluster, we now have a symbolic computational tree

possibly associated with symbolic predicate trees as illustrated in Figure 2-2(g). Section 7.1

presents symbolic trees extracted for some Photoshop filters.

4.10.1 Index Function Abstraction Example

For example, consider the compound tree in Figure 2-2(e). The root of the compound tree

contains the buffer accesses of the output buffer for each abstract tree used in construct-

ing the compound tree. Therefore, the matrix with access vectors for the output buffer

augmented with a column of 1s can be written as in Eq. (4.1).

44



𝐴 =

⎛⎜⎜⎜⎝
7 8 9 10 9

9 9 8 9 11

1 1 1 1 1

⎞⎟⎟⎟⎠
𝑇

(4.1)

Let’s consider the left topmost node, the vectors for the index function values corre-

sponding to both the dimensions of the node 𝐹1, 𝐹2 can be given as in Eq. (4.2).

𝐹1 =
(︁
8 9 10 11 10

)︁𝑇
𝐹2 =

(︁
10 10 9 10 12

)︁𝑇
(4.2)

We can then write two linear systems and solve for the affine coefficients 𝑎1 and 𝑎2 as in

Eq. (4.3).

𝐹1 = 𝐴 · 𝑎1 𝐹2 = 𝐴 · 𝑎2 (4.3)

The yields in solutions, 𝑎1 =
[︁
1 0 1

]︁𝑇
and 𝑎2 =

[︁
0 1 1

]︁𝑇
. Therefore, the final

abstraction for the left topmost node of Figure 2-2(e) is input1(x0+1, x1+1). Likewise, for

each buffer node residing in the leaves and for each dimension of such nodes, Helium builds

up a linear system to find the symbolic relationships between output buffer indexes and the

buffer indexes at tree leaves. The complete set of symbolic relationships for Photoshop blur

filter in 1D can be referenced in Figure 2-2(g).

4.11 Halide Code Generation

The symbolic trees are a high-level representation of the algorithm. Helium extracts only the

necessary set of predicate trees, ignoring control flow arising from loops. Our symbolic trees

of data dependencies between buffers match Halide’s functional style, so code generation is

straightforward.

4.11.1 Declarations

Halide requires input, output buffers, parameters as well as variables controlling iteration or-

der to be defined before initial usage. Helium locates the correct values for these components

from the symbolic trees in the following manner.
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Output buffers The root nodes of each tree represents an output buffer and Helium emits

Halide’s Func declarations for these output buffers.

Input buffers Any other buffer that is accessed other than the output buffers are con-

sidered as pre-populated input buffers and reside as leaf nodes of the tree. If the tree is

recursive and there is no non-recursive initial update of the same buffer location, Helium

assumes that the output buffer is also pre-populated with values before the function entry

point and subsequently creates a new input buffer declaration to handle this case. Input

buffers are declared using Halide’s ImageParam construct. Buffer dimensionality and data

type information is preserved from analysis done in Section 4.3.

Parameters Any other non-buffer leaf nodes are considered parameters. Their data types

are inferred by the access width and by determining whether they hold floating point or

integer values. Helium emits Halide’s Params construct in declaring these.

Iteration variables Helium defines iteration variables for each new dimension of the

output buffer nodes. As these are reusable by multiple function definitions, Helium defines

new iteration variables up to the maximum dimensionality of all buffers. To declare these,

Halide’s Var construct is used.

4.11.2 Definitions

Helium maps the computational tree in each cluster to a Halide function predicated on the

predicate trees associated with it. Kernels without data-dependent control flow have just one

computational tree, which maps directly to a Halide function. Kernels with data-dependent

control flow have multiple computational trees that reference different predicate trees. The

predicate trees are lifted to the top of the Halide function and mapped to a chain of select

expressions (the Halide equivalent of C’s ?: operator) that select the computational tree

code to execute.

If a recursive tree’s base case is known, it is defined as a Halide function; otherwise,

Helium assumes an initialized input buffer will be passed to the generated code. The inferred

reduction domain is used to create a Halide RDom whose variables are used to define the

recursive case of the tree as a second Halide function. Recursive trees can still be predicated

as above.
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Figure 2-2(h) shows the Halide code generated for the symbolic tree in Figure 2-2(g).

Section 7.2 presents Halide code extracted for some Photoshop filters.

4.12 Details on Data-dependency Trees

In this section, we present detailed descriptions of techniques we used to correctly account

for full and partial overlap dependencies whilst building data-dependency trees and on tech-

niques used for canonicalizing them.

4.12.1 Partial and Full Overlap Dependencies

Full overlap dependency happens when the application writes to a larger region (a register

or memory; remember registers are mapped to special memory locations) and then subse-

quently reads from a smaller region which is a subset of the larger region and partial overlap

dependency happens when the application writes to a region and later reads from a region

which partially overlaps with the former region. Partial and full overlap dependencies must

be correctly accounted when we are performing backward and forward analysis.

Full Overlap Dependencies

Full overlap dependancies happen quite often when a full register is written and later part

of it is read (Figure 4-8). The shr instruction updates edx and later the partial register

dl (lower 8 bytes of edx) is read, giving rise to a full overlap dependency. Full overlap

dependencies can also occur when a larger region of memory is written and subsequently

a subregion is read (e.g., write to an oword followed by a read from a dword starting at a

particular memory address).

shr edx, 0x03
mov byte ptr [ebx], dl

Figure 4-8: Code snippet showing an example full overlap dependency.

We detect such cases and insert a special full dependency node together with the node

for the fully overlapped region in the data dependency tree. This is finally translated to

casts and shifts in Halide code generation to account for data access width differences and
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Figure 4-9: Example partial overlap dependency: (a) partial overlap of read and written
regions (b) split regions and full overlap dependency with the written region (c) tree repre-
sentation; FO - full overlap, PO - partial overlap.

relative location differences. If the full overlap is a narrowing operation we represent them

as downcast nodes which are translated by Helium as a bit masking operation.

Partial Overlap Dependencies

Partial overlap dependencies arise when the application writes to a certain part of the

memory and reads from part of it, where the read region partially overlaps with the written

region.

In order to correctly account for dependencies, first the read region is split into disjoint

regions such that now only one region is dependent on the written region and the union

of the split regions is equal to the original read region. This treatment enables Helium to

account for dependencies arising from split regions separately ensuring correctness. The new

dependent region (after split) can be a directly dependent or a full overlapped region with

the written region.

In case of a partial overlap dependency, a special partial overlap node is added to the

dependency tree to which the split regions are connected. Helium then reanalyzes the nodes

of the tree to find the dependent region (from the split regions) and updates the dependency.

Figure 4-9 shows an example of how partial overlaps are treated in Helium.

In Halide code generation partial overlaps lead to code involving casts, shifts and other

bitwise operations.
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4.12.2 Canonicalization

Importance of Canonicalization

Consider the two uncanonicalized subtrees generated from Photoshop’s blur more filter for

two distinct output locations (Figure 4-10). Clearly, they are performing the same compu-

tation, but the tree structures are different due to instruction reordering in unrolled loops.

Without canonicalization, Helium would infer two sets of clusters for the same computation

or even worse Helium will have inconsistencies in the linear system of equations solved to

produce symbolic trees (see Section 4.10), as there is no guarantee that memory locations

in the concrete dependency trees will be in the same order.

*

+
2

+

0xEA20128

+

0xEA20129

0xEA20130

+

0xEA20132
0xEA20131

*

+
2

+ 0xEA20160

0xEA20161+

0xEA20158

0xEA20162+

0xEA20159

Figure 4-10: Two different tree structures for the same computation in Photoshop blur more
filter.

Canonicalization Strategy

Helium canonicalizes trees both during and after construction by applying rewrite rules

and sorting. Tree-wide simplifications are performed at the end of tree building, while

simplification of identities and data movements happen during tree construction to reduce

tree size whilst it is being built.

During Tree Construction

Removal of Assignment Nodes x86 programs frequently move data between registers

and memory. These movements add dependencies between nodes of the data dependency

trees without actually performing an arithmetic operation. Without any simplification,
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these are captured as assignment nodes. Helium automatically removes these assignment

nodes during tree construction and only keeps the most up-to-date source nodes in the tree

(Figure 4-11). This reduces the tree size while preserving the computation.

+

0xEA2B162

=

eax

=

0xEA20132

+

0xEA20132

Figure 4-11: Removal of assignment nodes during tree building.

Identities Helium simplifies trees containing additive and multiplicative identities. Fur-

ther, it simplifies trees with bitwise operations that lead to constants (e.g., operand | 0xFF

= 0xFF for 8 bit operands; Figure 4-12).

|

bl
0xff 0xff

Figure 4-12: Simplification of an identity; occurs during IrfanView’s invert filter.

After Tree Construction

We define the operation of tree ordering in which the associative operators of the same

type are grouped together and for any commutative operators the operands are also sorted

(Figure 4-14). While canonicalizing trees, Helium performs number of simplification passes

through the trees. After each of these simplification passes, the tree is ordered to ensure

canonical structure. A few of Helium’s simplification tree rewrite rules are presented below.
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Figure 4-13: Tree ordering ; (a) unordered tree (b) associative operators groups (c) operands
of commutative operators sorted.

Constant Folding If there are more than one constant attached to an operator, Helium

simplifies them by performing the relevant operation and finally by replacing all of them by

the simplified value (e.g., addition of number of constant values). Example occurrence is

when a subtree is built using loop carried additions (Photoshop’s add noise filter).

+
2

8 8

0xEA20129

+

18 0xEA20129

Figure 4-14: Constant folding.

Constant Multiplication Expansion Multiplication of a subtree by a constant 𝑛 is

replaced by an addition of 𝑛 replicas of that subtree (Figure 4-15). The maximum expansion

factor is heuristically chosen to be 10, to keep tree size at a manageable level. This allows

the tree ordering routine to sort operands that would otherwise be only visible as a subtree

with a multiplication as the root.

Inverse Operation Simplification Helium cancels similar operands which are different

in sign attached to an addition node (e.g., 𝑎+ (−𝑎) = 0). As an initial pass, Helium prop-

agates subtractions towards the leaf nodes essentially making them additions of negative

values. As additions are associative and commutative, Helium is now able to canonicalize
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Figure 4-15: Multiplication expansion; (a) before expansion (b) after expansion (c) after
tree ordering.

the trees using tree ordering. Finally, it traverses the tree from the root to find cancellation

opportunities where the same operands appear connected to an addition node, but with

different signs (Figure 4-16). This simplification allows Helium to trim the trees with redun-

dant computations. This simplification is useful in simplifying the structure of Photoshop’s

box blur filter, which computes a sliding window based local histogram calculation internally

leading to addition and subtraction of the same memory location in different parts of the

code.
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Figure 4-16: Inverse cancellation; (a) before simplification (b) subtraction propagation (c)
after tree ordering (d) cancellation of inverses.
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Chapter 5

DynamoRIO clients

We used DynamoRIO, a binary instrumentation framework to implement our dynamic anal-

ysis tools required to gather information about the application at runtime. DynamoRIO

allows users to write their instrumentation routines as clients, which register special event

callbacks to notify DynamoRIO of the kind of the instrumentation each client wants. In this

chapter, we present the details of four clients which gather information required by code

localization (Chapter 3) and expression extraction (Chapter 4) stages of our tool. They are

the profiling client, which gathers basic block connectivity information, the memory trace

client which tracks all memory accesses, the instruction trace client which dumps all the

instructions executed with in the instrumented region and the memory dump client which

collects a page granularity memory dump from a given region.

5.1 Selective Instrumentation

Binary instrumentation of an entire application may impair its performance and may make

it unbearably slow. For an application of the size of Photoshop which loads more than

160 binary modules at runtime, instrumenting each basic block will render the application

unresponsive. Therefore, for all DynamoRIO clients we have developed a selective instru-

mentation library which first checks if a particular basic block needs to be instrumented

before it is registered with DynamoRIO. The library allows the clients to selectively instru-

ment a set of instructions, a set of basic blocks, a set of functions, or a set of modules

allowing flexibility at each granularity.

The key idea of Helium is to progressively increase the instrumentation granularity while
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narrowing the scope of instrumentation. This allows our tools to scale to real world commer-

cial applications, yet still capture enough information at the right granularity to facilitate

our analysis.

5.2 Information Collection Order

When performing binary instrumentation information can be collected at two instances.

Information collected at instrumentation time happens only once when a particular basic

block is populated in to the code cache. Information collected at analysis time originates

from the instrumented code and it is executed and updated each time that basic block is run.

Our tools collect static information at instrumentation time, while dynamic information is

collected during analysis time, to improve scalability by reducing instrumentation overhead.

5.3 Profiling Client

The profiling client collects a profile of the program execution at basic block granularity. For

each basic block that is instrumented it collects execution frequency, size of the basic block,

whether the final instruction of the basic block is a call instruction or a return instruction

and whether the basic block is a call target. Also, for each basic block we collect predecessor

and successor basic block information together with addresses of any function callers and

callees.

The final output of this instrumentation is a set of files, one for each application thread

that executed, containing the profiling information in the following format. All addresses

are tracked as offsets from from their respective module start addresses.

<start address, size, frequency, is call out, is return, is call target,

{predecessor BBs}, {successor BBs}, {callers}, {callees}>

For each of predecessor BBs, successor BBs, callers and callees, the client out-

puts the number of such elements and execution frequencies of each.

An example dump of the profiling information can be found in section A.1. Helium uses

this information to build a dynamic control flow graph to aid finding the filter function in

code localization.
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5.4 Memory Trace Client

The memory trace client traces all memory accesses done in the instrumented basic blocks.

The client tracks the absolute memory addresses of memory accesses, whether it is a read

or a write, access width and the instruction address. An example dump of memory trace

information can be found in section A.2.

Memory traces act as an input to buffer structure reconstruction during code localization

phase.

5.5 Instruction Trace Client

The instruction trace client traces all the instructions that are executed within the instru-

mented region of the application. The instrumented region is the filter function that is

localized during the code localization phase. The client outputs a set of files, one per appli-

cation thread, each containing a linear list of instructions which were executed in program

execution order.

Instructions have both static and dynamic properties. The static properties include the

opcode, relative location of the instruction from the start of the module and all operands

whose location can be determined statically (registers and immediates). The dynamic prop-

erties include the absolute memory addresses of memory operands (direct and indirect) and

the status of the arithmetic flags before instruction execution.

The static properties are populated at instrumentation time to an array and are ref-

erenced when the instruction trace is written to files. In order to recover the dynamic

properties, the application is instrumented such that a per-thread data structure is popu-

lated with the dynamic properties of each instruction as and when they are executed. The

per-thread data structure also carries a pointer to the array with static properties.

The instructions are written to output files (one file per thread) in the following format

in the program execution order.

<opcode, #dsts, {dst info}, #srcs, {src info}, eflags, instr addr>
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5.5.1 Operand Information

For each source and destination operand, we collect the operand type, access width and the

operand location. Operand type can be one of register, heap memory access, stack memory

access, integer immediate or floating point immediate. For all memory accesses, we further

collect how the memory addresses are calculated. For example, if the memory operand is

a base-displacement memory operand, its memory address is calculated as, 𝑏𝑎𝑠𝑒 + 𝑠𝑐𝑎𝑙𝑒 ×

𝑖𝑛𝑑𝑒𝑥 + 𝑑𝑖𝑠𝑝, where we collect the registers relating to base and index and immediates

relating to scale and displacement.

The dst info and src info fields in the instruction trace are populated using the

collected operand information. The order in which the operand information is written to

the files is as follows.

<type, access width, location, {base, scale, index, displacement}>

We separately dump a disassembly trace of the instructions that are executed with in

the instrumented region. Helium uses instruction traces during the expression extraction

stage to generate Halide code for the filter function.

5.6 Memory Dump Client

The memory dump client dumps each page accessed by a given set of instructions. In Helium,

memory dump is used to dump the regions which are accessed by candidate instructions

discovered during code localization.

The memory dump client accepts a set of instruction addresses given as relative offsets

from the start of a module and tracks memory regions accessed by these instructions. If

a particular instruction reads from memory, it dumps the page immediately and notes the

memory region. If again an instruction reads from the same page, the client will ignore such

accesses. For any memory writes, it accumulates the residing page locations throughout the

filter function’s execution. Theses pages are dumped at the filter function’s exit to ensure

all output has been written before dumping.
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Chapter 6

Evaluation

In this chapter, we present the extent to which our strategy of expression extraction was suc-

cessful in extracting stencil kernels from commercial applications, Photoshop and IrfanView

and a multigrid benchmark, miniGMG. We also present performance comparisons between

execution of native code and the execution of auto-tuned versions of filters lifted by Helium.

We also manually replaced the application code with our lifted implementations in order to

provide identical user experience and report the performance gains as experienced by users.

Finally, we present a case study on Helium’s ability to lift the algorithm from complex stencil

binaries, oblivious to various optimizations that are already present in them.

6.1 Extraction Results

We used Helium to lift seven filters and portions of four more from Photoshop CS 6 Extended,

four filters from IrfanView 4.38, and the smooth stencil from the miniGMG high-performance

computing benchmark into Halide code. We do not have access to Photoshop or IrfanView

source code. We only have access to their stripped binaries with no symbol information.

miniGMG is open source.

For code localization phase all steps were performed using a 120 × 144 image, for both

IrfanView and Photoshop, except for Photoshop’s sharpen filter (see Section 3.4). For ex-

pression extraction stage a handcrafted image of size 32 × 32, resembling an arithmetic

progression of pixel values was used.
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Photoshop We lifted Photoshop’s blur, blur more, sharpen, sharpen more, invert, thresh-

old and box blur (for radius 1 only) filters. The blur and sharpen filters are 5-point stencils;

blur more, sharpen more and box blur are 9-point stencils. Invert is a pointwise operation

that simply flips all the pixel bits. Threshold is a pointwise operation containing an input-

dependent conditional: if the input pixel’s brightness (a weighted sum of its R, G and B

values) is greater than the threshold, the output pixel is set to white, and otherwise it is set

to black. See Chapter 7 for symbolic trees and lifted Halide code for Photoshop filters.

We lifted portions of Photoshop’s sharpen edges, despeckle, histogram equalization and

brightness filters. Sharpen edges alternates between repeatedly updating an image-sized

side buffer and updating the image; we lifted the side buffer computation. Despeckle is a

composition of blur more and sharpen edges. When run on despeckle, Helium extracts the

blur more portion. From histogram equalization, we lifted the histogram calculation, but

cannot track the histogram through the equalization stage because equalization does not

depend on the input or output images. Brightness builds a 256-entry lookup table from its

parameter, which we cannot capture because it does not depend on the images, but we do

lift the application of the filter to the input image.

Photoshop contains multiple variants of its filters optimized for different x86 instruction

sets (SSE, AVX etc.). Our instrumentation tools intercept the cpuid instruction (which tests

CPU capabilities) and report to Photoshop that no vector instruction sets are supported;

Photoshop falls back to general-purpose x86 instructions.We do this for engineering reasons,

to reduce the number of opcodes our backward analysis must understand; this is not a

fundamental limitation. The performance comparisons later in this section do not intercept

cpuid and thus use optimized code paths in Photoshop.

Figure 6-1 shows statistics for code localization, demonstrating that our progressive

narrowing strategy allows our dynamic analysis to scale to large applications.

All but one of our lifted filters give bit-identical results to Photoshop’s filters on a suite

of photographic images, each consisting of 100 megapixels. The lifted implementation of

box blur, the only filter we lifted from Photoshop that uses floating-point, differs in the

low-order bits of some pixel values due to reassociation.

IrfanView We lifted the blur, sharpen, invert and solarize filters from IrfanView, a batch

image converter. IrfanView’s blur and sharpen are 9-point stencils. Unlike Photoshop,
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IrfanView loads the image data into floating-point registers, computes the stencil in floating-

point, and rounds the result back to integer. IrfanView has been compiled for maximal

processor compatibility, which results in unusual code making heavy use of partial register

reads and writes.

Our lifted filters produce visually identical results to IrfanView’s filters. The minor differ-

ences in the low-order bits are because we assume floating-point addition and multiplication

are associative and commutative when canonicalizing trees.

miniGMG To demonstrate the applicability of our tool beyond image processing, we lifted

the Jacobi smooth stencil from the miniGMG high-performance computing benchmark. We

added a command-line option to skip running the stencil to enable coverage differencing

during code localization. Because we do not have input and output image data for this

benchmark, we manually specified an estimate of the data size for finding candidate instruc-

tions during code localization and we used the generic inference described in section 4.3

during expression extraction. We set OMP_NUM_THREADS=1 to limit miniGMG to one thread

during analysis, but run using full parallelism during evaluation.

Because miniGMG is open source, we were able to check that our lifted stencil is equiva-

lent to the original code using the SymPy1 symbolic algebra system. We also checked output

values for small data sizes.

6.2 Experimental Methodology

We ran our image filter experiments on an Intel Core i7 990X with 6 cores (hyperthreading

disabled) running at 3.47GHz with 8 GB RAM and running 64-bit Windows 7. We used the

Halide release built from git commit 80015c. Instrumentation tools for Helium was built

using DynamoRIO revision 2773.

Helium We compiled our lifted Halide code into standalone executables that load an

image, time repeated applications of the filter, and save the image for verification. We

ran 10 warmup iterations followed by 30 timing iterations. We tuned the schedules for our

generated Halide code for six hours each using the OpenTuner-based Halide tuner [4]. We

1http://sympy.org
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Filter total
BB

diff
BB

filter
func
BB

static
ins.

count

mem
dump

dynamic
ins.

count

tree
size

Invert 490663 3401 11 70 32 MB 5520 3
Blur 500850 3850 14 328 32 MB 64644 13
Blur More 499247 2825 16 189 38 MB 111664 62
Sharpen 492433 3027 30 351 36 MB 79369 31
Sharpen More 493608 3054 27 426 37 MB 105374 55
Threshold 491651 2728 60 363 36 MB 45861 8/6/19
Box Blur (radius 1) 500297 3306 94 534 28 MB 125254 253
Sharpen Edges 499086 2490 11 63 46 MB 80628 33
Despeckle 499247 2825 16 189 38 MB 111664 62
Equalize 501669 2771 47 198 8 MB 38243 6
Brightness 499292 3012 10 54 32 MB 21645 3

Figure 6-1: Code localization and extraction statistics for Photoshop filters, showing the
total static basic blocks executed, the static basic blocks surviving screening (Section 3.1),
the static basic blocks in the filter function selected at the end of localization (Section 3.3),
the number of static instructions in the filter function, the memory dump size, the number
of dynamic instructions captured in the instruction trace (Section 4.1), and the number of
nodes per concrete tree. Threshold has two computational trees with 8 and 6 nodes and
one predicate tree with 19 nodes. The filters below the line were not entirely extracted; the
extracted portion of despeckle is the same as blur more. The total number of basic blocks
executed varies due to unknown background code in Photoshop.

tuned using a 11267 by 8813 24-bit truecolor image and evaluated with a 11959 by 8135

24-bit image.

We cannot usefully compare the performance of the four Photoshop filters that we did

not entirely lift this way; we describe their evaluation separately in Section 6.5.

Photoshop We timed Photoshop using the ExtendScript API2 to programmatically start

Photoshop, load the image and invoke filters. While we extracted filters from non-optimized

fallback code for old processors, times reported in this section are using Photoshop’s choice

of code path. In Photoshop’s performance preferences, we set the tile size to 1028K (the

largest), history states to 1, and cache tiles to 1. This amounts to optimizing Photoshop

for batch processing, improving performance by up to 48% over default settings while dra-

matically reducing measurement variance. We ran 10 warmup iterations and 30 evaluation

iterations.

2https://www.adobe.com/devnet/photoshop/scripting.html
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Filter Photoshop Helium speedup
Invert 102.23 ± 1.65 58.74 ± .52 1.74x
Blur 245.87 ± 5.30 93.74 ± .78 2.62x
Blur More 317.97 ± 2.76 283.92 ± 2.52 1.12x
Sharpen 270.40 ± 5.80 110.07 ± .69 2.46x
Sharpen More 305.50 ± 4.13 147.01 ± 2.29 2.08x
Threshold 169.83 ± 1.37 119.34 ± 8.06 1.42x
Box Blur 273.87 ± 2.42 343.02 ± .59 .80x

Filter IrfanView Helium speedup
Invert 215.23 ± 37.98 105.94 ± .78 2.03x
Solarize 220.51 ± 46.96 102.21 ± .55 2.16x
Blur 3129.68 ± 17.39 359.84 ± 3.96 8.70x
Sharpen 3419.67 ± 52.56 489.84 ± 7.78 6.98x

Figure 6-2: Timing comparison (in milliseconds) between Photoshop and IrfanView filters
and our lifted Halide-implemented filters on a 11959 by 8135 24-bit truecolor image.

IrfanView IrfanView does not have a scripting interface allowing for timing, so we timed

IrfanView running from the command line using PowerShell’s Measure-Command. We timed

30 executions of IrfanView running each filter and another 30 executions that read and wrote

the image without operating on it, taking the difference as the filter execution time.

miniGMG miniGMG is open source, so we compared unmodified miniGMG performance

against a version with the loop in the smooth stencil function from the OpenMP-based Jacobi

smoother replaced with a call to our Halide-compiled lifted stencil. We used a generic Halide

schedule template that parallelizes the outer dimension and, when possible, vectorizes the

inner dimension. We compared performance against miniGMG using OpenMP on a 2.4GHz

Intel Xeon E5-2695v2 machine running Linux with two sockets, 12 cores per socket and

128GB RAM.

6.3 Lifted Filter Performance Results

Photoshop Figure 6-2 compares Photoshop’s filters against our standalone executable

running our lifted Halide code. We obtain an average speedup of 1.75 on the individual

filters (1.90 excluding box blur).

Profiling using Intel VTune shows that Photoshop’s blur filter is not vectorized. Pho-

toshop does parallelize across all the machine’s hardware threads, but each thread only
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achieves 10-30% utilization. Our lifted filter provides better performance by blocking and

vectorizing in addition to parallelizing.

Photoshop implements box blur with a sliding window, adding one pixel entering the

window and subtracting the pixel leaving the window. Our lifted implementation of box

blur is slower because Helium cancels these additions and subtractions when canonicalizing

the tree, undoing the sliding window optimization.

IrfanView Figure 6-2 compares IrfanView’s filters against our Halide applications. We

obtain an average speedup of 4.97.

miniGMG For miniGMG, we measure the total time spent in the stencil we translate

across all iterations of the multigrid invocation. Unmodified miniGMG spends 28.5 seconds

in the kernel, while miniGMG modified to use our lifted Halide smooth stencil finishes in

6.7 seconds for a speedup of 4.25.

6.4 Performance of Filter Pipelines

Professional users of Photoshop normally apply a set of filters one after the other in a

feed forward pipeline to process images in a batch. Here, we compare filter pipelines to

demonstrate how lifting to a very high-level representation enables additional performance

improvements through stencil composition. In general, Halide is able to fuse computation

of the multiple stages in the pipeline to achieve better locality of data to improve overall

performance.

For Photoshop, our pipeline consists of blur, invert and sharpen more applied consecu-

tively, while for IrfanView we ran a pipeline of sharpen, solarize and blur.

We obtain a speedup of 2.91 for the Photoshop pipeline. Photoshop blurs the entire

image, then inverts it, then sharpens more, which has poor locality. Halide inlines blur and

invert inside the loops for sharpen more, improving locality while maintaining vectorization

and parallelism.

We obtain a speedup of 5.17 for the IrfanView pipeline. IrfanView improves when running

the filters as a pipeline, apparently by amortizing the cost of a one-time preparation step,

but our Halide code improves further by fusing the actual filters (Figure 6-3).
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Figure 6-3: Performance comparison of Photoshop and IrfanView pipelines. Left-to-right,
the left graph shows Photoshop running the filters in sequence, Photoshop hosting our
lifted implementations (Section 6.5), our standalone Halide executable running the filters
in sequence, and our Halide executable running the fused pipeline. The right graph shows
IrfanView running the filters in sequence, IrfanView running the filters as a pipeline (in one
IrfanView instance), our Halide executable running the filters in sequence, and our Halide
executable running the fused pipeline.
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6.5 In Situ Replacement Photoshop Performance

To evaluate the performance impact of the filters we partially extracted from Photoshop, we

replaced Photoshop’s implementation with our automatically-generated Halide code using

manually-implemented binary patches. We compiled all our Halide code into a DLL that

patches specific addresses in Photoshop’s code with calls to our Halide code. Manual inter-

vention was needed to figure out the Application Binary Interface that Photoshop was using

to pass in function arguments. We had to manually match up the arguments passed in by

Photoshop for a particular function with argument’s in our Halide replacement to find input

image pointers, output image pointers, image buffer extents, strides and other parameters

specific to a given filter.

Other than improved performance, these patches are entirely transparent to the user.

The disadvantage of this approach is that the patched kernels are constrained by optimiza-

tion decisions made in Photoshop, such as the granularity of tiling, which restricts our ability

to fully optimize the kernels.

When timing the replacements for filters we entirely lift, we disabled Photoshop’s paral-

lelism by removing MultiProcessor Support.8BX from the Photoshop installation, allowing

our Halide code to control parallelism subject to the granularity limit imposed by Photo-

shop’s tile size. When timing the filters we only partially lift, we removed parallelism from

the Halide schedule and allow Photoshop to parallelize around our Halide code. While we

would prefer to control parallelism ourselves, enough Photoshop code is executing outside

the regions we replaced to make disabling Photoshop’s parallelism a large performance hit.

Figure 6-4 compares unmodified Photoshop (same numbers as in the previous section)

with Photoshop after in situ replacement. For the fully-lifted filters, we are still able to

improve performance even while not fully in control of the environment. Our replacement

for box blur is still slower for the reason described in Section 6.3. The portions of histogram

equalization and brightness we lift are too simple to improve, but the replaced sharpen edges

is slightly faster, demonstrating that even when Helium cannot lift the entire computation,

it can still lift a performance-relevant portion.
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Filter Photoshop replacement speedup
Invert 102.23 ± 1.65 93.20 ± .71 1.10x
Blur 245.87 ± 5.30 191.83 ± 1.12 1.28x
Blur More 317.97 ± 2.76 310.70 ± .88 1.02x
Sharpen 270.40 ± 5.80 194.80 ± .66 1.39x
Sharpen More 305.50 ± 4.13 210.20 ± .71 1.45x
Threshold 169.83 ± 1.37 124.10 ± .76 1.37x
Box Blur 273.87 ± 2.42 395.40 ± .72 .69x
Sharpen Edges 798.43 ± 1.45 728.63 ± 1.85 1.10x
Despeckle 763.87 ± 1.59 756.40 ± 1.59 1.01x
Equalize 405.50 ± 1.45 433.87 ± .90 .93x
Brightness 498.00 ± 1.31 503.47 ± 1.17 .99x

Figure 6-4: Timing comparison (in milliseconds) between Photoshop filters and in situ
replacement with our lifted Halide-implemented filters on a 11959 by 8135 24-bit truecolor
image.

6.6 Lifting Halide-generated Binaries Back to Halide Source

Helium is oblivious to how the code is scheduled and is able to recover the stencil computation

from optimized x86 binaries which are clobbered with scheduling information. In order to

test Helium’s resilience to arbitrary scheduling, we split, unrolled, tiled, fused, parallelized

computational loops using Halide’s scheduling language for a 9-point blur filter written in

Halide (Code 6.1) and tested whether Helium was able to recover the underlying simplistic

algorithm.

Var x("x"), y("y"), xi("xi"), yi("yi");
Var x_outer, y_outer, x_inner, y_inner, tile_index;
ImageParam input_1(UInt(8),2);
Func blur_x("blur_x"), blur_y("blur_y");

blur_x(x, y) = (cast<uint16_t >(input(x, y)) + cast<uint16_t >(input(x + 1, y))
+ cast<uint16_t >(input(x + 2, y))) / 3;

blur_y(x, y) = cast<uint8_t >((blur_x(x, y) + blur_x(x, y + 1)
+ blur_x(x, y + 2)) / 3);

Listing 6.1: Original 9-point blur stencil in Halide.

The disassembly generated for each of the schedules are different (see Section B) and

statically it is hard to get rid of the scheduling information and recover the underlying

computation. However, Helium, which uses dynamic data flow driven approaches is able to

ignore instructions performing scheduling and is able to recover the underlying simplistic

algorithm of the blur filter.
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Figure 6-5 shows the schedules we tested and the amount of static assembly instructions

in the filter function localized by Helium. Complex scheduling has increased the amount

of static instructions in the filter function, apart from the last parallelized schedule, where

Helium was able to find an inner function which performs the computation after paralleliza-

tion. Under each schedule, Helium recovered the exact same symbolic tree (Figure 6-6) and

Halide code (Code 6.2).

Schedule Filter function static ins.

no schedule 218

blur_y.unroll(x, 2)
327

blur_y.tile(x, y, x_outer,

y_outer, x_inner, y_inner, 2, 2)

513

blur_y.tile(x, y, x_outer,

y_outer, x_inner, y_inner, 2, 2)

blur_y.fuse

(x_outer, y_outer, tile_index)

blur_y.parallel(tile_index)

284

Figure 6-5: Number of static instructions in the filter function for various schedules
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Figure 6-6: Symbolic tree for the 9-point blur filter.
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Var x_0, x_1, x_2, x_3;
ImageParam input_1(UInt(8),2);
Func output_1;
Expr output_1_p__0 = ((43691 * cast<uint32_t >((

((43691 * cast<uint32_t >((cast<uint32_t >(input_1(x_0,x_1))
+ cast<uint32_t >(input_1(x_0+1,x_1))
+ cast<uint32_t >(input_1(x_0+2,x_1)))
& 65535)) >> cast<uint32_t >(17))

+ ((43691 * cast<uint32_t >((cast<uint32_t >(input_1(x_0,x_1+1))
+ cast<uint32_t >(input_1(x_0+1,x_1+1))
+ cast<uint32_t >(input_1(x_0+2,x_1+1)))
& 65535)) >> cast<uint32_t >(17))

+ ((43691 * cast<uint32_t >((cast<uint32_t >(input_1(x_0,x_1+2))
+ cast<uint32_t >(input_1(x_0+1,x_1+2))
+ cast<uint32_t >(input_1(x_0+2,x_1+2)))
& 65535)) >> cast<uint32_t >(17))

) & 65535)) >> cast<uint32_t >(17)) & 255;

output_1(x_0,x_1) = cast<uint8_t >(clamp(output_1_p__0 ,0,255));

Listing 6.2: Halide code lifted by Helium

Helium lifted Halide code differs from the original version in two aspects. First, due to

the compiler optimization of replacing constant divisions by reciprocal multiplications has

introduced multiplications and bit shifts instead of divisions. Secondly, Helium does not

breakup the computation into two buffers. This is a disadvantage for aggressive scheduling

and will be added as a feature in future Helium releases.
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Chapter 7

Understanding Original Algorithm by

Lifting Optimized Code

Simple stencil kernels are normally scheduled in number of different ways in order to increase

their cache locality, CPU usage etc. For example, commercial applications such as Photoshop

optimize their image processing kernels by doing loop unrolling, loop fusion, vectorization,

parallelization etc. Even though, the underlying algorithm is simple, these optimizations

obscure 𝑤ℎ𝑎𝑡 the kernel is computing. The complex control flow arising from blocking,

vectorization, parallelization, unrolling etc. makes even the source code difficult to analyze.

However, Helium allows the users to visualize the underlying algorithm from heavily

optimized stencil code with access to only its binaries without symbols. It allows the users

to decouple 𝑤ℎ𝑎𝑡 is being computed form 𝑤ℎ𝑒𝑛 it is being computed. In this chapter,

we present symbolic trees and the respective Halide source code for some of the optimized

filters we lift from Photoshop using Helium. These simple graphical representations of

complex, heavily optimized codes enable users as well as developers to easily understand the

computation and could possibly be used as a debugging aid.

7.1 Symbolic Trees for Photoshop filters

In this section, we present symbolic trees recovered by Helium for six Photoshop filters. They

are sharpen, sharpen more, blur more, invert, threshold and box blur (radius 1). These trees

help understand what the underlying computation is for these filters, without obscuring it

with scheduling information.
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Sharpen is a 5-point stencil (Figure 7-1) which subtracts pixels in all four directions of

the middle pixel from 8 times the value of the middle pixel. Sharpen more and blur more

are 9-point stencils. Sharpen more subtracts the values of all 8 neighboring pixels from 12

times the value of the middle pixel (Figure 7-2). Blur more exhibits a slightly complicated

kernel (Figure 7-3). Invert is a point-wise kernel which flips the bits of the input image

(Figure 7-4).

Threshold filter has an input dependent conditional, where it first checks whether the

luminance of a pixel is above a certain threshold (Figure 7-5). If it is above, it makes the

output pixel’s value equal to 255, else it makes the output 0.

Box blur for radius of 1, adds up the neighboring 8 points and the middle pixel it self

and then does a division by reciprocal multiplication on their summation (Figure 7-6). The

Halide lifted box blur filter does a brute force summation of the pixel values, but Photoshop’s

implementation uses a sliding window algorithm which is asymptotically faster.
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Figure 7-1: Symbolic tree for Photoshop sharpen filter.
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Figure 7-3: Symbolic tree for Photoshop blur more filter.

71



~

output1(x0,x1)

input1(x0,x1)
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7.2 Generated Halide Code for Photoshop Filters

Halide code for the six filters from Section 7.1 is given here. The code is refactored from the

originally lifted code to improve its readability.

#include <Halide.h>
#include <vector>
using namespace std;
using namespace Halide;

int main(){

Var x_0;
Var x_1;
ImageParam input_1(UInt(8),2);
Func output_1;

Expr output_1_p__0 = (((((((
(cast<uint32_t >( input_1(x_0+1,x_1+1) )
+ cast<uint32_t >( input_1(x_0+1,x_1+1) )
+ cast<uint32_t >( input_1(x_0+1,x_1+1) )
+ cast<uint32_t >( input_1(x_0+1,x_1+1) )
+ cast<uint32_t >( input_1(x_0+1,x_1+1) )
+ cast<uint32_t >( input_1(x_0+1,x_1+1) )
+ cast<uint32_t >( input_1(x_0+1,x_1+1) )
+ cast<uint32_t >( input_1(x_0+1,x_1+1) ))
− cast<int32_t >( input_1(x_0+1,x_1+2) ))
− cast<int32_t >( input_1(x_0+1,x_1) ))
− cast<int32_t >( input_1(x_0,x_1+1) ))
− cast<int32_t >( input_1(x_0+2,x_1+1) ))
+ cast<uint32_t >( 2 ))

>> cast<uint32_t >( 2 ))) ;

output_1(x_0,x_1) = cast<uint8_t >(clamp(output_1_p__0 ,0,255));

vector<Argument> args;

args.push_back(input_1);

output_1.compile_to_file("halide_out_0",args);

return 0;
}

Listing 7.1: Halide code for Photoshop sharpen filter
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#include <Halide.h>
#include <vector>
using namespace std;
using namespace Halide;

int main(){

Var x_0;
Var x_1;
ImageParam input_1(UInt(8),2);
Func output_1;
Expr output_1_p__0 = ((((cast<uint32_t >(2 )

− cast<int32_t >((input_1(x_0,x_1)))
− cast<int32_t >((input_1(x_0+1,x_1) ))
− cast<int32_t >((input_1(x_0+2,x_1) ))
− cast<int32_t >((input_1(x_0,x_1+1) )) +
cast<uint32_t >(input_1(x_0+1,x_1+1) ) +
cast<uint32_t >(input_1(x_0+1,x_1+1) ) +
cast<uint32_t >(input_1(x_0+1,x_1+1) ) +
cast<uint32_t >(input_1(x_0+1,x_1+1) ) +
cast<uint32_t >(input_1(x_0+1,x_1+1) ) +
cast<uint32_t >(input_1(x_0+1,x_1+1) ) +
cast<uint32_t >(input_1(x_0+1,x_1+1) ) +
cast<uint32_t >(input_1(x_0+1,x_1+1) ) +
cast<uint32_t >(input_1(x_0+1,x_1+1) ) +
cast<uint32_t >(input_1(x_0+1,x_1+1) ) +
cast<uint32_t >(input_1(x_0+1,x_1+1) ) +
cast<uint32_t >(input_1(x_0+1,x_1+1) )
− cast<int32_t >((input_1(x_0+2,x_1+1) ))
− cast<int32_t >((input_1(x_0,x_1+2) ))
− cast<int32_t >((input_1(x_0+1,x_1+2) ))
− cast<int32_t >((input_1(x_0+2,x_1+2) )))

>> cast<uint32_t >(2 ))) & 255 ) ;

output_1(x_0,x_1) = cast<uint8_t >(clamp(output_1_p__0 ,0,255));
vector<Argument> args;

args.push_back(input_1);

output_1.compile_to_file("halide_out_0",arguments);

return 0;

}

Listing 7.2: Halide code for Photoshop sharpen more filter
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#include <Halide.h>
#include <vector>
using namespace std;
using namespace Halide;

int main(){

Var x_0;
Var x_1;
Var x_2;
Var x_3;
ImageParam input_1(UInt(8),2);
Func output_3;
Expr output_3_p__0 = ((((((

(7 + cast<uint32_t >(input_1(x_0,x_1) )
+ cast<uint32_t >(input_1(x_0+1,x_1) )
+ cast<uint32_t >(input_1(x_0+1,x_1) )
+ cast<uint32_t >(input_1(x_0+2,x_1) )
+ cast<uint32_t >(input_1(x_0,x_1+1) )
+ cast<uint32_t >(input_1(x_0,x_1+1) )
+ cast<uint32_t >(input_1(x_0+1,x_1+1) )
+ cast<uint32_t >(input_1(x_0+1,x_1+1) )
+ cast<uint32_t >(input_1(x_0+2,x_1+1) )
+ cast<uint32_t >(input_1(x_0+2,x_1+1) )
+ cast<uint32_t >(input_1(x_0,x_1+2) )
+ cast<uint32_t >(input_1(x_0+1,x_1+2) )
+ cast<uint32_t >(input_1(x_0+1,x_1+2) )
+ cast<uint32_t >(input_1(x_0+2,x_1+2) ))

− (( (cast<uint64_t >(613566757 ) * cast<uint64_t >(
(7 + cast<uint32_t >(input_1(x_0,x_1) )

+ cast<uint32_t >(input_1(x_0+1,x_1) )
+ cast<uint32_t >(input_1(x_0+1,x_1) )
+ cast<uint32_t >(input_1(x_0+2,x_1) )
+ cast<uint32_t >(input_1(x_0,x_1+1) )
+ cast<uint32_t >(input_1(x_0,x_1+1) )
+ cast<uint32_t >(input_1(x_0+1,x_1+1) )
+ cast<uint32_t >(input_1(x_0+1,x_1+1) )
+ cast<uint32_t >(input_1(x_0+2,x_1+1) )
+ cast<uint32_t >(input_1(x_0+2,x_1+1) )
+ cast<uint32_t >(input_1(x_0,x_1+2) )
+ cast<uint32_t >(input_1(x_0+1,x_1+2) )
+ cast<uint32_t >(input_1(x_0+1,x_1+2) )

+ cast<uint32_t >(input_1(x_0+2,x_1+2) )))) ) >> ( 32))

) >> cast<uint32_t >(1 ))

+ (( (cast<uint64_t >(613566757 ) * cast<uint64_t >(
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(7 + cast<uint32_t >(input_1(x_0,x_1) )
+ cast<uint32_t >(input_1(x_0+1,x_1) )
+ cast<uint32_t >(input_1(x_0+1,x_1) )
+ cast<uint32_t >(input_1(x_0+2,x_1) )
+ cast<uint32_t >(input_1(x_0,x_1+1) )
+ cast<uint32_t >(input_1(x_0,x_1+1) )
+ cast<uint32_t >(input_1(x_0+1,x_1+1) )
+ cast<uint32_t >(input_1(x_0+1,x_1+1) )
+ cast<uint32_t >(input_1(x_0+2,x_1+1) )
+ cast<uint32_t >(input_1(x_0+2,x_1+1) )
+ cast<uint32_t >(input_1(x_0,x_1+2) )
+ cast<uint32_t >(input_1(x_0+1,x_1+2) )
+ cast<uint32_t >(input_1(x_0+1,x_1+2) )
+ cast<uint32_t >(input_1(x_0+2,x_1+2) )))) ) >> ( 32)))

>> cast<uint32_t >(3 )) ) & 255 ) ;

output_3(x_0,x_1) = cast<uint8_t >( clamp(output_3_p__0 ,0,255) );
vector<Argument> arguments;

arguments.push_back(input_1);

output_3.compile_to_file("halide_out_0",arguments);

return 0;
}

Listing 7.3: Halide code for Photoshop blur more filter

#include <Halide.h>
#include <vector>
using namespace std;
using namespace Halide;
int main(){

Var x_0;
Var x_1;
Var x_2;
Var x_3;
ImageParam input_1(UInt(32),2);
Func output_1;
Expr output_1_p__0 = ~ input_1(x_0,x_1) ;

output_1(x_0,x_1) = cast<uint32_t >( clamp(output_1_p__0 ,0,65535) );

vector<Argument> arguments;

arguments.push_back(input_1);;

output_1.compile_to_file("halide_out_0",arguments);

return 0;
}

Listing 7.4: Halide code for Photoshop invert filter
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#include <Halide.h>
#include <vector>
using namespace std;
using namespace Halide;
int main(){

Var x_0;
Var x_1;
Var x_2;
Var x_3;
ImageParam input_2(UInt(8),2);
ImageParam input_1(UInt(8),2);
ImageParam input_3(UInt(8),2);
Param<uint8_t> p_1;
Func inter_2;
Expr inter_2_p__1 = ((0 & 1 ) − 1 );
Expr inter_2_p__0 = select((cast<uint32_t >((((

(8192 +

(4915 * cast<uint32_t >(input_2(x_0,x_1) )) +
(9667 * cast<uint32_t >(input_1(x_0,x_1) )) +
(1802 * cast<uint32_t >(input_3(x_0,x_1) )))

>> cast<uint32_t >(14 ))) & 255 ) )
< cast<uint32_t >((( p_1) & 255 ) )),(((0 − 1 ) & 1 ) − 1 )

,inter_2_p__1);

inter_2(x_0,x_1) = cast<uint8_t >(clamp(inter_2_p__0 ,0,255));

vector<Argument> arguments;

arguments.push_back(input_2);

arguments.push_back(input_1);

arguments.push_back(input_3);

arguments.push_back(p_1);

inter_2.compile_to_file("halide_out_0",arguments);

return 0;
}

Listing 7.5: Halide code for Photoshop threshold filter
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#include <Halide.h>
#include <vector>
using namespace std;
using namespace Halide;

int main(){

Var x_0;
Var x_1;
Var x_2;
Var x_3;
ImageParam input_1(UInt(8),2);
Param<uint32_t > p_0("p_0");
Param<double> p_1("p_1");
Param<double> p_2("p_2");
Func output_1;
Expr output_1_p__0 =
(((((cast<uint64_t >(cast<uint32_t >(((

Halide::floor(((cast<double >(1.000000 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
...... //32 mul t ip l icat ions
......

......

* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )) /

cast<double >(((1 + p_0 + p_0 ) * (1 + p_0 + p_0 ))))) +

cast<double >(p_2) ) −

(cast<double >(1.000000 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
...... //32 mul t ip l icat ions
......

......

* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
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* cast<double >(p_1 )))))
* cast<uint64_t >(((((1 + p_0 + p_0 ) * (1 + p_0 + p_0 ))

>> cast<uint32_t >(1 ))

+ cast<uint32_t >(input_1(x_0,x_1))
+ cast<uint32_t >(input_1(x_0+1,x_1))
+ cast<uint32_t >(input_1(x_0+2,x_1))
+ cast<uint32_t >(input_1(x_0,x_1+1))
+ cast<uint32_t >(input_1(x_0+1,x_1+1))
+ cast<uint32_t >(input_1(x_0+2,x_1+1))
+ cast<uint32_t >(input_1(x_0,x_1+2))
+ cast<uint32_t >(input_1(x_0+1,x_1+2))
+ cast<uint32_t >(input_1(x_0+2,x_1+2))))) >> cast<uint32_t >(32))
+

(( − ((cast<uint64_t >(cast<uint32_t >(((
Halide::floor(((cast<double >(1.000000 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
..... //32 mul t ip l icat ions
.....

.....

* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )) /
cast<double >(((1 + p_0 + p_0 ) * (1 + p_0 + p_0 ))))) + 1 ) −
(cast<double >(1.000000 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
...... //32 mul t ip l icat ions
......

......

* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )
* cast<double >(p_1 )))))
* cast<uint64_t >(((((1 + p_0 + p_0 ) * (1 + p_0 + p_0 ))

>> cast<uint32_t >(1 ))

+ cast<uint32_t >(input_1(x_0,x_1) )
+ cast<uint32_t >(input_1(x_0+1,x_1) )
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+ cast<uint32_t >(input_1(x_0+2,x_1) )
+ cast<uint32_t >(input_1(x_0,x_1+1) )
+ cast<uint32_t >(input_1(x_0+1,x_1+1) )
+ cast<uint32_t >(input_1(x_0+2,x_1+1) )
+ cast<uint32_t >(input_1(x_0,x_1+2) )
+ cast<uint32_t >(input_1(x_0+1,x_1+2) )
+ cast<uint32_t >(input_1(x_0+2,x_1+2) )))) >> cast<uint32_t >(32))

+

((((((1 + p_0 + p_0 ) * (1 + p_0 + p_0 )) >> cast<uint32_t >(1 ))

+ cast<uint32_t >(input_1(x_0,x_1) )
+ cast<uint32_t >(input_1(x_0+1,x_1) )
+ cast<uint32_t >(input_1(x_0+2,x_1) )
+ cast<uint32_t >(input_1(x_0,x_1+1) )
+ cast<uint32_t >(input_1(x_0+1,x_1+1) )
+ cast<uint32_t >(input_1(x_0+2,x_1+1) )
+ cast<uint32_t >(input_1(x_0,x_1+2) )
+ cast<uint32_t >(input_1(x_0+1,x_1+2) )
+ cast<uint32_t >(input_1(x_0+2,x_1+2) )))))

>> cast<uint32_t >(1))) >> cast<uint32_t>(−1 + 32 − 28 )) & 255);

output_1(x_0,x_1) = cast<uint8_t >( clamp(output_1_p__0 ,0,255) );
vector<Argument> arguments;

arguments.push_back(p_0);

arguments.push_back(p_1);

arguments.push_back(p_2);

arguments.push_back(input_1);

output_1.compile_to_file("halide_out_0",arguments);

return 0;

}

Listing 7.6: Halide code for Photoshop box blur filter
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Chapter 8

Related Work

Binary static analysis Phoenix [24], BitBlaze [25], BAP [9], and other tools construct

their own low-level IR (e.g., register transfer language (RTL)) from binaries. These low-level

IRs allow only limited analysis or low-level transformations.

Other static analysis aims for high-level representations of binaries. Value set analysis [6]

is a static analysis that tracks the possible values of pointers and indices to analyze memory

access in stripped binaries; instead of a complicated static analysis, Helium recovers buffer

structure from actual program behavior captured in traces. SecondWrite [3], [13] decompiles

x86 binaries to LLVM IR; while the resulting IR can be optimized and recompiled, this IR

is too low-level to get more than minor speedup over existing optimized binaries. [18] uses

SecondWrite for automatic parallelization of affine loops, but must analyze existing loop

structure and resolve aliasing, while we lift to Halide code expressing only the algorithm.

McSema [2] also decompiles x86 to LLVM IR for analysis. The Hex-Rays decompiler [1]

decompiles to a C-like pseudocode which cannot be recompiled to binaries. SmartDec [14]

is a binary to C++ decompiler that can extract class hierarchies and try/catch blocks; we

extract high-level algorithms independent of particular language constructs.

Dynamic translation and instrumentation Binary translation systems like QEMU

[7] translate machine code between architectures using RISC-like IR; RevNIC [11] and S2E

[12] translate programs from x86 to LLVM IR by running them in QEMU. Dynamic in-

strumentation systems like Valgrind [21] present a similar RISC-like IR for analysis and

instrumentation, then generate machine code for execution. These IRs retain details of the

original binary and do not provide enough abstraction for high-level transformations.
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Microarchitecture-level dynamic binary optimization Some systems improve the

performance of existing binaries through microarchitecture-level optimizations that do not

require building IR. Dynamo [5] improves code locality and applies simple optimizations on

frequently-executed code. Ubiquitous memory introspection [34] detects frequently-stalling

loads and adds prefetch instructions. [19] translates x86 binaries to x86-64, using the addi-

tional registers to promote stack variables. We perform much higher-level optimizations on

our lifted stencils.

Automatic parallelization Many automatic parallelization systems use dynamic analy-

sis to track data flow to analyze communication to detect parallelization opportunities, but

these systems require source code access (often with manual annotations). [28] uses dy-

namic analysis to track communication across programmer-annotated pipeline boundaries

to extract coarse-grained pipeline parallelism. Paralax [29] performs semi-automatic par-

allelization, using dynamic dependency tracking to suggest programmer annotations (e.g.,

that a variable is killed). HELIX [10] uses a dynamic loop nesting graph to select a set of

loops to parallelize. [30] uses dynamic analysis of control and data dependencies as input to

a trained predictor to autoparallelize loops, relying on the user to check correctness.

Pointer and shape analysis Pointer analyses have been written for assembly programs

[15]. Shape analyses [31] analyze programs statically to determine properties of heap struc-

tures. [33] uses dynamic analysis to identify pointer-chasing that sometimes exhibits strides

to aid in placing prefetch instructions. Because we analyze concrete memory traces for sten-

cils, our buffer structure reconstruction and stride inference is indifferent to aliasing and

finds regular access patterns.
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Chapter 9

Conclusion

9.1 Limitations

Lifting stencils with Helium is not a sound transformation. In practice, Helium’s lifted

stencils can be compared against the original program on a test suite – validation equivalent

to release criteria commonly used in software development. Even if Helium were sound,

most stripped binary programs do not come with proofs of correctness, so testing would still

be required.

Some of Helium’s simplifying assumptions cannot always hold. The current system

can only lift stencil computations with few input-dependent conditionals, table lookups and

simple repeated updates. Helium cannot lift filters with non-stencil or more complex compu-

tation patterns. Because high performance kernels repeatedly apply the same computation

to large amounts of data, Helium assumes the program input will exercise both branches

of all input-dependent conditionals. For those few stencils with complex input-dependent

control flow, the user must craft an input to cover all branches for Helium to successfully

lift the stencil.

Helium is only able to find symbolic trees for stencils whose tree shape is constant. For

trees whose shape varies based on a parameter (for example, box blur), Helium can extract

code for individual values of the parameter, but the resulting code is not generic across

parameters.

Helium assumes all index functions are affine, so kernels with more complex access func-

tions such as radial indexing cannot be recognized by Helium.

By design, Helium only captures computations derived from the input data. Some sten-
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cils compute weights or lookup tables from parameters; Helium will capture the application

of those tables to the input, but will not capture table computation.

9.2 Future Work

Helium could be extended to support non-linear index accesses with the aid of program syn-

thesis techniques. Using recipes written by a domain expert for common non-linearities that

can be seen in common stencil computations, we could define a grammar of such computa-

tions from which we will synthesize non-linear expressions (e.g., coordinate transformations).

We will use input-output examples to aid the synthesis task. Then, Helium would be able to

capture filters such as warp, pointillize, radial blur etc. which involve non-linear coordinate

transformations.

We would like to extend Helium to capture parts of filter computations that do not

directly rely on the input data. This could be done by extending Helium to localize more

than a single function and by establishing the dependency order of such localized functions.

We also hope to automate the manual replacement of Photoshop filters (Section 6.5)

by observing the internal calling convention of used by Photoshop. Also, we hope to apply

Helium beyond image processing filters to other applications which exhibit stencil compu-

tations.

9.3 Conclusion

Most legacy high-performance applications exhibit bit rot during the useful lifetime of the

application. We can no longer rely on Moore’s Law to provide transparent performance

improvements from clock speed scaling, but at the same time modern hardware provides

ample opportunities to substantially improve performance of legacy programs. To rejuvenate

these programs, we need high-level, easily-optimizable representations of their algorithms.

However, high-performance kernels in these applications have been heavily optimized for a

bygone era, resulting in complex source code and executables, even though the underlying

algorithms are mostly very simple. Current state-of-the-art techniques are not capable of

extracting the simple algorithms from these highly optimized programs. We believe that fully

dynamic techniques, introduced in Helium, are a promising direction for lifting important

computations into higher-level representations and rejuvenating legacy applications.
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Helium source code is available at http://projects.csail.mit.edu/helium.
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Appendix A

Sample DynamoRIO Client Outputs

A.1 Profiling Client Sample Output

The output format for profiling information dumped by the client is as follows.

<start address, size, frequency, is call out, is return, is call target,

{predecessor BBs}, {successor BBs}, {callers}, {callees}>

For each of predecessor BBs, successor BBs, callers and callees, the client out-

puts the number of such elements and execution frequencies of each. Note that start

address is relative to the starting point of the module in which the basic block resides.

Following is an excerpt from the profile client output for the Photoshop blur filter.

1436660,7,2,0,0,1,2,67ce50,1,1436660,1,0,1,67ce50,1,0,

1437e30,7,2,0,1,1,2,67d573,1,1437e30,1,0,1,67d573,1,0,

1459800,63,8,0,0,1,3,dd2f69,3,1459800,4,dea79d,1,0,1,dd2f69,3,0,

145983f,2,4,0,0,0,1,1459800,4,0,0,0,

1459841,27,952,0,0,0,2,1459924,476,1459841,476,0,0,0,

1459844,24,8,0,0,0,2,145983f,4,1459844,4,0,0,0,

145985c,139,960,0,0,0,3,1459844,4,145985c,480,1459841,476,0,0,0,

1459860,135,45120,0,0,0,2,145985c,480,1459860,44640,0,0,0,

14598e7,10,960,0,0,0,2,1459860,480,14598e7,480,0,0,0,

1459924,27,960,0,0,0,2,14598e7,480,1459924,480,0,0,0,
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145993f,7,8,0,1,0,2,1459924,4,145993f,4,0,0,0,

149faf0,9,2,0,0,1,2,abf20d,1,149faf0,1,0,1,abf20d,1,0,

A.2 Memory Trace Client Sample Output

The output format for memory trace client is as follows. For each memory access following

is recorded.

<instr address, read(0)/write(1), access width, memory address>

Following is an excerpt from the memory trace client output for the Photoshop blur filter.

e19f7,0,4,0x0302d000

e19f7,0,4,0x0302d000

e19f7,0,4,0x0302d000

126b70,0,4,0x08755ac2

126b74,1,4,0x08755acc

126b78,0,4,0x08755abe

126b7c,1,4,0x08755ac8

126b80,0,4,0x08755aba

126b84,1,4,0x08755ac4

126b93,0,4,0x5e826ba4

4b487c,0,4,0x0bccf6b0

4b4880,0,4,0x01ff2bdc

4b487c,0,4,0x0bccf6b0

4b4880,0,4,0x01ff2bdc
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Appendix B

Assembly Code for Various Halide

Schedules

In this section, we present excerpts from portion of assembly performing the filter compu-

tation for the 9-point blur filter written in Halide (Code 6.1). The first excerpt is when

Halide code is compiled without any schedule and the second is when the filter is tiled. This

shows how the code becomes clobbered with scheduling information with the introduction

of various optimizations, even though the same algorithm is used for each.

movzx edx, byte ptr [esi+ecx+0x02]

movzx ebx, byte ptr [esi+ecx+0x01]

movzx ecx, byte ptr [esi+ecx]

add ebx, edx

add ebx, ecx

mov ecx, dword ptr [ebp-0x2c]

lea ecx, [ecx+eax]

movzx edx, byte ptr [esi+ecx+0x02]

movzx edi, byte ptr [esi+ecx+0x01]

movzx ecx, byte ptr [esi+ecx]

add edi, edx

add edi, ecx

mov ecx, dword ptr [ebp-0x28]

lea ecx, [ecx+eax]

movzx edx, byte ptr [esi+ecx+0x02]

mov dword ptr [ebp-0x1c], edx
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movzx edx, byte ptr [esi+ecx+0x01]

add edx, dword ptr [ebp-0x1c]

movzx ecx, byte ptr [esi+ecx]

add edx, ecx

movzx ecx, bx

imul ecx, ecx, 0x0000aaab

shr ecx, 0x11

movzx edi, di

imul edi, edi, 0x0000aaab

shr edi, 0x11

add edi, ecx

movzx ecx, dx

imul ecx, ecx, 0x0000aaab

shr ecx, 0x11

add edi, ecx

movzx ecx, di

imul ecx, ecx, 0x0000aaab

shr ecx, 0x11

Listing B.1: Halide assembly excerpt for the 9-point blur stencil with no schdule

movzx esi, byte ptr [edi+eax]

mov eax, dword ptr [ebp-0x70]

lea eax, [eax+ebx]

mov dword ptr [ebp-0x24], eax

movzx eax, byte ptr [edi+eax]

mov ecx, dword ptr [ebp-0x7c]

lea edx, [ecx+ebx]

movzx edx, byte ptr [edi+edx]

add eax, esi

add eax, edx

mov dword ptr [ebp-0x34], eax

mov ecx, dword ptr [ebp-0x64]

lea eax, [ecx+ebx]

mov dword ptr [ebp-0x30], eax

movzx edx, byte ptr [edi+eax]

mov ecx, dword ptr [ebp-0x4c]

lea eax, [ecx+ebx]

mov dword ptr [ebp-0x20], eax
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movzx esi, byte ptr [edi+eax]

add esi, edx

mov ecx, dword ptr [ebp-0x6c]

lea edx, [ecx+ebx]

movzx edx, byte ptr [edi+edx]

add esi, edx

mov ecx, dword ptr [ebp-0x40]

lea eax, [ecx+ebx]

mov dword ptr [ebp-0x1c], eax

mov edx, ebx

movzx ebx, byte ptr [edi+eax]

mov ecx, dword ptr [ebp-0x3c]

lea eax, [ecx+edx]

mov dword ptr [ebp-0x14], eax

movzx ecx, byte ptr [edi+eax]

add ecx, ebx

mov ebx, dword ptr [ebp-0x48]

lea ebx, [ebx+edx]

movzx ebx, byte ptr [edi+ebx]

add ecx, ebx

mov eax, dword ptr [ebp-0x34]

movzx eax, ax

imul eax, eax, 0x0000aaab

shr eax, 0x11

movzx esi, si

imul esi, esi, 0x0000aaab

shr esi, 0x11

add esi, eax

movzx eax, cx

imul eax, eax, 0x0000aaab

shr eax, 0x11

add esi, eax

mov eax, dword ptr [ebp-0x38]

mov ecx, dword ptr [ebp-0x10]

lea eax, [eax+ecx]

movzx ecx, si

imul ecx, ecx, 0x0000aaab

shr ecx, 0x11

mov esi, dword ptr [ebp-0x50]
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mov byte ptr [esi+eax], cl

mov eax, dword ptr [ebp-0x78]

lea eax, [eax+edx]

movzx eax, byte ptr [edi+eax]

mov ecx, dword ptr [ebp-0x28]

movzx ecx, byte ptr [edi+ecx]

add ecx, eax

mov eax, dword ptr [ebp-0x24]

movzx eax, byte ptr [edi+eax]

add ecx, eax

mov eax, dword ptr [ebp-0x68]

lea eax, [eax+edx]

mov ebx, edx

movzx eax, byte ptr [edi+eax]

mov edx, dword ptr [ebp-0x30]

movzx esi, byte ptr [edi+edx]

add esi, eax

mov eax, dword ptr [ebp-0x20]

movzx eax, byte ptr [edi+eax]

add esi, eax

mov eax, dword ptr [ebp-0x44]

lea eax, [eax+ebx]

movzx eax, byte ptr [edi+eax]

mov edx, dword ptr [ebp-0x1c]

movzx edx, byte ptr [edi+edx]

add edx, eax

mov eax, dword ptr [ebp-0x14]

movzx eax, byte ptr [edi+eax]

add edx, eax

movzx eax, cx

imul eax, eax, 0x0000aaab

shr eax, 0x11

movzx ecx, si

imul ecx, ecx, 0x0000aaab

shr ecx, 0x11

add ecx, eax

movzx eax, dx

imul eax, eax, 0x0000aaab

shr eax, 0x11
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add ecx, eax

movzx eax, cx

imul eax, eax, 0x0000aaab

shr eax, 0x11

mov ecx, dword ptr [ebp-0 x00000084]

mov esi, dword ptr [ebp-0x10]

lea ecx, [ecx+esi]

mov edx, dword ptr [ebp-0x50]

mov byte ptr [edx+ecx], al

Listing B.2: Halide assembly excerpt for the 9-point blur stencil with tiling
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