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ABSTRACT

The intractability of many information theoretic problems arises from the meaningful but non-
linear definition of Kullback-Leibler (KL) divergence between two probability distributions. Local
information theory addresses this issue by assuming all distributions of interest are perturbations
of certain reference distributions, and then approximating KL divergence with a squared weighted
Euclidean distance, thereby linearizing such problems. We show that large classes of statistical
divergence measures, such as f -divergences and Bregman divergences, can be approximated in an
analogous manner to local metrics which are very similar in form. We then capture the cost of
making local approximations of KL divergence instead of using its global value. This is achieved
by appropriately bounding the tightness of the Data Processing Inequality in the local and global
scenarios. This task turns out to be equivalent to bounding the chordal slope of the hypercontrac-
tivity ribbon at infinity and the Hirschfeld-Gebelein-Rényi maximal correlation with each other.
We derive such bounds for the discrete and finite, as well as the Gaussian regimes. An application
of the local approximation technique is in understanding the large deviation behavior of sources
and channels. We elucidate a source-channel decomposition of the large deviation characteristics of
i.i.d. sources going through discrete memoryless channels. This is used to derive an additive Gaus-
sian noise channel model for the local perturbations of probability distributions. We next shift our
focus to infinite alphabet channels instead of discrete and finite channels. On this front, existing
literature has demonstrated that the singular vectors of additive white Gaussian noise channels are
Hermite polynomials, and the singular vectors of Poisson channels are Laguerre polynomials. We
characterize the set of infinite alphabet channels whose singular value decompositions produce sin-
gular vectors that are orthogonal polynomials by providing equivalent conditions on the conditional
moments. In doing so, we also unveil the elegant relationship between certain natural exponential
families with quadratic variance functions, their conjugate priors, and their corresponding orthog-
onal polynomial singular vectors. Finally, we propose various related directions for future research
in the hope that our work will beget more research concerning local approximation methods in
information theory.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Information theory is the mathematical discipline which classically analyzes the fundamental limits
of communication. Since communication sources are conveniently modeled as stochastic processes
and communication channels are modeled as probabilistic functions of these processes, hypothesis
testing becomes a natural solution for decoding. As the likelihood ratio test is an optimal decod-
ing rule in both Bayesian and non-Bayesian (Neyman-Pearson) formulations of hypothesis testing,
it is unsurprising that the expected log-likelihood ratio is a fundamental quantity in information
theory. Indeed, the log-likelihood ratio is a sufficient statistic for the source random variable. The
expected log-likelihood ratio is defined as the Kullback-Leibler (KL) divergence or relative entropy,
and several important information measures such as Shannon entropy and mutual information are
known to emerge from it.

Definition 1.0.1 (KL Divergence). Given a probability space, (Ω,F ,P), and distributions P and
Q on this space, the KL divergence between P and Q, denoted D(P ||Q), is given by:

D(P ||Q) ,

{
EP
[
log
(
dP
dQ

)]
, P � Q

+∞ , otherwise

where P � Q denotes that P is absolutely continuous with respect to Q, dP
dQ denotes the Radon-

Nikodym derivative, and EP [·] denotes the abstract expectation (integration) with respect to the
probability law corresponding to the distribution P .

(Discrete case) If Ω is finite or countably infinite, then given probability mass functions P and
Q on Ω, the KL divergence between P and Q is given by:

D(P ||Q) =
∑
x∈Ω

P (x) log

(
P (x)

Q(x)

)

where we assume that ∀q ≥ 0, 0 log
(

0
q

)
= 0 and ∀p > 0, p log

(p
0

)
= +∞ based on continuity

arguments.

(Continuous case) If Ω = Rn where n ∈ Z+, then given probability density functions f and g
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on Ω corresponding to distributions P and Q respectively, the KL divergence between P and Q, or
f and g, is given by:

D(P ||Q) = D(f ||g) =

{ ∫
Ω f(x) log

(
f(x)
g(x)

)
dλ(x) , λ ({x ∈ Ω : f(x) > 0, g(x) = 0}) = 0

+∞ , otherwise

where λ denotes the Lebesgue measure, the integral over all x ∈ Ω is the Lebesgue integral, and we

again assume that ∀q ≥ 0, 0 log
(

0
q

)
= 0 based on continuity arguments.

Although Definition 1.0.1 is fairly general, in the majority of this thesis we will be interested in
discrete and finite sample spaces. So, only the discrete case of the definition will be pertinent
there. We also point out that log(·) refers to the natural logarithm and unless stated otherwise,
this convention will hold for the entire thesis. To construe the definition of KL divergence, we first
discuss some of its properties. It can be easily verified using Jensen’s inequality that:

D(P ||Q) ≥ 0 (1.1)

with equality if and only if P = Q a.e. (almost everywhere with respect to an appropriate measure).
This result on the non-negativity of KL divergence is known as Gibbs’ inequality. Moreover, the
KL divergence can be interpreted as a distance between distributions. This intuition becomes
evident from a study of large deviation theory, but is also retrievable from the local approximation
methods that follow. We will defer an explanation until we introduce the local approximation.
As mentioned earlier, the KL divergence gives rise to two of the most fundamental quantities
in information theory: Shannon entropy and mutual information. These are now defined in the
discrete case.

Definition 1.0.2 (Shannon Entropy). Given a discrete random variable X with pmf PX on the
countable set Ω, the Shannon entropy (or simply entropy) of X (or its pmf PX) is given by:

H(X) = H (PX) , −E [log (PX(X))] = −
∑
x∈Ω

PX(x) log (PX(x))

where we assume that 0 log (0) = 0 based on continuity arguments.

Definition 1.0.3 (Mutual Information). Given discrete random variables X and Y defined on
countable sets X and Y respectively, with joint pmf PX,Y , the mutual information between X and
Y is given by:

I(X;Y ) = I
(
PX ;PY |X

)
, D (PX,Y ||PXPY ) =

∑
x∈X

∑
y∈Y

PX,Y (x, y) log

(
PX,Y (x, y)

PX(x)PY (y)

)
.

Since we use natural logarithms in these definitions, entropy and mutual information are measured
in nats (natural units). We note that the notation H(X) and I(X;Y ) is more standard in the
information theory literature, but the notation H(PX) and I(PX ;PY |X) (motivated by [1]) conveys
the intuition that these information measures are properties of the distributions and do not change
with values of the random variables.

12



CHAPTER 1. INTRODUCTION

Results in information theory operationally characterize the entropy as the ultimate compression
of a nat of information in an appropriate asymptotic sense. Likewise, mutual information is related
to the maximum number of nats that can be asymptotically sent through a communication channel
per channel use. Hence, entropy and mutual information are of paramount significance in source
and channel coding, respectively. It is trivial to see that for a discrete random variable X, the
entropy is the self-information (or the mutual information with itself):

H(X) = I(X;X) = D
(
PX ||P 2

X

)
. (1.2)

Thus, equation 1.2 and Definition 1.0.3 illustrate that the KL divergence begets both these funda-
mental quantities.

Much that there is to know about KL divergence may be found in classical texts on information
theory such as [2], which provides a lucid exposition of the material, and [1] or [3], which emphasize
deeper intuition. Despite its intuitive elegance, KL divergence is analytically quite intractable even
though the log function imparts useful convexity properties to it. It is asymmetric in its inputs
and hence not a valid metric on the space of probability distributions, non-linear and hence alge-
braically challenging to manipulate, and difficult to estimate due to the non-compactness of the
domain (asymptote at 0) of the log function. [4] and [5] attribute the difficulty of many unsolved
problems in network information theory to these drawbacks in the definition of KL divergence.

The space of probability distributions is a manifold with the KL divergence as the distance measure.
Since the neighborhood around any point in a manifold behaves like a vector space, the neighbor-
hood around any distribution also behaves like a vector space. Compelled by this intuition, [4]
and [5] propose a linearization technique where distributions of interest are assumed to be close to
each other in the KL divergence sense. Under this assumption, second order Taylor approximations
of the log function in the definition of KL divergence localize it into a squared weighted Euclidean
norm. This transforms information theory problems into linear algebra problems, thereby providing
an accessible geometric structure to such problems. It also makes these problems susceptible to the
potent attack of single letterization which is often a difficult but essential step in determining the
information capacity of various channels. The next sections in this chapter elaborate on this work
in [4] and also introduce much of the notation that will be used in this thesis.

1.1 Local Approximation

The local approximation of KL divergence given in [4] and [5] is introduced next. We assume our
sample space, Ω = {1, . . . , n}, is discrete and finite, and all probability mass functions (pmfs) on
Ω that are of interest are close to each other (in a sense made precise below). In particular, we
consider pmfs P : Ω → [0, 1] and Q : Ω → [0, 1]. Since |Ω| = n, we can represent any pmf on
Ω as a column vector in Rn. So, we let P = [P (1) · · ·P (n)]T and Q = [Q(1) · · ·Q(n)]T (with a
slight abuse of notation for the sake of clarity). The assumption that P and Q are close to each
other corresponds to Q being a perturbation of P , or vice versa. We arbitrarily choose P to be the
reference pmf and precisely have:

Q = P + εJ (1.3)

13



1.1. LOCAL APPROXIMATION

for some small ε > 0 and perturbation vector J = [J(1) · · · J(n)]T . Note that to be a valid
perturbation, J must satisfy: ∑

x∈Ω

J(x) = 0. (1.4)

In general, when we define a pmf Q from the reference pmf P , we must also ensure that εJ satisfies:

∀x ∈ Ω, 0 ≤ P (x) + εJ(x) ≤ 1, (1.5)

but we will not impose these conditions explicitly and simply assume they hold in all future dis-
cussion since we can make ε arbitrarily small.

We now perform the local approximation of KL divergence. From Definition 1.0.1, we have:

D(P ||Q) = −
∑
x∈Ω

P (x) log

(
Q(x)

P (x)

)
D(P ||Q) = −

∑
x∈Ω

P (x) log

(
1 + ε

J(x)

P (x)

)
(1.6)

Recall that the Maclaurin series (which is the Taylor series expansion around 0) of the natural
logarithm, log(1 + x), is:

log(1 + x) =

∞∑
m=1

(−1)m+1 x
m

m
(1.7)

for all |x| < 1. From equation 1.7, we see that the second order Taylor approximation of the natural
logarithm, log(1 + x), is:

log(1 + x) = x− x2

2
+ o

(
x2
)

(1.8)

where o
(
x2
)

denotes that lim
x→0

o
(
x2
)

x2
= 0. Inserting equation 1.8 into equation 1.6 and simplifying

produces:

D(P ||Q) =
1

2
ε2
∑
x∈Ω

J2(x)

P (x)
+ o

(
ε2
)
. (1.9)

We note that equation 1.9 implicitly assumes ∀x ∈ Ω, P (x) > 0. This means that the reference
pmf is not at the edge of the probability simplex. Indeed, as we are considering a neighborhood
of pmfs around the reference pmf, we must require that the reference pmf is in the interior of the
probability simplex. So, this implicit assumption is intuitively sound. Equation 1.9 expresses the
KL divergence as a squared weighted Euclidean norm. To present it more elegantly, we introduce
some new notation and definitions.

Definition 1.1.1 (Weighted Euclidean Norm). Given a fixed vector p = [p1 · · · pn]T ∈ Rn such
that ∀1 ≤ i ≤ n, pi > 0, and any vector x = [x1 · · ·xn]T ∈ Rn, the weighted Euclidean norm of x
with respect to weights p is given by:

‖x‖p ,

√√√√ n∑
i=1

x2
i

pi
.
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CHAPTER 1. INTRODUCTION

Using Definition 1.1.1 and equation 1.9, we have the following definition of local KL divergence.

Definition 1.1.2 (Local KL Divergence). Given a discrete and finite sample space, Ω, and a
reference pmf P on Ω in the interior of the probability simplex, the local KL divergence between
P and the perturbed pmf Q = P + εJ , for some ε > 0 and perturbation vector J , is given by:

D(P ||Q) =
1

2
ε2 ‖J‖2P + o

(
ε2
)
.

In statistics, the quantity, ε2 ‖J‖2P , is known as the χ2-divergence between Q and P . It is straight-
forward to derive using the second order Taylor approximation of log(1 + x) given in equation 1.8
that:

D(P ||Q) =
1

2
ε2 ‖J‖2P + o

(
ε2
)

= D(Q||P ) (1.10)

under the local approximation. Hence, the KL divergence becomes a symmetric weighted Euclidean
metric within a neighborhood of distributions around a reference distribution in the interior of the
probability simplex. In fact, any distribution in this neighborhood may be taken as the reference
distribution without changing the KL divergences beyond the o

(
ε2
)

term. This Euclidean char-
acterization of local KL divergence elucidates why KL divergence is viewed as a distance measure
between distributions.

1.2 Vector Space of Perturbations

We now provide two alternative ways to perceive perturbation vectors and explain their significance.
Given the reference pmf P on Ω = {1, . . . , n}, in the interior of the probability simplex, we have
already defined the additive perturbation vector, J . To obtain another pmf, Q = P +εJ , we simply
add P and εJ , where J provides the direction of perturbation and ε > 0 is the parameter which
controls how close P and Q are. This is encapsulated in the next definition.

Definition 1.2.1 (Additive Perturbation). Given the reference pmf P on Ω, in the interior of the
probability simplex, an additive perturbation, J , satisfies:∑

x∈Ω

J(x) = 0

such that Q = P + εJ is a valid pmf, because ε > 0 is small enough so that ∀x ∈ Ω, 0 ≤ Q(x) ≤ 1.

We briefly digress to introduce some notation which will be used consistently throughout this thesis.
For any vector x = [x1 · · ·xn]T ∈ Rn, we let [x] denote the n× n diagonal matrix with entries of x
along its principal diagonal. So, we have:

[x] =

 x1 · · · 0
...

. . .
...

0 · · · xn

 . (1.11)
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1.2. VECTOR SPACE OF PERTURBATIONS

Furthermore, given any function f : R → R which operates on scalars, for any vector x =
[x1 · · ·xn]T ∈ Rn, the notation f(x) denotes the element-wise application of the function:

f(x) =

 f(x1)
...

f(xn)

 . (1.12)

For example,
√
x =

[√
x1 · · ·

√
xn
]T

.

Returning to our discussion, since the local KL divergence between P and Q is of the form given
in Definition 1.1.2, we may define an alternative normalized perturbation:

K =
[√

P
]−1

J (1.13)

which leads to the following formula for Q:

Q = P + ε
[√

P
]
K. (1.14)

Using the normalized perturbation K, we may recast Definition 1.1.2 of local KL divergence as:

D(P ||Q) =
1

2
ε2 ‖K‖2 + o

(
ε2
)

(1.15)

where ‖·‖ denotes the standard Euclidean norm. Hence, the adjective “normalized” to describe
perturbations K indicates that the KL divergence can be approximated by a standard Euclidean
norm in terms of K instead of a weighted Euclidean norm in terms of J . The next definition
summarizes the K notation.

Definition 1.2.2 (Normalized Perturbation). Given the reference pmf P on Ω, in the interior of
the probability simplex, a normalized perturbation, K, satisfies:∑

x∈Ω

√
P (x)K(x) = 0

such that Q = P + ε
[√

P
]
K is a valid pmf, because ε > 0 is small enough so that ∀x ∈ Ω, 0 ≤

Q(x) ≤ 1.

Finally, we consider the multiplicative perturbation of the form:

L = [P ]−1 J (1.16)

which leads to the following formula for Q:

Q = P + ε [P ]L. (1.17)

Indeed, L is a multiplicative perturbation because ∀x ∈ Ω, Q(x) = P (x) (1 + εL(x)). Moreover,
it also represents the perturbation of the log-likelihood ratio between Q and P . The log-likelihood
ratio is:

∀x ∈ Ω, log

(
Q(x)

P (x)

)
= log

(
P (x) (1 + εL(x))

P (x)

)
= log (1 + εL(x)) (1.18)
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CHAPTER 1. INTRODUCTION

using equation 1.17. From equation 1.7, we see that the first order Taylor approximation of the
natural logarithm, log(1 + x), is:

log(1 + x) = x+ o (x) (1.19)

where o (x) denotes that lim
x→0

o (x)

x
= 0. Combining equations 1.18 and 1.19 produces:

∀x ∈ Ω, log

(
Q(x)

P (x)

)
= εL(x) + o (ε) . (1.20)

In vector notation, we have:

log
(

[P ]−1Q
)

= εL+ o (ε) 1 (1.21)

where 1 denotes the vector with all entries equal to 1. If Q is not perturbed from P , we have
Q = P which results in a log-likelihood ratio of 0 for each x ∈ Ω. When Q is perturbed from P
by the multiplicative perturbation L, the direction of perturbation of the log-likelihood ratio from
0 (zero vector) is also L. Hence, the multiplicative perturbation is also the perturbation of the
log-likelihood ratio, and we will address L as the log-likelihood perturbation. This is presented in
the next definition.

Definition 1.2.3 (Log-likelihood Perturbation). Given the reference pmf P on Ω, in the interior
of the probability simplex, a log-likelihood perturbation, L, satisfies:∑

x∈Ω

P (x)L(x) = 0

such that Q = P + ε [P ]L is a valid pmf, because ε > 0 is small enough so that ∀x ∈ Ω, 0 ≤
Q(x) ≤ 1.

Equations 1.13 and 1.16 permit us to translate between these different representations of per-
turbations. As a mnemonic device, we note that the Log-likelihood perturbation is denoted L.

Multiplying
[√

P
]

with L produces the normalized perturbation K (shifting one letter back from

L in the alphabet). Multiplying
[√

P
]

with K produces the additive perturbation J (shifting one

letter back from K in the alphabet). Throughout this thesis, we will conform to the J , K, and L
notation to indicate the appropriate types of perturbations and use whichever notation simplifies
our arguments. However, it is crucial to realize that J , K, and L all embody the same fundamental
object. J is perhaps the most natural way to view perturbations, K leads to the most polished
notation and algebra, and L is arguably the most meaningful.

As mentioned earlier, we study local perturbations of a reference distribution because the space
of local perturbations is a vector space. The axioms of vector spaces are easily verified for the
different perturbations we have defined. Informally, if we neglect the ε factor, the sum of two
perturbation vectors (whether J , K, or L) is also a perturbation vector because it satisfies the
zero sum condition (in Definition 1.2.1, 1.2.2, or 1.2.3). Furthermore, multiplying a perturbation
vector by a scalar also gives a perturbation vector because the zero sum condition is satisfied. So,
the space of perturbations is a vector space and this gives it intuitive linear structure. To add
further geometric structure to it, we may also define a notion of inner product. For example, in
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1.3. LINEAR INFORMATION COUPLING

the additive perturbation vector space, two additive perturbation vectors, J1 and J2, define two
different distributions on Ω, Q1 = P+εJ1 and Q2 = P+εJ2 for ε > 0 small enough, both perturbed
from the same reference pmf P in the interior of the probability simplex. We can then define the
inner product:

〈J1, J2〉P ,
∑
x∈Ω

J1(x)J2(x)

P (x)
. (1.22)

This makes the additive perturbation vector space an inner product space, and the associated norm
of this inner product is the local KL divergence (without the constant scaling in front). Equivalent
inner products can be defined in the normalized and log-likelihood perturbation vector spaces. In
fact, an equivalent inner product definition in the normalized perturbation vector space leads to
the Euclidean space, R|Ω|, with standard Euclidean inner product and norm.

Overall, such definitions of perturbations and their corresponding inner products allow us to per-
ceive the neighborhood of a distribution as an Euclidean inner product space with notions of
orthogonality and bases. This provides considerable geometric structure to an otherwise intri-
cate mathematical system. In the subsequent section, we demonstrate the utility of applying this
linearization technique.

1.3 Linear Information Coupling

Having developed the local approximation technique in the previous sections, we delineate the work
in [4] to illustrate the advantage of viewing problems under this local lens. To this end, we state
some definitions (based on [2]) and recall the well-known information capacity problem for discrete
memoryless channels.

Definition 1.3.1 (Discrete Memoryless Channel). A discrete channel consists of an input random
variable X on a finite input alphabet X , an output random variable Y on a finite output alphabet
Y, and conditional probability distributions ∀x ∈ X , PY |X(·|x) which can be written as a |Y|× |X |
column stochastic transition probability matrix. The notation PX and PY can be used to denote
the marginal distributions of X and Y , respectively.

A discrete channel is said to be memoryless if the output probability distribution is condition-
ally independent of all previous channel inputs and outputs given the current channel input.

Definition 1.3.2 (Channel Capacity). The channel capacity of a discrete memoryless channel
with input random variable X on X , output random variable Y on Y, and conditional probability
distributions PY |X , is defined as:

C = max
PX

I(X;Y )

where the maximization is performed over all possible pmfs on X .

In 1948, Shannon showed in his landmark paper [6] that the channel capacity represents the
maximum rate at which nats of information can be sent through a discrete memoryless channel.
Prompted by this classic problem (which does not lend itself to the local approximation approach
because nothing guarantees the validity of such approximations), we consider a related problem
called the linear information coupling problem [4].
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Definition 1.3.3 (Linear Information Coupling Problem). Suppose we are given an input random
variable X on X with pmf PX in the interior of the probability simplex, and a discrete memory-
less channel with output random variable Y on Y and conditional probability distributions PY |X .
Suppose further that X is dependent on another discrete random variable U , which is defined on
U such that |U| < ∞, and Y is conditionally independent of U given X so that U → X → Y is a
Markov chain. Assume that ∀u ∈ U , the conditional pmfs PX|U=u are local perturbations of the
reference pmf PX :

∀u ∈ U , PX|U=u = PX + ε
[√

PX

]
Ku

where ∀u ∈ U , Ku are valid normalized perturbation vectors, and ε > 0 is small enough so that
∀u ∈ U , PX|U=u are valid pmfs. Then, the linear information coupling problem is:

max
PU ,PX|U :U→X→Y

I(U ;X)≤ 1
2
ε2

I(U ;Y )

where we maximize over all possible pmfs PU on U and all possible conditional distributions PX|U ,
such that the marginal pmf of X is PX .

We note that Definition 1.3.3 only presents the linear information coupling problem in the single
letter case [4]. Intuitively, the agenda of this problem is to find the maximum amount of informa-
tion that can be sent from U to Y given that only a thin layer of information can pass through
X. Thus, X serves as a bottleneck between U and Y (and the problem very loosely resembles the
information bottleneck method [7]).

The linear information coupling problem can be solved using basic tools from linear algebra when
attacked using local approximations. We now present the solution given in [4]. Without loss of gen-
erality, let X = {1, . . . , n} and Y = {1, . . . ,m}. Moreover, let the channel conditional probabilities,
PY |X , be denoted by the a m× n column stochastic matrix, W :

W =


PY |X(1|1) PY |X(1|2) · · · PY |X(1|n)

PY |X(2|1) PY |X(2|2) · · · PY |X(2|n)
...

...
. . .

...
PY |X(m|1) PY |X(m|2) · · · PY |X(m|n)

 . (1.23)

W takes a pmf of X as input and produces a pmf of Y as output, where the pmfs are represented as
column vectors. So, WPX = PY , where PX and PY are the marginal pmfs of X and Y , respectively.
From Definition 1.3.3, we know that:

∀u ∈ U , PX|U=u = PX + ε
[√

PX

]
Ku (1.24)

where PX|U=u are column vectors representing the conditional pmfs of X given U = u, and ∀u ∈
U , Ku are valid normalized perturbation vectors. Furthermore, using the Markov property for
U → X → Y , we have:

∀u ∈ U , PY |U=u = WPX|U=u (1.25)
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1.3. LINEAR INFORMATION COUPLING

where PY |U=u are column vectors representing the conditional pmfs of Y given U = u. Substituting
equation 1.24 into equation 1.25, we have:

∀u ∈ U , PY |U=u = W
(
PX + ε

[√
PX

]
Ku

)
∀u ∈ U , PY |U=u = PY + ε

[√
PY

]([√
PY

]−1
W
[√

PX

])
Ku. (1.26)

Equation 1.26 makes the implicit assumption that PY is in the interior of the probability simplex. As
we discussed in section 1.1, since we take PY as the reference pmf in the output distribution space,
this assumption is reasonable. Hence, we assume that the conditional distributions, PY |X , satisfy
all the regularity conditions necessary to ensure PY is in the interior of the probability simplex.
For example, the condition that all entries of W are strictly positive is sufficient to conclude that
∀y ∈ Y, PY (y) > 0 because ∀x ∈ X , PX(x) > 0 is assumed in Definition 1.3.3. Inspecting
equation 1.26, we notice that the normalized perturbation in the output distribution space is a
channel dependent linear transform applied to the normalized perturbation in the input distribution
space. Thus, when analyzing the linear information coupling problem, we must recognize two
different vector spaces of perturbations; the input perturbation vector space which corresponds to
perturbations of PX , and the output perturbation vector space which corresponds to perturbations
of PY . The linear transform described by the matrix

[√
PY
]−1

W
[√
PX
]

maps vectors in the input
perturbation space to vectors in the output perturbation space. This matrix is defined as the
divergence transition matrix (DTM) in Definition 1.3.4.

Definition 1.3.4 (Divergence Transition Matrix). Suppose we are given an input random variable
X on X with pmf PX in the interior of the probability simplex, and a discrete memoryless channel
with output random variable Y on Y and conditional probability distributions PY |X , such that the
output pmf PY is also in the interior of the probability simplex. Let W be the |Y| × |X | column
stochastic transition probability matrix, as shown in equation 1.23. The divergence transition
matrix (DTM) of the channel is given by:

B ,
[√

PY

]−1
W
[√

PX

]
.

Using Definition 1.3.4, we may rewrite equation 1.26 as:

∀u ∈ U , PY |U=u = PY + ε
[√

PY

]
BKu. (1.27)

We now locally approximate the mutual information terms in the linear information coupling prob-
lem. To approximate I(U ;X), recall that mutual information can be written as an expectation of
KL divergences:

I(U ;X) = EPU
[
D
(
PX|U ||PX

)]
=
∑
u∈U

PU (u)D
(
PX|U=u||PX

)
. (1.28)

Using equation 1.15, the local KL divergence between pmfs PX|U=u and PX for every u ∈ U is:

D
(
PX|U=u||PX

)
=

1

2
ε2 ‖Ku‖2 + o

(
ε2
)

(1.29)
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and combining equations 1.28 and 1.29, we get:

I(U ;X) =
1

2
ε2
∑
u∈U

PU (u)| ‖Ku‖2 + o
(
ε2
)
. (1.30)

So, the constraint I(U ;X) ≤ 1
2ε

2 in Definition 1.3.3 becomes:∑
u∈U

PU (u) ‖Ku‖2 ≤ 1. (1.31)

Correspondingly, to locally approximate I(U ;Y ), we use equation 1.15 and 1.27 to give:

∀u ∈ U , D
(
PY |U=u||PY

)
=

1

2
ε2 ‖BKu‖2 + o

(
ε2
)

(1.32)

which implies that:

I(U ;Y ) = EPU
[
D
(
PY |U ||PY

)]
=
∑
u∈U

PU (u)D
(
PY |U=u||PY

)
I(U ;Y ) =

1

2
ε2
∑
u∈U

PU (u) ‖BKu‖2 + o
(
ε2
)
. (1.33)

Equation 1.33 contains the objective function of the maximization in Definition 1.3.3. Ignoring
the 1

2ε
2 > 0 factor in this localized objective function and neglecting all o

(
ε2
)

terms, the linear
information coupling problem simplifies to:

max
PU ,{Ku,u∈U}

∑
u∈U

PU (u) ‖BKu‖2

subject to:
∑
u∈U

PU (u) ‖Ku‖2 = 1,

∀u ∈ U ,
√
PX

T
Ku = 0,

and
∑
u∈U

PU (u)
[√

PX

]
Ku = 0. (1.34)

where the second constraint ensures that the normalized perturbations are valid, and the third
constraint guarantees that the marginal pmf of X is fixed at PX :∑

u∈U
PU (u)PX|U=u = PX . (1.35)

We note that the inequality constraint in equation 1.31 becomes an equality constraint in statement
1.34; this can be shown using a simple proof by contradiction. Furthermore, equations 1.29 and
1.32 bestow the DTM (which is used in the objective function of statement 1.34) with meaning.
The KL divergence between the input marginal pmf PX and the conditional pmf PX|U=u is given
by the squared Euclidean norm of Ku, and B transforms Ku to BKu, whose squared Euclidean
norm is the KL divergence between the output marginal pmf PY and the conditional pmf PY |U=u.
This explains why B is called the divergence transition matrix.
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1.3. LINEAR INFORMATION COUPLING

The linear information coupling problem in statement 1.34 can be solved using a singular value
decomposition (SVD) of B [4]. It is readily seen that the largest singular value of B is 1 (as B
originates from the column stochastic channel matrix W ), and the corresponding right (input)
singular vector and left (output) singular vector are

√
PX and

√
PY , respectively:

B
√
PX =

√
PY . (1.36)

Moreover, letting σ be the second largest singular value of B, it is well-known that:

‖BKu‖2 ≤ σ2 ‖Ku‖2 (1.37)

for any valid normalized perturbation Ku, as Ku must be orthogonal to
√
PX . Taking the expec-

tation with respect to PU on both sides of inequality 1.37 produces:∑
u∈U

PU (u) ‖BKu‖2 ≤ σ2
∑
u∈U

PU (u) ‖Ku‖2. (1.38)

Then, employing the constraint:
∑
u∈U

PU (u) ‖Ku‖2 = 1, on the right hand side of this inequality, we

get: ∑
u∈U

PU (u) ‖BKu‖2 ≤ σ2. (1.39)

Unit norm right singular vectors of B which are orthogonal to
√
PX satisfy the first two con-

straints given in the optimization problem in statement 1.34, and are therefore, valid candidates
for {Ku, u ∈ U}. Without loss of generality, let U = {1, . . . , |U|}, 2 ≤ |U| < ∞. Observe that
selecting K1 as the unit norm right singular vector of B corresponding to σ, K2 = −K1, and
K3 = · · · = K|U| = 0, we fulfill all the constraints of the optimization and maximize its objective
function by achieving inequality 1.39 with equality. This shows that the pmf of U is irrelevant to
the optimization, and we may simply assume U is a uniform Bernoulli random variable [4]. Hence,
the SVD solves the linear information coupling problem because we can find PX|U from {Ku, u ∈ U}.

There are several important observations that can be made at this point. Firstly, the solution
to the linear information coupling problem produces a tighter data processing inequality which
holds under local approximations [4]:

I(U ;Y )
local
≤ σ2I(U ;X) (1.40)

where σ ≤ 1 is the second largest singular value of B. This inequality will be crucial in chapter
3, where we will identify σ as the Hirschfeld-Gebelein-Rényi maximal correlation. Chapter 3 will
also elucidate many of the subtleties veiled by the “local” notation in equation 1.40, and bound
the performance of these local approximations.

Secondly, as we mentioned earlier, the linear information coupling problem in Definition 1.3.3
is really the single letter case of a more general multi-letter problem. We briefly introduce this gen-
eral problem. For a sequence of random variables, X1, . . . , Xn, we use the notation Xn

1 to denote
the random vector:

Xn
1 = (X1, . . . , Xn) . (1.41)
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Consider the Markov chain U → Xn
1 → Y n

1 , where we assume (for simplicity) that Xn
1 are inde-

pendent identically distributed (i.i.d.) with pmf PX . Xn
1 are inputted into the single letter discrete

memoryless channel (which is used n times). Then, the multi-letter case of the problem is:

max
PU ,PXn1 |U

:U→Xn
1→Y n1

1
n
I(U ;Xn

1 )≤ 1
2
ε2

1

n
I(U ;Y n

1 ) (1.42)

where we maximize over all possible pmfs PU and all possible conditional distributions PXn
1 |U , such

that the marginal pmf of Xn
1 is the product pmf PXn

1
. This problem can also be solved using the

SVD of the corresponding DTM and some tensor algebra after performing local approximations.
In fact, [4] illustrates that the simple tensor structure of the multi-letter problem after employing
local approximations is what allows single letterization. We note the subtle point that problem
statement 1.42 does not explicitly apply any local approximations on its conditional pmfs PXn

1 |U .
However, we implicitly assume that such local approximations are invoked as in the single letter
version of the problem in Definition 1.3.3. Indeed intuitively, the constraint that the mutual infor-
mation 1

nI(U ;Xn
1 ) is small implies that the conditional pmfs PXn

1 |U are close to PXn
1

on average in
the KL divergence sense by equation 1.28, and we know that locally perturbing PXn

1
to produce

PXn
1 |U gives rise to small KL divergences.

Lastly, the multi-letter linear information coupling problem admits an appealing interpretation
in terms of clustering. We may perceive the binary random variable U as indexing two clusters,
and Xn

1 as the pure data which originates (probabilistically) from either of these clusters. Suppose
we observe the noisy data Y n

1 , and our objective is to identify the cluster it came from. Mathemat-
ically, we have the Markov chain U → Xn

1 → Y n
1 , and we seek to maximize the mutual information

between U and Y n
1 given that the mutual information between U and Xn

1 is rather small (because
Xn

1 has a lot of redundancy in big data problems). This is precisely the multi-letter linear infor-
mation coupling problem given in statement 1.42.

Therefore, we have provided an example of how the local approximation technique helps solve
information theoretic problems with palpable statistical value. In doing so, we have illustrated
how the technique transforms seemingly complex information theory problems into elementary
problems in linear algebra. This offers an impetus to studying this local approximation technique
further. The next section conveys the general philosophy of this technique and the subsequent
section provides an outline of the thesis.

1.4 Philosophy of Approach

To complement the previous section which portrays how our local approximation technique is used
to solve information theory problems, we now discuss the overarching philosophy of the approach.
On the surface, the raison d’être of such an approach is to simplify intractable information the-
ory problems so they become easier to solve. As mentioned earlier and evidenced in the previous
section, local approximations transform information theory problems to linear algebra problems
which are straightforward to solve using basic tools like the SVD. However, one may argue that
this alone does not justify a study of the local approach. Although localized information theory
problems admit painless solutions, these solutions often do not address the global problem. This is
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evident from the discourse in section 1.3, where we solved the linear information coupling problem
instead of the classical channel capacity problem. As another example, [8] suggests a novel model
of communication by varying source empirical distributions based on the work in chapter 4 (which
uses local approximations). In contrast, the source empirical distribution is kept (approximately)
fixed in traditional channel codes such as capacity achieving fixed composition codes.

Thus, we champion the local approximation technique by addressing its value in engineering ap-
plications and theory pertaining to data processing. Real world communication or data processing
systems are often much more complex than the mathematical models of theory. So, theoreti-
cal models serve only as toy problems to provide engineers with intuition with which they can
approach their real world problems. This seemingly banal, but legitimate view has long been ac-
knowledged by engineering theorists. For example, models in the theory of stochastic processes
do not correspond to real world queuing problems but provide intuition about them. Likewise,
the local approximation approach offers intuition on difficult (and possibly unsolved) information
theory problems, even though it does not solve them.

From a purely theoretical standpoint, the local approximation method complies with a more pro-
found understanding of the structure of data. When considering stochastic data processing prob-
lems, we must be cognizant of three interrelated spaces: the space of data, the space of distributions,
and the space of random variables. The data originates from realizations of the random variables,
distributions define the random variables, and empirical distributions of the data resemble the ac-
tual distributions as the amount of data increases. The spaces of data and distributions are both
manifolds, and the space of random variables is often modeled as an inner product space with
the covariance serving as an inner product. We restrict our attention to the spaces of data and
distributions, because the actual values taken by random variables do not carry any additional
information from an information theoretic perspective.

Many modern data processing methods, both simple such as principle component analysis (PCA)
or more advanced such as compressive sensing methods, treat the space of data as a linear vector
space instead of a more general manifold. This means that simple non-linear patterns of data,
like clustering, cannot be captured by such methods. On the other hand, traditional algorithms
like the Lloyd-Max algorithm or her sister, the k-means clustering algorithm, from the pattern
recognition and machine learning literature address such non-linear data in a “data-blind” fashion.
They simply try to find a single non-linear structure, like clusters, in the data. As a result, they
perform poorly when the data does not have the non-linear structure they are looking for.

The local approximation method [4] leaves the data space as a manifold and instead imposes a
linear assumption on the space of distributions. Local approximations transform the spaces of
perturbations from reference distributions into vector spaces, and computing the SVD of the DTM
effectively performs PCA in the space of distributions rather than the space of data (where it is
conventionally employed). Since we can derive empirical distributions from the data, this is a viable
method of processing data. Thus, the local approximation technique provides an effective method
of data processing using elementary tools from linear algebra, while simultaneously respecting the
possibly non-linear structure of data. Such considerations make this technique worthy of further
study.
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1.5 Outline of Thesis

This thesis delves into exploring the local approximation technique introduced in the earlier sec-
tions. It is split into four main chapters which address separate aspects of our study. Each chapter
presents some pertinent background from the literature, and then proceeds to derive new results
within its scope. We now provide a brief overview of the chapters.

Chapter 2 considers applying the local approximation technique of section 1.1 to approximate
other statistical divergence measures. We derive that local approximations of f -divergences and
Bregman divergences, which encompass large classes of other statistical divergences, produce local
divergence measures which are remarkably similar in form to that in section 1.1 for KL divergence.

Since the local approximation has now been established, chapter 3 focuses on capturing the cost
of making local approximations of KL divergence instead of using its global value. This is done by
appropriately bounding the tightness of the Data Processing Inequality in local and global scenar-
ios. We find such bounds for the discrete and finite, and Gaussian cases.

Chapter 4 then presents an application of the local approximation technique in understanding
the large deviation behavior of sources and channels. Under the local lens, using well-known large
deviation results such as Sanov’s theorem, we elucidate a source-channel decomposition of the large
deviation characteristics of i.i.d. sources going through memoryless channels in the discrete and
finite regime. This has elegant consequences in modeling the perturbation vector channel.

Since the content of the aforementioned chapters is largely restricted to discrete and finite ran-
dom variables, chapter 5 concentrates on spectral decompositions of infinite alphabet channels
(channels whose input and output random variables have infinite ranges). Past literature provides
examples where the singular value decompositions of such channels lead to singular vectors which
are orthogonal polynomials (scaled by other functions). For example, singular vectors of Gaussian
channels are Hermite polynomials, and singular vectors of Poisson channels are Laguerre polynomi-
als. We characterize the set of infinite alphabet channels for which the singular vectors are indeed
orthogonal polynomials. This unveils the elegant relationship between some natural exponential
families with quadratic variance functions (namely the Gaussian, Poisson, and binomial distribu-
tions), their conjugate priors (namely the Gaussian, gamma, and beta distributions), and related
orthogonal polynomials (namely the Hermite, generalized Laguerre, Meixner, Jacobi and Hahn
polynomials).

Finally, chapter 6 recapitulates our main contributions and concludes the thesis by providing sug-
gestions for future work. The thesis has been written so that basic knowledge of probability theory
and linear algebra is sufficient to follow most of it. Familiarity with information theory can provide
deeper intuition and understanding of the material, but is not essential as the thesis is fairly self-
contained. At times, some real analysis and measure theory are used for rigor in definitions and
arguments. It is also helpful to have some exposure to large deviations theory for chapter 4, and
functional analysis for chapter 5. We hope that the reader finds the ensuing discussion illuminating.
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CHAPTER 2. LOCALLY APPROXIMATING DIVERGENCE MEASURES

Chapter 2

Locally Approximating Divergence
Measures

The use of Taylor expansions to perform local approximations of functions is ubiquitous in mathe-
matics. Indeed, many fundamental results of relevance in probability theory, including the Central
Limit Theorem (CLT) and the Weak Law of Large Numbers (WLLN), are proven using Taylor
approximations of characteristic functions (Fourier transforms). As we saw in chapter 1, [4] and [5]
use Taylor approximations to locally approximate KL divergence in their work. We illustrate that
when we locally approximate much larger classes of divergence measures using Taylor expansions,
the approximations are analogous in form to the approximation of KL divergence in Definition
1.1.2. To this end, we consider two general classes of divergence measures used in statistics: the
f -divergence and the Bregman divergence. Since these divergences generalize many other known
divergences, finding local approximations for them is equivalent to finding local approximations
for all the divergences they generalize. Thus, focusing on these two divergences allows us to make
deductions about large classes of divergence measures with few calculations. The next two sections
locally approximate the f -divergence and the Bregman divergence, respectively.

2.1 f-Divergence

Statistical divergences are used to define notions of distance between two probability distributions
on a space of probability distributions with the same support. They satisfy certain axioms like
non-negativity and vanishing when the two input distributions are equal (almost everywhere). The
space of input distributions is usually a statistical manifold as discussed in section 1.4. This section
is devoted to one such divergence measure, namely the f -divergence, which is also known as the
Csiszár f -divergence or the Ali-Silvey distance in the literature. We now define the f -divergence.

Definition 2.1.1 (f -Divergence). Let f : (0,∞) → R be a convex function such that f(1) = 0.
Given a probability space, (Ω,F ,P), and distributions P and Q on this space such that P � Q,
which denotes that P is absolutely continuous with respect to Q, the f -divergence between P and
Q, denoted Df (P ||Q), is given by:

Df (P ||Q) , EQ
[
f

(
dP

dQ

)]
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where dP
dQ denotes the Radon-Nikodym derivative, EQ[·] denotes the abstract expectation (integra-

tion) with respect to the probability law corresponding to the distribution Q, and we assume that
f(0) = lim

t→0+
f(t).

(Discrete case) If Ω is finite or countably infinite, then given probability mass functions P and
Q on Ω, the f -divergence between P and Q is given by:

Df (P ||Q) =
∑
x∈Ω

Q(x)f

(
P (x)

Q(x)

)

where we assume that 0f

(
0

0

)
= 0, f(0) = lim

t→0+
f(t), and ∀p > 0, 0f

(p
0

)
= lim

q→0+
qf

(
p

q

)
.

(Continuous case) If Ω = Rn where n ∈ Z+, then given probability density functions g and h
on Ω corresponding to distributions P and Q respectively, the f -divergence between P and Q, or
g and h, is given by:

Df (P ||Q) = Df (g||h) =

∫
Ω
h(x)f

(
g(x)

h(x)

)
dλ(x)

where λ denotes the Lebesgue measure, the integral over all x ∈ Ω is the Lebesgue integral, and we

again assume that 0f

(
0

0

)
= 0, f(0) = lim

t→0+
f(t), and ∀p > 0, 0f

(p
0

)
= lim

q→0+
qf

(
p

q

)
.

Basic definitions and bounds concerning f -divergences can be found in [9]. With appropriate
choices of the function f , they generalize many known divergence measures including KL divergence,
total variation distance, χ2-divergence, squared Hellinger distance, α-divergences, Jensen-Shannon
divergence, and Jeffreys divergence. f -divergences satisfy many properties that are desirable for
distance measures between distributions (which is natural since an f -divergence is a statistical
divergence) and more generally for information measures. For example, given two probability
distributions P and Q, the f -divergence is non-negative:

Df (P ||Q) ≥ 0. (2.1)

Df (P ||Q) is also a convex function on the input pair (P,Q). Moreover, if WP and WQ are the out-
put distributions corresponding to the input distributions P and Q after being passed through the
channel (transition probabilities) W , then the f -divergence satisfies the Data Processing Inequality:

Df (WP ||WQ) ≤ Df (P ||Q). (2.2)

This captures the basic intuition of information loss along a Markov chain. The KL divergence
inherits several such properties from the f -divergence. In fact, the Data Processing Inequality for
KL divergence will be a vital component of our discussion in chapter 3.

We will now locally approximate the f -divergence by re-deriving the local approximations in sec-
tion 1.1 in a more general setting. For simplicity, assume that all distributions of interest are
either discrete or continuous. So, only the discrete and continuous cases of Definition 2.1.1 are
pertinent. Consider a probability space (Ω,F ,P), where Ω is either countable or Ω = Rn for some
n ∈ Z+, and let P , Q, and R be some distributions (pmfs or pdfs) on Ω in this probability space.
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Suppose P and Q are “close” to the reference distribution R, where in the discrete case we as-
sume ∀x ∈ Ω, R(x) > 0, and in the continuous case we assume, R > 0 a.e. (almost everywhere).
These conditions on R are analogous to restricting the reference pmf to reside in the interior of the
probability simplex in section 1.1. Precisely, we write P and Q as perturbations of R:

∀x ∈ Ω, P (x) = R(x) + εJP (x) (2.3)

∀x ∈ Ω, Q(x) = R(x) + εJQ(x) (2.4)

for some small ε > 0 and additive perturbation functions JP and JQ. Note that a valid perturbation
function, J : Ω→ R, must satisfy:∑

x∈Ω

J(x) = 0 (discrete case)∫
Ω
J(x)dλ(x) = 0 (continuous case) (2.5)

where λ denotes the Lebesgue measure, and the integral in the continuous case is the Lebesgue
integral (and J must be a Borel measurable function). Furthermore, ε > 0 is chosen small enough
so that:

∀x ∈ Ω, 0 ≤ P (x), Q(x) ≤ 1 (discrete case)

P,Q ≥ 0 a.e. (continuous case) (2.6)

which ensures P and Q are valid pmfs or pdfs. The next theorem presents the local approximation
of the f -divergence between P and Q with R taken as the reference distribution.

Theorem 2.1.1 (Local f -Divergence). Let f : (0,∞) → R be a convex function with f(1) = 0
such that f(t) is twice differentiable at t = 1 and f ′′(1) > 0. Suppose we are given probability
distributions P , Q, and R on the set Ω, such that P and Q are perturbations of the reference
distribution R:

∀x ∈ Ω, P (x) = R(x) + εJP (x)

∀x ∈ Ω, Q(x) = R(x) + εJQ(x)

where ε > 0 and JP , JQ are valid additive perturbations. Then, the f -divergence between P and Q
can be locally approximated as:

Df (P ||Q) =
f ′′(1)

2
ε2
∑
x∈Ω

(JP (x)− JQ(x))2

R(x)
+ o

(
ε2
)

=
f ′′(1)

2

∑
x∈Ω

(P (x)−Q(x))2

R(x)
+ o

(
ε2
)

in the discrete case, and:

Df (P ||Q) =
f ′′(1)

2
ε2
∫

Ω

(JP (x)− JQ(x))2

R(x)
dλ(x)+o

(
ε2
)

=
f ′′(1)

2

∫
Ω

(P (x)−Q(x))2

R(x)
dλ(x)+o

(
ε2
)

in the continuous case, where λ denotes the Lebesgue measure and the integral is the Lebesgue
integral.

29



2.1. F -DIVERGENCE

Proof.
We only prove the discrete case as the continuous case is identical if the summations are replaced
with Lebesgue integrals. Using f(1) = 0 and Taylor’s theorem about the point t = 1, we have:

f(t) = f ′(1)(t− 1) +
1

2
f ′′(1)(t− 1)2 + o

(
(t− 1)2

)
where lim

t→1

o
(
(t− 1)2

)
(t− 1)2

= 0. This gives us:

∀x ∈ Ω, f

(
P (x)

Q(x)

)
= f ′(1)

(
ε(JP (x)− JQ(x))

Q(x)

)
+
f ′′(1)

2

(
ε(JP (x)− JQ(x))

Q(x)

)2

+ o
(
ε2
)

where lim
ε→0+

o
(
ε2
)

ε2
= 0. Taking the expectation with respect to Q produces:

Df (P ||Q) = εf ′(1)
∑
x∈Ω

(JP (x)− JQ(x)) +
f ′′(1)

2
ε2
∑
x∈Ω

(JP (x)− JQ(x))2

R(x) + εJQ(x)
+ o

(
ε2
)

and since JP and JQ are valid perturbations, by equation 2.5 we have:

Df (P ||Q) =
f ′′(1)

2
ε2
∑
x∈Ω

(JP (x)− JQ(x))2

R(x)
(

1 + ε
JQ(x)
R(x)

) + o
(
ε2
)
.

Using the Taylor approximation (1 + x)−1 = 1− x+ o(x), where lim
x→0

o (x)

x
= 0, we get:

Df (P ||Q) =
f ′′(1)

2
ε2
∑
x∈Ω

(JP (x)− JQ(x))2

R(x)

(
1− ε

JQ(x)

R(x)
+ o(ε)

)
+ o

(
ε2
)
.

Collecting all o
(
ε2
)

terms, we have the desired approximation:

Df (P ||Q) =
f ′′(1)

2
ε2
∑
x∈Ω

(JP (x)− JQ(x))2

R(x)
+ o

(
ε2
)

=
f ′′(1)

2

∑
x∈Ω

(P (x)−Q(x))2

R(x)
+ o(ε2)

where the second equality follows from ∀x ∈ Ω, P (x)−Q(x) = ε (JP (x)− JQ(x)).

We remark that for the function f in Theorem 2.1.1, f ′′(1) ≥ 0 by the convexity of f . The theorem
statement requires f ′′(1) > 0 to avoid the case f ′′(1) = 0, which does not lead to any meaningful
local approximation of Df (P ||Q).

Theorem 2.1.1 is a rather powerful result. Intuitively, it asserts that if we zoom into the statistical
manifold of distributions in the neighborhood of the reference distribution R, the f -divergence be-
tween any two distributions in the neighborhood is a squared weighted Euclidean norm regardless
of the function f . Hence, all f -divergences (with f satisfying the conditions in Theorem 2.1.1) are
locally equivalent to the same divergence measure to within a constant scale factor. Moreover, this
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local f -divergence is symmetric in its inputs P and Q. It is also evident from the derivation of
the theorem that the choice of reference distribution, R, is unimportant. Indeed, R can be any
distribution as long as P and Q (and other distributions of interest) are local perturbations of it.
So, the local f -divergence depends only on the neighborhood of interest and any distribution in this
neighborhood is a valid reference distribution. In particular, if we set the the reference distribution
R = Q, then the local f -divergence becomes:

Df (P ||Q) =
f ′′(1)

2

∑
x∈Ω

(P (x)−Q(x))2

Q(x)
+ o

(
ε2
)

(2.7)

in the discrete case, and:

Df (P ||Q) =
f ′′(1)

2

∫
Ω

(P (x)−Q(x))2

Q(x)
dλ(x) + o

(
ε2
)

(2.8)

in the continuous case. This version of local f -divergence can be recast using the χ2-divergence,
which we mentioned after Definition 1.1.2 of local KL divergence in section 1.1. We now formally
define the χ2-divergence in the discrete and continuous cases.

Definition 2.1.2 (χ2-Divergence). Given a probability space, (Ω,F ,P), where Ω is either countable
(discrete case) or Ω = Rn for some n ∈ Z+ (continuous case), and distributions (pmfs or pdfs) P
and Q on this space, the χ2-divergence between P and Q, denoted χ2(P,Q), is given by:

χ2(P,Q) ,
∑
x∈Ω

(P (x)−Q(x))2

Q(x)

in the discrete case, and:

χ2(P,Q) ,
∫

Ω

(P (x)−Q(x))2

Q(x)
dλ(x)

in the continuous case, where λ denotes the Lebesgue measure and the integral is the Lebesgue
integral.

We note that the χ2-divergence is in fact an f -divergence with f(t) = (t− 1)2 , t ≥ 0. So, it can be
defined for general (neither discrete nor continuous) distributions using the abstract definition of
f -divergence in Definition 2.1.1. However, its definition in the discrete and continuous cases suffices
for our purposes. Using Definition 2.1.2 of χ2-divergence, we can rewrite the local f -divergence (in
equations 2.7 and 2.8) as:

Df (P ||Q) =
f ′′(1)

2
χ2(P,Q) + o

(
ε2
)

(2.9)

in both discrete and continuous cases. This means that all f -divergences (with f satisfying the
conditions in Theorem 2.1.1) are in fact locally equivalent to a particular type of f -divergence: the
χ2-divergence. It is worth mentioning that the local f -divergence can also be derived from an infor-
mation geometric perspective. In fact, any f -divergence locally behaves like a Fisher information
metric on the statistical manifold; the local f -divergence is exactly the Fisher information metric.
We choose not to introduce local approximations in this manner, because we do not require the
heavy machinery of differential geometry in our analysis. Finally, we note that [10] proves the result
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in equation 2.9 for the discrete case, while our proof (which was derived independently) covers both
the discrete and continuous cases.

The entire former discussion regarding local f -divergence also holds for KL divergence. This is
because KL divergence is an f -divergence with f(t) = t log(t), t > 0 where f ′′(1) = 1. The next
corollary explicitly presents the local KL divergence, which trivially follows from Theorem 2.1.1.

Corollary 2.1.2 (Local KL Divergence). Suppose we are given probability distributions P , Q, and
R on the set Ω, such that P and Q are perturbations of the reference distribution R:

∀x ∈ Ω, P (x) = R(x) + εJP (x)

∀x ∈ Ω, Q(x) = R(x) + εJQ(x)

where ε > 0 and JP , JQ are valid additive perturbations. Then, the KL divergence between P and
Q can be locally approximated as:

D(P ||Q) =
1

2
ε2
∑
x∈Ω

(JP (x)− JQ(x))2

R(x)
+ o

(
ε2
)

=
1

2

∑
x∈Ω

(P (x)−Q(x))2

R(x)
+ o

(
ε2
)

in the discrete case, and:

D(P ||Q) =
1

2
ε2
∫

Ω

(JP (x)− JQ(x))2

R(x)
dλ(x) + o

(
ε2
)

=
1

2

∫
Ω

(P (x)−Q(x))2

R(x)
dλ(x) + o

(
ε2
)

in the continuous case, where λ denotes the Lebesgue measure and the integral is the Lebesgue
integral.

Corollary 2.1.2 generalizes Definition 1.1.2 to infinite discrete and continuous cases. The local KL
divergence in this corollary is consistent with the approximation derived in [4]; the only difference
is that [4] chooses R = Q. Our analysis in the ensuing chapters will hinge upon the local KL
divergence. Fortuitously, these local results will hold for f -divergences as well, as the local KL
divergence is essentially equivalent to the local f -divergence.

2.2 Bregman Divergence

We now turn our attention to the Bregman divergences. Because of their geometrically meaning-
ful definition, these divergences are attractive in algorithmic fields such as machine learning and
computational geometry. We present their definition in the discrete and finite case below.

Definition 2.2.1 (Bregman Divergence). Let g : P → R be a strictly convex function on the
convex set P ⊆ Rn where n ∈ Z+, such that g is differentiable on relint(P), the non-empty relative
interior of P. Given two points p ∈ P and q ∈ relint(P), the Bregman divergence between them,
denoted Bg(p, q), is given by:

Bg(p, q) , g(p)− g(q)−∇g(q)T (p− q)

where ∇g denotes the gradient of g, which is defined ∀x = [x1 · · · xn]T ∈ relint(P) as:

∇g(x) =

[
∂g

∂x1
· · · ∂g

∂xn

]T
.
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The technical condition that g is differentiable on relint(P) is perhaps the only aspect of Definition
2.2.1 which requires clarification. Intuitively, we would like g to be differentiable on the entire set
P with the possible exception of its boundary. So, it seems as though enforcing g to be differen-
tiable on P◦, the interior of the P, suffices. However, when P lives in a subspace of Rn, P◦ is
empty. The relative interior of P, relint(P), refers to the interior of P with respect to the subspace
on which P lives. Hence, letting g be differentiable on relint(P) is the right condition in this context.

From Definition 2.2.1, we see that the Bregman divergence is the error in the first order Tay-
lor approximation of the function g around the point q ∈ relint(P), evaluated at the point p ∈ P.
This provides an elegant geometric intuition for it. [11] provides a comprehensive list of the proper-
ties exhibited by Bregman divergences and illustrates their use in clustering. Bregman divergences
also generalize many known divergence measures including squared Euclidean distance, squared
Mahalanobis distance, Itakura-Saito distance, and KL divergence. Much like the f -divergence,
the Bregman divergence is non-negative due to the convexity of g. Indeed, for any p ∈ P and
q ∈ relint(P):

Bg(p, q) ≥ 0 (2.10)

with equality if and only if p = q. Bg(p, q) is also convex in its first argument p. Many notable results
from information geometry such as Pythagoras’ theorem for KL divergence can be generalized for
Bregman divergences. [11] presents a Pythagoras’ theorem for Bregman divergences which can
be used to create concepts like Bregman projections in analogy with information projections (i-
projections). A particularly useful property of Bregman divergences is their well-known affine
equivalence property [11], which is presented in the next lemma.

Lemma 2.2.1 (Affine Equivalence of Bregman Divergence). Let g : P → R be a strictly convex
function on the convex set P ⊆ Rn where n ∈ Z+, such that g is differentiable on relint(P), the
non-empty relative interior of P. Let f : P → R, f(x) = aTx + b, be an affine function where
a ∈ Rn and b ∈ R are fixed. For any two points p ∈ P and q ∈ relint(P), we have:

Bg+f (p, q) = Bg(p, q).

Proof.
By Definition 2.2.1, for any two points p ∈ P and q ∈ relint(P):

Bg+f (p, q) = g(p) + f(p)− g(q)− f(q)− (∇g(q) +∇f(q))T (p− q) .

Since ∀x ∈ P, ∇f(x) = a, we get:

Bg+f (p, q) = g(p) + aT p+ b− g(q)− aT q − b− (∇g(q) + a)T (p− q)
= g(p)− g(q)−∇g(q)T (p− q)
= Bg(p, q)

by Definition 2.2.1. This completes the proof.

We now consider locally approximating Bregman divergences. This can be done using the multivari-
ate version of Taylor’s theorem. Lemma 2.2.1 will be useful in understanding the intuition behind
this approximation. However, the proof will not use the lemma as it is not trivial to employ the
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lemma rigorously in the proof. The next theorem presents the local Bregman divergence. We note
that the notation for points in the set P is changed from lower case to upper case letters in Theorem
2.2.2 to permit a smooth transition to the subsequent discussion on probability distributions.

Theorem 2.2.2 (Local Bregman Divergence). Let g : P → R be a strictly convex function on the
convex set P ⊆ Rn where n ∈ Z+, such that g is twice continuously differentiable on relint(P),
the non-empty relative interior of P, and the Hessian matrix of g, ∇2g, is symmetric and positive
semidefinite:

∇2g =


∂2g
∂x21

∂2g
∂x1∂x2

· · · ∂2g
∂x1∂xn

∂2g
∂x2∂x1

∂2g
∂x22

· · · ∂2g
∂x2∂xn

...
...

. . .
...

∂2g
∂xn∂x1

∂2g
∂xn∂x2

· · · ∂2g
∂x2n

 � 0.

Suppose we are given the points P ∈ P and Q,R ∈ relint(P), such that P and Q are perturbations
of the reference point R:

P = R+ εJP

Q = R+ εJQ

for some small ε > 0, and JP and JQ which do not violate P ∈ P and Q ∈ relint(P), respectively.
Then, the Bregman divergence between P and Q can be locally approximated as:

Bg(P,Q) =
1

2
ε2(JP − JQ)T∇2g(R)(JP − JQ) + o

(
ε2
)

=
1

2
(P −Q)T∇2g(R)(P −Q) + o

(
ε2
)
.

Proof.
By Taylor’s theorem, we can perform a second order Taylor approximation of g around R ∈
relint(P). Letting any P = R + εJP ∈ P, for some small ε > 0, be the input to the Taylor
approximation, we have:

g(P ) = g(R) +∇g(R)T (P −R) +
1

2
(P −R)T ∇2g(R) (P −R) + o

(
ε2
)

where we express the error in the second order Taylor approximation as o
(
ε2
)
, which denotes

lim
ε→0+

o
(
ε2
)

ε2
= 0, because P − R = εJP . Expanding and collecting appropriate terms on the right

hand side of this equation, we have:

g(P ) =

(
g(R)−∇g(R)TR+

1

2
RT∇2g(R)R

)
+
(
∇g(R)−∇2g(R)R

)T
P

+
1

2
P T∇2g(R)P + o

(
ε2
)
. (2.11)

Thus, for any P ∈ P and Q ∈ relint(P), such that P and Q are perturbations of R: P = R + εJP
and Q = R+ εJQ for some small ε > 0, we have the Bregman divergence:

Bg(P,Q) = g(P )− g(Q)−∇g(Q)T (P −Q)

=
1

2
P T∇2g(R)P − 1

2
QT∇2g(R)Q+

(
∇g(R)−∇2g(R)R

)T
(P −Q)

−∇g(Q)T (P −Q) + o
(
ε2
)
. (2.12)
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To evaluate the ∇g(Q) term in equation 2.12, we find the first order Taylor approximation of
∇g : relint(P)→ Rn around R. Using Taylor’s theorem:

∇g(Q) = ∇g(R) +∇2g(R)(Q−R) + ~o(ε)

where ~o(ε) denotes a vector in Rn whose entries are all o(ε), which stands for lim
ε→0+

o (ε)

ε
= 0. The

error in the Taylor approximation is expressed as ~o(ε) because Q − R = εJQ. We also note that
the Hessian matrix ∇2g of g is used in the above equation because it is the Jacobian matrix of ∇g.
Substituting the Taylor approximation of ∇g(Q) into equation 2.12, we have:

Bg(P,Q) =
1

2
P T∇2g(R)P − 1

2
QT∇2g(R)Q+

(
∇g(R)−∇2g(R)R

)T
(P −Q)

−
(
∇g(R) +∇2g(R)(Q−R) + ~o(ε)

)T
(P −Q) + o

(
ε2
)

=
1

2
P T∇2g(R)P − 1

2
QT∇2g(R)Q−QT∇2g(R)(P −Q) + ~o(ε)T (P −Q) + o

(
ε2
)

=
1

2

(
P T∇2g(R)P − 2QT∇2g(R)P +QT∇2g(R)Q

)
+ ε~o(ε)T (JP − JQ) + o

(
ε2
)

=
1

2
(P −Q)T∇2g(R)(P −Q) + o

(
ε2
)

=
1

2
ε2(JP − JQ)T∇2g(R)(JP − JQ) + o

(
ε2
)

as required. This completes the proof.

Theorem 2.2.2. and its proof contain some subtle points which require further clarification. Firstly,
while the local approximation of Bregman divergence makes it clear that g must be twice dif-
ferentiable, the reason why g is twice continuously differentiable in the theorem statement is in-
conspicuous. We add the continuity assumption on the second partial derivatives of g because
Clairaut’s theorem states that this is a sufficient condition to conclude that the Hessian matrix
∇2g is symmetric (or that the partial derivative operators commute). Clairaut’s theorem can be
found in introductory texts on multivariate calculus like [12]. The proof of Theorem 2.2.2 uses the
symmetry of ∇2g several times.

Secondly, Theorem 2.2.2 states that the Hessian matrix ∇2g is positive semidefinite, although
g is strictly convex. Indeed, positive semidefiniteness of ∇2g is all we can deduce from the strict
convexity of g; we cannot conclude ∇2g is positive definite [13]. However, the positive definiteness
of ∇2g(R) is a very desirable condition even though it is not required for the proof of Theorem
2.2.2. When ∇2g(R) is positive semidefinite but not positive definite, it has an eigenvalue of 0 and
hence a non-empty nullspace. This means that the local Bregman divergence between P and Q
may be 0 if P −Q ∈ nullspace

(
∇2g(R)

)
and P 6= Q. This contradicts our intuition of divergences

which should vanish only when the inputs are equal. If ∇2g(R) � 0 (positive definite), the local
Bregman divergence is 0 if and only if its inputs are equal. Hence, the condition ∇2g(R) � 0 causes
the local Bregman divergence to conform to our intuition.

Finally, we provide some intuition on Theorem 2.2.2 by suggesting an alternative non-rigorous
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proof. We first rewrite equation 2.11 in the proof of Theorem 2.2.2 for convenience:

g(P ) =

(
g(R)−∇g(R)TR+

1

2
RT∇2g(R)R

)
+
(
∇g(R)−∇2g(R)R

)T
P

+
1

2
P T∇2g(R)P + o

(
ε2
)
. (2.13)

Notice that the first two terms on the right hand side of this equation form an affine function of P .
Consider an alternative function, h : P → R, which is the non-affine part of g(P ) in equation 2.13:

∀P ∈ P, h(P ) =
1

2
P T∇2g(R)P (2.14)

where ∇2g(R) is a fixed matrix and we neglect the o
(
ε2
)

term. Assuming that ∇2g(R) is symmetric
and positive definite, the quadratic form h is strictly convex on P. It is also differentiable on
relint(P). So, for any P ∈ P and Q ∈ relint(P), h can be used to define the Bregman divergence:

Bh(P,Q) = h(P )− h(Q)−∇h(Q)T (P −Q)

=
1

2
P T∇2g(R)P − 1

2
QT∇2g(R)Q−QT∇2g(R)(P −Q)

=
1

2

(
P T∇2g(R)P − 2QT∇2g(R)P +QT∇2g(R)Q

)
=

1

2
(P −Q)T∇2g(R)(P −Q). (2.15)

By the affine equivalence property of Bregman divergences given in Lemma 2.2.1, we have that:

Bg(P,Q) =
1

2
(P −Q)T∇2g(R)(P −Q) + o

(
ε2
)

(2.16)

where we reinsert the o
(
ε2
)

term. While equation 2.16 matches the statement of Theorem 2.2.2,
this is clearly not a rigorous proof of the local Bregman divergence. The positive definite assump-
tion on ∇2g(R) (which does not hold for all strictly convex g) was essential to ensure h is strictly
convex, which in turn was essential in defining a Bregman divergence associated with h. Moreover,
we neglected a thorough analysis of the o

(
ε2
)

term. On the other hand, this calculation readily
elucidates the intuition behind the local Bregman divergence. The second order Taylor approxi-
mation of g leads to a quadratic function whose affine part does not affect the associated Bregman
divergence. Hence, we locally see the Bregman divergence associated to the quadratic term in the
Taylor approximation of g. This is why the local Bregman divergence resembles a squared Eu-
clidean distance with a symmetric weighting matrix.

In general, given the quadratic form h : P → R, h(x) = xTAx, where A is symmetric and positive
definite to ensure h is strictly convex and h is differentiable on relint(P), the associated Bregman
divergence between any P ∈ P and Q ∈ relint(P) is given by the derivation preceding equation
2.15:

Bh(P,Q) = (P −Q)TA(P −Q). (2.17)

This particular Bregman divergence is known as the squared Mahalanobis distance, although the
term is usually reserved for when A is the inverse of a covariance matrix [11]. The Mahalanobis
distance has many applications in classification methods like linear discriminant analysis. Theorem
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CHAPTER 2. LOCALLY APPROXIMATING DIVERGENCE MEASURES

2.2.2 illustrates that much like f -divergences, all Bregman divergences (with g satisfying the con-
ditions of the theorem and ∇2g being positive definite) are locally equivalent to a particular type
of Bregman divergence: the squared Mahalanobis distance.

On the other hand, unlike the f -divergence, the Bregman divergence does not inherently oper-
ate on probability distributions. However, we may take P to be the probability simplex in Rn.
This defines Bregman divergences between pmfs in the discrete and finite case (which is the only
case in which Bregman divergences are defined). We now compare the local approximations of
Bregman and f -divergences. Restricting Theorem 2.1.1 to the discrete and finite case, the local
f -divergence between the pmfs P = R + εJP ∈ P and Q = R + εJQ ∈ relint(P), where ε > 0, for
some reference pmf R ∈ relint(P) is:

Df (P ||Q) =
f ′′(1)

2
(P −Q)T [R]−1 (P −Q) + o

(
ε2
)

(2.18)

where we use the notation for diagonal matrix defined in section 1.2 in equation 1.11. Restating
the local Bregman divergence in Theorem 2.2.2 for convenience, we have:

Bg(P,Q) =
1

2
(P −Q)T∇2g(R)(P −Q) + o

(
ε2
)
. (2.19)

Since the Hessian matrix ∇2g(R) is symmetric and positive semidefinite, we can orthogonally
diagonalize it by the spectral theorem:

∇2g(R) = UDUT (2.20)

where U is an orthogonal matrix of right eigenvectors of ∇2g(R), and D is a diagonal matrix of
eigenvalues (which are all non-negative as ∇2g(R) is positive semidefinite). Substituting equation
2.20 into equation 2.19, we get:

Bg(P,Q) =
1

2

(
UT (P −Q)

)T
D
(
UT (P −Q)

)
+ o

(
ε2
)
. (2.21)

Comparing equations 2.18 and 2.21, we see that both the local f -divergence and the local Breg-
man divergence are proportional to different squared weighted norms of P − Q. In the local
f -divergence, the weights are given by the diagonal matrix [R]−1. In the local Bregman divergence,
we first change the basis of P − Q using UT , and then take its squared norm with respect to the
diagonal weight matrix D. Although the local Bregman and f -divergences are similar, the general
form of the local f -divergence matches that of the local KL divergence (Corollary 2.1.2) while that
of the local Bregman divergence does not. Unfortunately, this means the results we will develop for
local KL divergence in the ensuing chapters will not necessarily generalize for Bregman divergences.

To redirect our discussion to local KL divergence, which will be the focus of the remainder of this
thesis, we verify that the local Bregman divergence formula agrees with that of the local KL diver-
gence. The KL divergence is a Bregman divergence for the strictly convex function H− : P → R,
where P ∈ Rn is the probability simplex, and H− is the negative Shannon entropy function [11]
given in Definition 1.0.2:

∀P = [p1 · · · pn]T ∈ P, H−(P ) =

n∑
i=1

pi log(pi). (2.22)
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Noting that H− is twice continuously differentiable on relint(P), we compute the Hessian matrix
of H− for any R ∈ relint(P):

∇2H−(R) = [R]−1 (2.23)

where we use the notation for diagonal matrix defined in section 1.2 in equation 1.11. Using
Theorem 2.2.2, we have for a reference pmf R ∈ relint(P), and any P = R + εJP ∈ P and
Q = R+ εJQ ∈ relint(P) for some ε > 0:

D(P ||Q) = BH−(P,Q) =
1

2
(P −Q)T [R]−1 (P −Q) + o

(
ε2
)
. (2.24)

This is consistent with the local KL divergence formula given in Corollary 2.1.2, and Definition
1.1.2 with R = Q. We note that [R]−1 is well-defined as R ∈ relint(P). In section 1.1 where
we first introduced the reference pmf, we restricted it to the “interior of the probability simplex”.
This meant that all probability masses of the reference pmf were strictly positive. The discussion
following Definition 2.2.1 explained why we should actually use the concept of relative interior to
correctly define this notion. Although we avoided this additional rigor in the introductory chapter
for simplicity, we will use it from hereon.

Before closing this chapter, we draw attention to the beautiful interpretation of KL divergence
imparted by the geometric definition of Bregman divergence. Writing KL divergence using Defini-
tion 2.2.1 of Bregman divergence, we have for any P ∈ P and Q ∈ relint(P):

D(P ||Q) = H−(P )−H−(Q)−∇H−(Q)T (P −Q)

= H(Q) +∇H(Q)T (P −Q)−H(P ) (2.25)

where H : P → R denotes the Shannon entropy function from Definition 1.0.2. Equation 2.25
characterizes the KL divergence between P and Q as the non-negative error in the first order
Taylor approximation of the Shannon entropy function around the pmf Q, evaluated at the pmf P .
This elegant, albeit uncommon interpretation of KL divergence turns out to be useful in the next
chapter.
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Chapter 3

Bounds on Local Approximations

In this chapter, we analyze the performance of algorithms which exploit the local approximation
framework introduced in chapter 1. We restrict our attention to algorithms developed from the
study of the linear information coupling problem [4]. [8] provides an example of such an algorithm
for inference on hidden Markov models and illustrates its use in image processing. To shed light on
how we evaluate performance, we first recapitulate the linear information coupling problem given
in Definition 1.3.3 in section 1.3. In this problem, we are given a Markov chain U → X → Y ,
where all alphabet sets are discrete and finite, and the marginal pmf PX and channel conditional
probabilities PY |X are known. The objective is to maximize the mutual information between U
and Y given that the mutual information between U and X is constrained. This is formally shown
in the statement below:

max
PU ,PX|U :U→X→Y

I(U ;X)≤ 1
2
ε2

I(U ;Y ) (3.1)

where we maximize over all possible pmfs PU and all possible conditional pmfs PX|U . We assume
that the conditional pmfs PX|U are perturbations of the marginal pmf PX :

∀u ∈ U , PX|U=u = PX + ε
[√

PX

]
Ku (3.2)

where U is the alphabet set of U , {Ku, u ∈ U} are normalized perturbation vectors, and ε > 0 is
small enough so that ∀u ∈ U , PX|U=u are valid pmfs. As shown in statement 1.34 in section 1.3,
applying such local approximations transforms the optimization problem in statement 3.1 into:

max
{Ku,u∈U}

∑
u∈U

PU (u) ‖BKu‖2

subject to:
∑
u∈U

PU (u) ‖Ku‖2 = 1,

∀u ∈ U ,
√
PX

T
Ku = 0,

and
∑
u∈U

PU (u)
[√

PX

]
Ku = 0. (3.3)

where B is the DTM, and we only maximize over the vectors {Ku, u ∈ U} because PU does not
affect the optimization.
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For purposes which will soon become apparent, we transform the optimization problem in statement
3.3 into another equivalent optimization problem. Recall equation 1.38 from section 1.3:∑

u∈U
PU (u) ‖BKu‖2 ≤ σ2

∑
u∈U

PU (u) ‖Ku‖2 (3.4)

where 0 ≤ σ ≤ 1 is the second largest singular value of B. Rearranging this, we get:∑
u∈U

PU (u) ‖BKu‖2∑
u∈U

PU (u) ‖Ku‖2
≤ σ2 (3.5)

assuming the denominator on the left hand side is strictly positive. Without loss of generality,
let the alphabet set U = {1, . . . , |U|} , where 2 ≤ |U| < ∞. Recalling from section 1.3 that
choosing K1 to be the unit norm right singular vector of B corresponding to σ, K2 = −K1, and
K3 = · · · = K|U| = 0 solves the problem in statement 3.3, it is readily seen that this choice of
{Ku, u ∈ U} also achieves inequality 3.5 with equality. Hence, this choice of {Ku, u ∈ U} solves the
optimization problem given below:

sup
{Ku,u∈U}

∑
u∈U

PU (u) ‖BKu‖2∑
u∈U

PU (u) ‖Ku‖2

subject to:
∑
u∈U

PU (u) ‖Ku‖2 > 0,

∀u ∈ U ,
√
PX

T
Ku = 0,

and
∑
u∈U

PU (u)
[√

PX

]
Ku = 0. (3.6)

Once again, note that PU does not affect the optimization. By referring back to section 1.3, where
we derived the different terms and constraints used in problem statement 3.6, we recognize that
problem 3.6 is equivalent to:

sup
PU ,PX|U :U→X→Y

I(U ;X)>0

I(U ;Y )

I(U ;X)
(3.7)

where PX and PY |X are fixed, and we try to find the optimizing PX|U by assuming they are local
perturbations of PX . Moreover, the preceding discussion reveals that:

sup
PU ,PX|U :U→X→Y

I(U ;X)>0

I(U ;Y )

I(U ;X)

local
= σ2 (3.8)

under the local approximations of PX|U . This is proven rigorously in section 3.3 where
local
= is

made precise. For now, it suffices to observe that equation 3.8 trivially implies the tighter Data
Processing Inequality (DPI) presented in equation 1.40 in section 1.3:

I(U ;Y )
local
≤ σ2I(U ;X) (3.9)
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CHAPTER 3. BOUNDS ON LOCAL APPROXIMATIONS

which also holds under local approximations. We deduce from this discussion that the linear in-
formation coupling problem (statement 3.3) is equivalent to the problem in statement 3.6, which
corresponds to the tightness of the DPI. Moreover, both problems are solved by computing the
SVD of B.

Our interest in problem 3.7 is twofold. Under local approximations, it is equivalent to the lin-
ear information coupling problem. Furthermore, it is a recognized global problem (without any
approximations) in the information theory literature. Therefore, by comparing the optimal value
of this problem in the local and global scenarios, we can evaluate the performance of algorithms
inspired by the local SVD solution to the linear information coupling problem. The global optimal
value of problem 3.7 is intimately related to the concept of hypercontractivity, and the local opti-
mal value equals the Hirschfeld-Gebelein-Rényi maximal correlation. We first introduce some of the
literature surrounding hypercontractivity and the Hirschfeld-Gebelein-Rényi maximal correlation
in sections 3.1 and 3.2, respectively. Then, we compare these values using bounds for the discrete
and finite, and Gaussian cases, respectively, in sections 3.3 and 3.4.

3.1 Hypercontractivity

Hypercontractivity is a fundamental notion in statistics that has found applications in information
theory, complexity theory, and quantum field theory. This is because hypercontractive inequali-
ties are useful for bounding arguments in probabilistic theorems, and more generally in studying
extremal problems in probabilistic spaces with distance measures. Hypercontractivity often finds
use in information theory due to the tensorization properties it imparts on the quantities derived
from it. Tensorization facilitates single letterization, which is a desirable property in many capacity
determination problems. We introduce hypercontractivity by presenting a famous theorem in the
context of Boolean functions. To this end, we first define some pertinent concepts such as p-norms
of random variables and noise operators.

Definition 3.1.1 (p-Norm of Random Variables). Suppose we are given a probability space
(Ω,F ,P), and a random variable X : Ω → R on this space. For any p ∈ R, p ≥ 1, the p-norm of
X is given by:

‖X‖p , E [|X|p]
1
p .

Intuitively, Definition 3.1.1 [14] parallels the Euclidean notion of p-norm. To define the noise
operator, consider a discrete memoryless binary symmetric channel (BSC) with flip-over probability
1−ρ

2 , ρ ∈ [−1, 1]. Consider passing a Boolean random vector Xn
1 ∈ {−1, 1}n (recalling the notation

in equation 1.41 in section 1.3) through this BSC to get the output random vector Y n
1 . In such a

scenario, we may define an entity known as the noise operator [15], which maps Boolean functions
to other Boolean functions. The noise operator is characterized by the parameter ρ of the BSC.

Definition 3.1.2 (Noise Operator). Suppose we are given a BSC with parameter ρ ∈ [−1, 1], with
input Boolean random vector Xn

1 , and output Boolean random vector Y n
1 . Then, for any input

Boolean function g : {−1, 1}n → R, the noise operator, denoted Tρ, is defined as:

(Tρg) (Xn
1 ) , EPY n1 |Xn1 [g(Y n

1 )|Xn
1 ]
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3.1. HYPERCONTRACTIVITY

where Tρ takes the Boolean function g as input and produces the Boolean function Tρg : {−1, 1}n →
R as output.

Operationally, the noise operator smooths out the high frequency components in the Fourier series
of g. Note that here, we refer to Fourier analysis on the hypercube rather than the traditional setting
of periodic functions. The notion of smoothing by a noise operator is concretely characterized by
the hypercontractivity theorem [15].

Theorem 3.1.1 (Hypercontractivity Theorem). Suppose we are given a BSC with parameter ρ ∈
[−1, 1], with input Boolean random vector Xn

1 , and output Boolean random vector Y n
1 . For every

1 ≤ q ≤ p, if ρ2(p− 1) ≤ q − 1, then for any Boolean function g : {−1, 1}n → R, we have:

‖ (Tρg) (Xn
1 ) ‖p ≤ ‖g (Y n

1 ) ‖q.

A proof of this theorem can be found in [15]. There are generalizations of hypercontractivity be-
yond Boolean functions, and [15] presents many such generalizations for the interested reader. In
the inequality in Theorem 3.1.1, as q ≤ p, the norm on the left hand side gives more importance
to larger values of (Tρg) (Xn

1 ). Intuitively, the inequality resembles a Chebyshev or minimax opti-
mization constraint when p is large. The hypercontractivity theorem provides sufficient conditions
for the BSC parameter to ensure that larger values of (Tρg) (Xn

1 ) are forced below an average of
g (Y n

1 ). Hence, the theorem says that noise in a channel distributes out locally clustered peaks of
energy in g. This intuition also gives meaning to the name “hypercontractivity.”

We now generalize the notion of hypercontractivity for any two random variables (X,Y ). In the
remainder of this section, we will assume that we have some probability space, (Ω,F ,P), with the
random variables X and Y defined on this space. X and Y will take values in the discrete and
finite sets X and Y, respectively. Moreover, we will denote the joint pmf of (X,Y ) as PX,Y , and
further assume that ∀x ∈ X , PX(x) > 0 and ∀y ∈ Y, PY (y) > 0 where necessary. We first define
the hypercontractivity ribbon below [16]. This concept will turn out to be deeply intertwined with
the global case of problem 3.7 described earlier.

Definition 3.1.3 (Hypercontractivity Ribbon). For random variables X and Y with joint pmf
PX,Y defined over X × Y, we define the hypercontractivity ribbon, denoted R(X;Y ), as:

R(X;Y ) ,
{

(p, q) ∈ R2 : 1 ≤ q ≤ p and for all functions g : Y → R, ‖E [g(Y )|X] ‖p ≤ ‖g(Y )‖q
}
.

We consider the hypercontractivity ribbon because it can be used to define a hypercontractive
constant s∗(X;Y ) [16]. This is the quantity through which hypercontractivity interacts with in-
formation theory. To formally specify this quantity, we follow the exposition of [16] and use their
notation. To this end, for any p ≥ 1, we define:

s(p)(X;Y ) , inf{r ∈ R : (p, pr) ∈ R(X;Y )}. (3.10)

Since s(p)(X;Y ) is monotonically decreasing in p [16], and bounded below by 0, its limit as p→∞
is well-defined. We call this limit the hypercontractive constant s∗(X;Y ). For fixed p, s(p)(X;Y )
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CHAPTER 3. BOUNDS ON LOCAL APPROXIMATIONS

is the infimum ratio of q
p such that (p, q) ∈ R(X;Y ), where we note that R(X;Y ) is a closed and

connected set in R2 [17]. So, (p, ps(p)(X;Y )) traces the lower boundary of R(X;Y ) on the (p, q)-
plane. s∗(X;Y ) is thus the infimum ratio of q

p as p → ∞, and characterizes the lower boundary
of the hypercontractivity ribbon in the limit as p → ∞. For this reason, [14] states that s∗(X;Y )
is the chordal slope of the boundary of the hypercontractivity ribbon R(X;Y ) at infinity. We
formally define the hypercontractive constant in the next definition.

Definition 3.1.4 (Hypercontractive Constant). For random variables X and Y with joint pmf
PX,Y defined over X × Y, we define the hypercontractive constant, denoted s∗(X;Y ), as:

s∗(X;Y ) , lim
p→∞

s(p)(X;Y ).

The constant s∗(X;Y ) is a bounded quantity. Indeed, as R(X;Y ) ⊆
{

(p, q) ∈ R2 : 1 ≤ q ≤ p
}

, for

any p ≥ 1, 0 ≤ s(p)(X;Y ) ≤ 1. Hence, we have:

0 ≤ s∗(X;Y ) ≤ 1. (3.11)

Although we promised that the hypercontractive constant would be information theoretically mean-
ingful, there has been little evidence of this so far. Thus, we provide an alternative and equivalent
definition of s∗(X;Y ) which is more tangibly meaningful from an information theoretic perspec-
tive [14].

Definition 3.1.5 (Hypercontractive Constant). For random variables X and Y with joint pmf
PX,Y defined over X × Y, such that ∀x ∈ X , PX(x) > 0 and ∀y ∈ Y, PY (y) > 0, we define the
hypercontractive constant, denoted s∗(X;Y ), as:

s∗(X;Y ) , sup
RX :RX 6=PX

D(RY ||PY )

D(RX ||PX)

where we optimize over all pmfs RX on X such that RX 6= PX . Note that PX and PY are the
marginal pmfs of PX,Y , and RY is the marginal pmf of the joint pmf RX,Y = PY |XRX . Furthermore,
if X or Y is a constant almost surely, we define s∗(X;Y ) = 0.

The ratio in Definition 3.1.5 resembles problem statement 3.7 introduced earlier. In fact, the ratio
can be changed to one with mutual information terms rather than KL divergence terms. This offers
another characterization of the hypercontractive constant. The next theorem from [14] presents
this characterization.

Theorem 3.1.2 (Mutual Information Characterization of Hypercontractive Constant). For ran-
dom variables X and Y with joint pmf PX,Y defined over X × Y, such that ∀x ∈ X , PX(x) > 0
and ∀y ∈ Y, PY (y) > 0, we have:

s∗(X;Y ) = sup
PU ,PX|U :U→X→Y

I(U ;X)>0

I(U ;Y )

I(U ;X)

where U → X → Y is a Markov chain, the random variable U takes values over the discrete and
finite set U , and we optimize over all possible pmfs PU on U and all possible conditional pmfs PX|U
so that the marginal pmf of X remains fixed at PX .
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In Theorem 3.1.2, we fix the joint pmf PX,Y and find the optimum PU and PX|U with a constraint
on the marginal PX . Hence, the result of the optimization is truly a function of PX,Y , and the
notation s∗(X;Y ) captures this by not including the U . [14] provides a proof of this theorem using
a geometric characterization of s∗(X;Y ), but we omit it here for the sake of brevity. It is worth
noting that a supremum rather than a maximum is needed in both Theorem 3.1.2 and Definition
3.1.5. We must constrain the denominator to be strictly positive in both cases for the ratios to be
well-defined, but the optimal value of the ratio may occur in the limit as the denominator tends to 0.

The characterization of s∗(X;Y ) in Theorem 3.1.2 matches the global case of problem 3.7. Hence,
the hypercontractive constant equals the global optimal value of problem 3.7. This was our mo-
tivation to study hypercontractivity all along. Conveniently, the preceding discussion has also
illustrated some of the wider theoretical significance of the hypercontractive constant. In section
3.3, we will compare s∗(X;Y ) to the local optimal value given in equation 3.8.

We now list a few properties of the hypercontractivity ribbon and the hypercontractive constant.
Many of these properties can be found in [14], [16], and [17]. In each of the ensuing lemmata, all
random variables are defined on the same probability space and take values on discrete and finite
sets. Moreover, all probability masses in the marginal pmfs of these random variables are assumed
to be strictly positive when required (for the hypercontractive constants to be well-defined). To
avoid being pedantic, we do not state these conditions explicitly every time.

Lemma 3.1.3 (Tensorization). If (X1, Y1) and (X2, Y2) are independent, then:

R(X1, X2;Y1, Y2) = R(X1;Y1) ∩R(X2;Y2) and s∗(X1, X2;Y1, Y2) = max{s∗(X1;Y1), s∗(X2;Y2)}.

Lemma 3.1.4 (Data Processing Inequality). If the random variables W → X → Y → Z form a
Markov Chain, then:

R(X;Y ) ⊆ R(W ;Z) and s∗(X;Y ) ≥ s∗(W ;Z).

Lemma 3.1.5 (Vanishing Property). The random variables X and Y are independent if and only
if s∗(X;Y ) = 0.

Proof.
(⇒) If X and Y are independent, then PY |X = PY . By Definition 3.1.5:

s∗(X;Y ) = sup
RX :RX 6=PX

D(RY ||PY )

D(RX ||PX)
.

For any marginal pmf RX 6= PX , RY is the marginal pmf of Y corresponding to RX,Y = PY |XRX =
PYRX . This means RY = PY , which implies D(RY ||PY ) = 0. Hence, s∗(X;Y ) = 0. This can also
be shown using the characterization of s∗(X;Y ) in Theorem 3.1.2.
(⇐) If s∗(X;Y ) = 0, then by Definition 3.1.5:

D(RY ||PY )

D(RX ||PX)
= 0
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for every pmf RX 6= PX . This implies ∀RX 6= PX , D(RY ||PY ) = 0. So, ∀RX 6= PX , RY =
PY . Let X and Y be the finite alphabet sets of X and Y , respectively. For every i ∈ X , let
RiX be the pmf such that RiX(i) = 1 and ∀x ∈ X\{i}, RiX(x) = 0. Then, ∀y ∈ Y, PY (y) =∑

x∈X PY |X(y|x)RiX(x) = PY |X(y|i). Since this holds for every i ∈ X , PY |X = PY . Hence, X and
Y are independent.

To avoid digressions, we do not prove Lemmata 3.1.3 and 3.1.4 here. [14] provides two proofs for the
tensorization property of s∗(X;Y ). The first uses the KL divergence characterization of s∗(X;Y ),
and the second uses an elegant geometric characterization.

We end this section having identified the hypercontractive constant, s∗(X;Y ), as the global opti-
mal solution to problem 3.7, and explored some of its properties. We note that more generally,
hypercontractivity has recently re-emerged as a powerful tool in information theory. It has been
used in [16] to understand the mutual information between Boolean functions; an endeavor which
originates from a conjecture in [18]. It has also been used in [17] to derive impossibility results
for non-interactive simulation of joint distributions. While such literature is interesting in its own
right, we will not need to delve any further into the depths and subtleties of hypercontractivity for
our purposes.

3.2 Hirschfeld-Gebelein-Rényi Maximal Correlation

We now consider characterizing the local optimal value of problem 3.7 given in equation 3.8. In
our ensuing discussion along this front, we will require a unique notion of correlation between two
random variables X and Y . Recall that in the zero mean and unit variance case, the Pearson
correlation coefficient is given by E [XY ]. Keeping this in mind, we define a stronger notion of
correlation known as the Hirschfeld-Gebelein-Rényi maximal correlation [14], which we will refer
to as the Rényi correlation from hereon.

Definition 3.2.1 (Hirschfeld-Gebelein-Rényi Maximal Correlation). Suppose we are given a prob-
ability space (Ω,F ,P), and jointly distributed random variables X : Ω→ X and Y : Ω→ Y on this
space such that X ,Y ⊆ R. Then, we define the Hirschfeld-Gebelein-Rényi maximal correlation, or
simply Rényi correlation, between X and Y as:

ρ(X;Y ) , sup
f :X→R, g:Y→R :
E[f(X)]=E[g(Y )]=0

E[f2(X)]=E[g2(Y )]=1

E [f(X)g(Y )]

where the supremum is taken over all Borel measurable functions, f and g, subject to the zero
mean and unit variance constraints. Furthermore, when one of X or Y is constant almost surely,
there exist no functions f and g which satisfy the constraints, and we define ρ(X;Y ) = 0.

This definition of Rényi correlation naturally extends to cover random vectors or random vari-
ables whose ranges are arbitrary measurable spaces. A compelling aspect of Rényi correlation is
its ability to summarize the dependence between such random vectors or random variables with
non-standard ranges with a single real scalar. We also note that Definition 3.2.1 is characteristic
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of Rényi’s style of generalizing fundamental metrics in probability and information theory using
arbitrary functions. For example, Rényi generalized Shannon entropy to Rényi entropy by looking
at the functional equation which forces the information in independent events to add. He changed
the linear averaging of individual information terms to averaging functions of these terms and then
applying the inverse function. This eventually led to the Rényi entropy family. Correspondingly,
Definition 3.2.1 generalizes the Pearson correlation coefficient by finding alternative representations
of X and Y by applying functions to them, where the functions are chosen to maximize the Pearson
correlation coefficient.

Although we introduce Rényi correlaiton using Definition 3.2.1, in his paper [19], Rényi intro-
duced it by demonstrating that it satisfied seven axioms which “natural” dependence measures
should exhibit. We will not belabor these axioms, but develop them from Definition 3.2.1 when the
need arises. We will however, take a moment to appreciate some properties of Rényi correlation
with the hope that the reader will recognize the tacit parallels with the hypercontractive constant.
We commence by noting that:

0 ≤ ρ(X;Y ) ≤ 1. (3.12)

This is Rényi’s third axiom [19]. The upper bound follows from the Cauchy-Schwarz inequality.
The lower bound can be argued by realizing that if ρ(X;Y ) < 0, we may negate f or g (but not
both) to get ρ(X;Y ) > 0, and this contradicts the supremum in Definition 3.2.1. The singular value
characterization of ρ(X;Y ) (soon to come in Theorem 3.2.4) also trivially implies both bounds,
albeit only in the discrete and finite case for which the characterization is proved. We now list a
few other properties of Rényi correlation (which hold for general random variables, not just discrete
ones). In each of the ensuing lemmata, all random variables are defined on the same probability
space although we do not state these conditions explicitly.

Lemma 3.2.1 (Tensorization). If (X1, Y1) and (X2, Y2) are independent, then:

ρ(X1, X2;Y1, Y2) = max {ρ(X1, Y1), ρ(X2, Y2)} .

Lemma 3.2.2 (Data Processing Inequality). If the random variables W → X → Y → Z form a
Markov Chain, where X and Y take values on X and Y, respectively, and W = r(X) and Z = s(Y )
for Borel measurable functions r : X → R and s : Y → R, then:

ρ(X;Y ) ≥ ρ(W ;Z).

Lemma 3.2.3 (Vanishing Property). The random variables X and Y are independent if and only
if ρ(X;Y ) = 0.

These lemmata have been collated in [14] and [17]. In particular, lemmata 3.2.1 and 3.2.2 are
proven in [20] and [17], respectively. Lemma 3.2.3 is Rényi’s fourth axiom [19]; its forward
statement is straightforward to derive from Definition 3.2.1. Indeed, if X and Y are indepen-
dent, then f(X) and g(Y ) are independent for any Borel measurable functions f and g. Thus,
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E[f(X)g(Y )] = E[f(X)]E[g(Y )] = 0, which means ρ(X;Y ) = 0.

We now motivate the singular value characterization of Rényi correlation which will be pivotal
to our arguments in section 3.3. To this end, if we briefly muse on information measures of discrete
random variables, it becomes intuitively apparent that they are independent of the values taken by
the random variables. This property manifests itself in the definition of discrete Shannon entropy
in Definition 1.0.2, for example. Moreover, Definition 3.1.5 makes it clear that the hypercontractive
constant, s∗(X;Y ), has this property. The Rényi correlation for discrete random variables shares
this property as well. In fact, the optimization over all functions in Definition 3.2.1 renders the
Rényi correlation independent of the values taken by the random variables in the discrete case.
A more direct approach to illustrating that ρ(X;Y ) is solely a function of the joint distribution
of (X,Y ) is to use the singular value characterization of Rényi correlation. This characterization
shows that Rényi correlation is the second largest singular value of the DTM for discrete and finite
random variables. Recall that given discrete and finite random variables (X,Y ), we may interpret
X as the source and Y as the output of a channel. Then, letting W denote the column stochastic
transition matrix of conditional probabilities PY |X as shown in equation 1.23, the DTM is given
by:

B =
[√

PY

]1
W
[√

PX

]
(3.13)

according to Definition 1.3.4. Assuming without loss of generality that X and Y take values on
X = {1, . . . , n} and Y = {1, . . . ,m}, respectively, it is easy to derive that:

∀y ∈ Y, ∀x ∈ X , Byx =
PX,Y (x, y)√
PX(x)PY (y)

(3.14)

where Byx is the entry in the yth row and xth column of B. Equation 3.14 illustrates how every
entry of B displays a symmetry in X and Y . This offers some credence to the claim that Rényi
correlation is the second largest singular value of B, because Rényi correlation is symmetric in
its inputs X and Y ; this is Rényi’s second axiom [19]. The characterization is stated in the next
theorem [14]. We also prove it here, because the statement is rather counter-intuitive.

Theorem 3.2.4 (DTM Singular Value Characterization of Rényi Correlation). Suppose we are
given a probability space (Ω,F ,P), and random variables X : Ω→ X and Y : Ω→ Y on this space
such that |X | <∞ and |Y| <∞. Given further that the joint pmf, PX,Y , is such that the marginals
satisfy ∀x ∈ X , PX(x) > 0 and ∀y ∈ Y, PY (y) > 0, the Rényi correlation, ρ(X;Y ), is the second
largest singular value of the divergence transition matrix (DTM) B.

Proof.
We use the notation from equations 1.11 and 1.12 in this proof. Moreover, we represent marginal
pmfs, PX and PY , as column vectors. Let f and g be the column vectors representing the range of
the functions f : X → R and g : Y → R, respectively. From equation 3.13, we have:

B =
[√

PY

]−1
W
[√

PX

]
where the columns of W are conditional pmfs of Y given X.

We first show that the largest singular value of B is 1. Consider M =
[√
PY
]−1

BBT
[√
PY
]
.
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On the one hand, M has the same set of eigenvalues as BBT , because we are simply using a simi-
larity transformation. As BBT � 0, the eigenvalues of M and BBT are non-negative real numbers
by the Spectral Theorem. On the other hand, we have:

M = [PY ]−1W [PX ]W T = VW T

where V = [PY ]−1W [PX ] is the row stochastic reverse transition probability matrix of conditional
pmfs PX|Y (i.e. each row of V is a conditional pmf). Since V and W T are both row stochastic, their

product M = VW T is also row stochastic. Hence, by the Perron-Frobenius Theorem, the largest
eigenvalue of M (and thus BBT ) is 1. It follows that the largest singular value of B is 1. Notice
further that

√
PX and

√
PY are the right and left singular vectors of B, respectively, corresponding

to singular value 1. Indeed, we have:

B
√
PX =

[√
PY

]−1
W
[√

PX

]√
PX =

√
PY ,

√
PY

T
B =

√
PY

T
[√

PY

]−1
W
[√

PX

]
=
√
PX .

Next, note that we can express the expectations in Definition 3.2.1 of Rényi correlation in terms of
B, PX , PY , f , and g.

E [f(X)g(Y )] =
([√

PY

]
g
)T

B
([√

PX

]
f
)

E [f(X)] =
([√

PX

]
f
)T √

PX

E [g(Y )] =
([√

PY

]
g
)T √

PY

E
[
f2(X)

]
=

∥∥∥[√PX] f∥∥∥2

E
[
g2(Y )

]
=

∥∥∥[√PY ] g∥∥∥2

Letting a =
[√
PX
]
f and b =

[√
PY
]
g, we have from Definition 3.2.1:

ρ(X;Y ) = sup
a,b:

aT
√
PX=bT

√
PY =0

‖a‖2=‖b‖2=1

bTBa.

Since aT
√
PX = bT

√
PY = 0, a is orthogonal to the right singular vector of B corresponding to

singular value 1, and b is orthogonal to the left singular vector of B corresponding to singular value
1. Hence, the above maximization clearly gives the second largest singular value of B as a and b
are normalized. This completes the proof.

It is worth mentioning that Rényi correlation is not the only measure of dependence based on sin-
gular values of the DTM. The authors of [21] define the k-correlation family by taking kth Ky Fan
norms (sum of k largest singular values) of BBT minus the first singular value of 1. In particular,
this means that the squared Rényi correlation and the standard squared Schatten 2-norm minus 1
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are both k-correlations.

Recall from equation 3.8 that the squared second largest singular value of B is the local opti-
mal value of problem 3.7. Theorem 3.2.4 characterizes this local optimal value as the squared
Rényi correlation. So, we have identified both local and global optimal values of problem 3.7 as
fundamental quantities known in the information theory literature. Moreover, like the hypercon-
tractive constant, the Rényi correlation has characterizations in terms of both mutual information
and KL divergence. Equation 3.8 is its mutual information characterization. We now present a
corollary of Theorem 3.2.4, which illustrates that ρ(X;Y ) can also be interpreted as a kind of
second largest singular value of the channel matrix W when appropriate norms are used. This is
essentially the KL divergence characterization. We note that notation from Definition 1.1.1 is used
in the corollary.

Corollary 3.2.5 (Channel Characterization of Rényi Correlation). Suppose we are given a prob-
ability space (Ω,F ,P), and random variables X : Ω → X and Y : Ω → Y on this space such that
|X | <∞ and |Y| <∞, with marginal pmfs satisfying ∀x ∈ X , PX(x) > 0 and ∀y ∈ Y, PY (y) > 0.
Letting W by the column stochastic matrix of conditional pmfs PY |X , the squared Rényi correlation
is given by:

ρ2(X;Y ) = sup
JX :JX 6=0
1T JX=0

‖WJX‖2PY
‖JX‖2PX

where 1 denotes the vector of all ones, and we optimize over all valid additive perturbations of JX .

Proof.
From Theorem 3.2.4, we have:

ρ2(X;Y ) = sup
KX :KX 6=0√
PX

T
KX=0

‖BKX‖2

‖KX‖2
= sup

KX :KX 6=0√
PX

T
KX=0

∥∥∥[√PY ]−1
W
[√
PX
]
KX

∥∥∥2

∥∥∥[√PX]−1 [√
PX
]
KX

∥∥∥2

where we let JX =
[√
PX
]
KX to get:

ρ2(X;Y ) = sup
JX :JX 6=0
1T JX=0

‖WJX‖2PY
‖JX‖2PX

as required.

As mentioned earlier, Corollary 3.2.5 is actually a local KL divergence characterization of Rényi
correlation. Under the assumptions of Corollary 3.2.5, let RX = PX + εJX , where JX is a valid
additive perturbation and ε > 0 is small enough so that RX is a valid pmf. Moreover, let RY =
WRX . Then, from the discussion in chapter 1, we know that:

D(RX ||PX) =
1

2
ε2 ‖JX‖2PX + o

(
ε2
)

D(RY ||PY ) =
1

2
ε2 ‖WJX‖2PY + o

(
ε2
)
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which means that under local approximations:

ρ2(X;Y )
local
= sup

RX :RX 6=PX

D(RY ||PY )

D(RX ||PX)
(3.15)

using Corollary 3.2.5. Notice that the right hand side of equation 3.15 is actually the hypercontrac-
tive constant (without approximations). Hence, under local approximations, the hypercontractive
constant becomes the squared Rényi correlation regardless of whether we use the KL divergence
or mutual information characterization (equations 3.15 and 3.8, respectively). The precise sense in
which equations 3.8 and 3.15 are valid is accentuated in section 3.3. All in all, the singular value
characterizations of Rényi correlation in Theorem 3.2.4 and Corollary 3.2.5 have many advantages.
For example, computing the Rényi correlation is much easier when we find a singular value using
linear algebra tools rather than solving the unnerving maximization in Definition 3.2.1. Moreover,
such characterizations use the representation of singular values as extremal problems. This makes
Rényi correlation a supremum of a ratio, which parallels the hypercontractive constant being a
supremum of a ratio. This observation will be crucial in fulfilling the agenda of the next section:
bounding the Rényi correlation and the hypercontractive constant with each other.

Before we end this section, we present a final theorem which finds necessary conditions on the
optimizing functions f∗ and g∗ in the definition of Rényi correlation. This provides a deeper
intuition on how ρ(X;Y ) measures the dependence between random variables.

Theorem 3.2.6 (MMSE Characterization of Rényi Correlation). Suppose we are given a probability
space (Ω,F ,P), and random variables X : Ω → X and Y : Ω → Y with joint distribution PX,Y on
this space, and Rényi correlation ρ(X;Y ). If the optimizing functions of the Rényi correlation are
f∗ : X → R and g∗ : Y → R, then f∗ and g∗ satisfy:

ρ(X;Y )f∗(X) = E [g∗(Y )|X] a.s.

ρ(X;Y )g∗(Y ) = E [f∗(X)|Y ] a.s.

where the equalities hold almost surely (with probability 1), and ρ2(X;Y ) = E
[
E [f∗(X)|Y ]2

]
=

E
[
E [g∗(Y )|X]2

]
.

Note that f∗ and g∗ are assumed to satisfy the zero mean, E [f∗(X)] = E [g∗(Y )] = 0, and unit
variance, E

[
f∗(X)2

]
= E

[
g∗(Y )2

]
= 1, conditions as part of the premise of being valid optimizing

functions for the Rényi correlation. A proof of Theorem 3.2.6 can be found in [19]. We provide an
alternative proof using variational calculus techniques rather than statistical methods in Appendix

A. The relation ρ2(X;Y ) = E
[
E [f∗(X)|Y ]2

]
= E

[
E [g∗(Y )|X]2

]
can be found in [19] and [14], but

is derived in the appendix as well for completeness. We construe the above theorem as the minimum
mean-square error (MMSE) characterization of Rényi correlation because E [g∗(Y )|X = x] is the
MMSE estimator of g∗(Y ) given X = x, and E [f∗(X)|Y = y] is the MMSE estimator of f∗(X)
given Y = y. Hence, the theorem states that the optimizing function f∗(x) (or g∗(y)) is the MMSE
estimator of g∗(Y ) (or f∗(X)) given X = x (or Y = y), normalized to have zero mean and unit
variance. So, it unveils how Rényi correlation elegantly maximizes the correlation using MMSE
estimation. It also illustrates the inherent coupling between the optimizing functions. Finally, we
note that f∗(x) and g∗(y) may not be unique. Indeed, we may negate both functions to get the
same ρ(X;Y ) ≥ 0. Such intuition from Theorem 3.2.6 will be valuable in section 3.4.

50



CHAPTER 3. BOUNDS ON LOCAL APPROXIMATIONS

3.3 Discrete and Finite Case

We next consider assessing the performance of algorithms which employ the local approximation of
KL divergence as in the linear information coupling problem. In this section, we assume that the
random variables U : Ω → U , X : Ω → X , and Y : Ω → Y are defined on a common probability
space (Ω,F ,P), and that |X |, |Y|, |U| <∞, which means the random variables are discrete and take
values on finite sets. Furthermore, we assume that ∀x ∈ X , PX(x) > 0 and ∀y ∈ Y, PY (y) > 0.
This ensures we can use PX and PY as reference pmfs in local analysis, because they are in the
relative interior of their respective probability simplexes. For the sake of clarity, we do not restate
these assumptions in every theorem statement in this section.

Recall from Definition 3.1.5 and Theorem 3.1.2 that the hypercontractive constant can be charac-
terized as:

s∗(X;Y ) = sup
RX :RX 6=PX

D(RY ||PY )

D(RX ||PX)
= sup

PU ,PX|U :U→X→Y
I(U ;X)>0

I(U ;Y )

I(U ;X)
. (3.16)

On the other hand, using equation 3.8, Theorem 3.2.4, and equation 3.15, we have:

ρ2(X;Y )
local
= sup

RX :RX 6=PX

D(RY ||PY )

D(RX ||PX)
= sup

PU ,PX|U :U→X→Y
I(U ;X)>0

I(U ;Y )

I(U ;X)
(3.17)

where the equalities hold under local approximations. Equation 3.17 represents the local optimal
value of problem 3.7. From our discussion at the outset of this chapter, we know that the Rényi
correlation captures the optimal performance of algorithms using the local linear information cou-
pling framework. On the other hand, equation 3.16 corresponds to the global optimal value of
problem 3.7. Hence, comparing the Rényi correlation with the hypercontractive constant will indi-
cate how effectively local algorithms perform. More concretely, we will upper and lower bound the
hypercontractive constant with Rényi correlation to reveal how close the local and global optimal
values are to each other.

3.3.1 Relationship between Hypercontractive Constant and Rényi Correlation

As promised, we will first rigorously establish the sense in which equation 3.17 holds. This analysis
will illustrate that the hypercontractive constant is lower bounded by the squared Rényi correlation.
To this end, we first consider the work in [22] which directly addresses problem 3.7. In part E of
section IV [22], the authors analyze the function:

∀R ≥ 0, ∆(R) , sup
PU ,PX|U :U→X→Y

I(U ;X)=R

I(U ;Y ) (3.18)

where PX,Y is fixed. ∆(R) has significance in understanding investment in the horse race market.
In Theorem 8 [22], the authors compute the right derivative of this function at R = 0:

d∆

dR

∣∣∣∣
R=0

= lim
ε→0+

∆(ε)−∆(0)

ε
= lim

ε→0+
sup

PU ,PX|U :U→X→Y
I(U ;X)=ε

I(U ;Y )

I(U ;X)
(3.19)
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where the first equality holds by definition of right derivative (assuming the limit exists), and the
second equality holds using equation 3.18 and the fact that ∆(0) = 0. Moreover, we may rewrite
equation 3.19 as:

d∆

dR

∣∣∣∣
R=0

= lim
I(U ;X)→0+

sup
PU ,PX|U :U→X→Y

I(U ;Y )

I(U ;X)
= sup

PU ,PX|U :U→X→Y
I(U ;X)>0

I(U ;Y )

I(U ;X)
= s∗(X;Y ) (3.20)

where the second equality holds because ∆(R) is concave in R, ∆(R) ≥ 0, and ∆(0) = 0 [22]. This
is illustrated in Figure 3.1. The red line is the tangent to ∆(R) at R = 0. So, its gradient is given
by equation 3.20. The gradients of the blue lines are various values of:

sup
PU ,PX|U :U→X→Y

I(U ;X)=R

I(U ;Y )

I(U ;X)

for different values of R. Figure 3.1 portrays that:

∀R > 0,
d∆

dR

∣∣∣∣
R=0

≥ sup
PU ,PX|U :U→X→Y

I(U ;X)=R

I(U ;Y )

I(U ;X)

which produces equation 3.20 after taking suprema over R > 0 on both sides. Equation 3.20 demon-
strates that the supremum in the mutual information characterization of s∗(X;Y ) is achieved when
I(U ;X)→ 0. This is why having a supremum (instead of a maximum) in Theorem 3.1.2 is essential.
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Figure 3.1: Plot of ∆(R) illustrating its salient features. The red line indicates the tangent of ∆(R)
at R = 0, and the gradients of the blue lines are less than the gradient of the red line.
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As correctly deduced in [14], the authors of [22] erroneously conclude that d∆
dR

∣∣
R=0

= ρ2(X;Y ).
This is because they compute:

d∆

dR

∣∣∣∣
R=0

= lim
ε→0+

sup
PU|X :U→X→Y

I(U ;X)=ε

I(U ;Y )

I(U ;X)
(3.21)

by optimizing over PU |X (instead of PU , PX|U ) since PX,Y is given. Recall that we have:

ε = I(U ;X) =
∑
u∈U

PU (u)D(PX|U=u||PX) (3.22)

=
∑
x∈X

PX(x)D(PU |X=x||PU ) (3.23)

where the additional constraint I(U ;X) = ε comes from equation 3.21. The authors of [22] show
that the constraint I(U ;X) = ε is equivalent to assuming the conditional pmfs, PU |X , are local per-
turbations of PU . This can be understood from equation 3.23. Since PX is fixed, there is a bound
on how much the KL divergences of equation 3.23 can vary. This bounds how much the conditional
pmfs, PU |X , can vary from PU by Pinsker’s inequality (which we will encounter soon). Propelled by
this local perturbation view, the authors of [22] use Taylor approximations of conditional entropy
terms with respect to PU . [14] explains that this is incorrect because PU may not be in the relative
interior of the probability simplex. This may cause the first derivative term to be infinity, thereby
rendering the Taylor approximation invalid.

Our local approximations are fundamentally different. We optimize the ratio in equation 3.21
over PU , PX|U keeping PX fixed. This means that we assume the condtional pmfs, PX|U , are local
perturbations of PX , as shown in equation 3.2. Since PX is fixed inside the relative interior of the
probability simplex, our Taylor approximations are valid. However, a constraint like I(U ;X) = ε is
no longer equivalent to our local perturbation assumption. Indeed, from equation 3.22 it is evident
that letting some PU (u) become very small and the corresponding D(PX|U=u||PX) become very
large will not violate the I(U ;X) = ε constraint. In fact, proving such an equivalence requires
min {PU (u) : u ∈ U , PU (u) 6= 0} to be well-defined (as can be inferred from [22]). This is no longer
well-defined in our case as PU is not fixed.

The previous discussion should convince the readers that our local approximation technique is
mathematically sound and does not exhibit the pitfalls emphasized in [14]. Moreover, our local
approximations do produce ρ2(X;Y ) as the optimal value of problem 3.7. From Theorem 3.1.2, we
have:

s∗(X;Y ) = sup
PU ,PX|U :U→X→Y

I(U ;X)>0

I(U ;Y )

I(U ;X)
≥ sup

PU ,PX|U :U→X→Y
∀u∈U , PX|U=u=PX+ε[

√
PX ]Ku

I(U ;X)>0

I(U ;Y )

I(U ;X)
(3.24)

where {Ku, u ∈ U} are valid normalized perturbations, and the inequality follows from the addi-
tional perturbation constraints. Using the expression for local KL divergence in equation 1.15 and

53



3.3. DISCRETE AND FINITE CASE

our derivations in section 1.3, we have:

sup
PU ,PX|U :U→X→Y

∀u∈U , PX|U=u=PX+ε[
√
PX ]Ku

I(U ;X)>0

I(U ;Y )

I(U ;X)
= sup

PU ,PX|U :U→X→Y
∀u∈U , PX|U=u=PX+ε[

√
PX ]Ku

∃u∈U , PU (u)>0∧Ku 6=0

∑
u∈U PU (u) ‖BKu‖2 +

o(ε2)
ε2∑

u∈U PU (u) ‖Ku‖2 + o(ε2)
ε2

= sup
PU ,{Ku,u∈U}:

∃u∈U , PU (u)>0∧Ku 6=0

∑
u∈U PU (u) ‖BKu‖2 + o(1)∑
u∈U PU (u) ‖Ku‖2 + o(1)

(3.25)

where B is the DTM, and the second equality holds because we are only optimizing over valid
normalized perturbations {Ku, u ∈ U} and PU such that the marginal pmf PX is fixed. Note that
o(1) denotes functions which satisfy lim

ε→0+
o(1) = 0. Letting ε→ 0+ on both sides produces:

lim
ε→0+

sup
PU ,PX|U :U→X→Y

∀u∈U ,PX|U=u=PX+ε[
√
PX ]Ku

I(U ;X)>0

I(U ;Y )

I(U ;X)
= lim

ε→0+
sup

PU ,{Ku,u∈U}:
∃u∈U , PU (u)>0∧Ku 6=0

∑
u∈U PU (u) ‖BKu‖2 + o(1)∑
u∈U PU (u) ‖Ku‖2 + o(1)

≥ sup
PU ,{Ku,u∈U}:

∃u∈U , PU (u)>0∧Ku 6=0

lim
ε→0+

∑
u∈U PU (u) ‖BKu‖2 + o(1)∑
u∈U PU (u) ‖Ku‖2 + o(1)

= sup
PU ,{Ku,u∈U}:

∃u∈U , PU (u)>0∧Ku 6=0

∑
u∈U PU (u) ‖BKu‖2∑
u∈U PU (u) ‖Ku‖2

= ρ2(X;Y ) (3.26)

where the second line follows from the minimax inequality, and the last equality follows from
inequality 3.5 (which we showed was tight). To see that the second line is indeed the minimax
inequality, we can first replace the limε→0+ with lim infε→0+ , and then recognize that lim infε→0+

is an asymptotic infimum. Note that we also have:

s∗(X;Y ) = lim
ε→0+

sup
PU ,PX|U :U→X→Y

I(U ;X)= 1
2
ε2

I(U ;Y )

I(U ;X)

≥ lim
ε→0+

sup
PU ,PX|U :U→X→Y

∀u∈U , PX|U=u=PX+ε[
√
PX ]Ku

I(U ;X)>0

I(U ;Y )

I(U ;X)

≥ ρ2(X;Y ) (3.27)

where the first equality holds due to equations 3.19 and 3.20, the second inequality holds from
equation 3.24, and the third inequality is the minimax inequality. This precisely characterizes the
sense in which the mutual information based part of equation 3.17 holds. Indeed, to go from the
global optimal solution of problem 3.7 (which is s∗(X;Y )) to the local optimal solution (which is
ρ2(X;Y )), we impose local perturbation constraints under the supremum instead of fixing I(U ;X)
to be small, and then take the limit of the ratio of mutual informations before computing the
supremum. We restate equation 3.27 below as a theorem.
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Theorem 3.3.1 (Lower Bound on Hypercontractive Constant). For random variables X and Y
with joint pmf PX,Y defined over X × Y, such that ∀x ∈ X , PX(x) > 0 and ∀y ∈ Y, PY (y) > 0,
we have:

s∗(X;Y ) ≥ ρ2(X;Y ).

Proof.
Although we have already proven this theorem in the preceding discussion, we provide a separate
proof using the KL divergence characterization of the hypercontractive constant. By Definition
3.1.5:

s∗(X;Y ) = sup
RX :RX 6=PX

D(RY ||PY )

D(RX ||PX)
≥ sup

RX :RX=PX+εJX
JX 6=0

‖WJX‖2PY + o(1)

‖JX‖2PX + +o(1)

where o(1) denotes functions which satisfy lim
ε→0+

o(1) = 0, W is the column stochastic channel tran-

sition matrix as defined in equation 1.23, and we optimize the final expression over all valid additive
perturbations JX . The inequality holds because we have added the additional local perturbation
constraint. As before, taking limits of both sides gives:

s∗(X;Y ) ≥ lim
ε→0+

sup
JX :JX 6=0

‖WJX‖2PY + o(1)

‖JX‖2PX + o(1)
≥ sup

JX :JX 6=0
lim
ε→0+

‖WJX‖2PY + o(1)

‖JX‖2PX + o(1)

where the second inequality is the minimax inequality. Hence, we have:

s∗(X;Y ) ≥ sup
JX :JX 6=0

‖WJX‖2PY
‖JX‖2PX

= ρ2(X;Y )

using Corollary 3.2.5. This completes the proof.

This proof clarifies the KL divergence based part of equation 3.17. Theorem 3.3.1 is also proven
in [17] using perturbation arguments. However, our derivations have a different flavor; they use
the local perturbation concepts pertinent to our context, and clarify why our approximations are
valid while those of [22] are not. We next observe that the inequality in Theorem 3.3.1 is tight
and equality can be achieved. To see this, consider a doubly symmetric binary source (DSBS) with
parameter 0 ≤ α ≤ 1. A DSBS describes a joint distribution of two binary random variables, X and
Y , both defined on {0, 1}. In particular, a DSBS(α) represents a uniform Bernoulli input random
variable X passing through a binary symmetric channel with crossover probability α to produce a
uniform Bernoulli output random variable Y . As mentioned in [16], for (X,Y ) ∼ DSBS(α):

s∗(X;Y ) = ρ2(X;Y ) = (1− 2α)2 (3.28)

where ρ2(X;Y ) = (1 − 2α)2 can be readily computed using the singular value characterization of
Rényi correlation in Theorem 3.2.4. As a final remark on Theorem 3.3.1, we explicate why s∗(X;Y )
is more appropriately compared with ρ2(X;Y ) rather than ρ(X;Y ). This is because s∗(X;Y ) is a
ratio between KL divergences and KL divergences behave like squared distances between distribu-
tions, as is evident from Pythagoras’ theorem in information geometry. Thus, a squared correlation
offers the right kind of comparison.

55



3.3. DISCRETE AND FINITE CASE

So far, we have characterized the precise sense in which Rényi correlation is the local optimal
solution to problem 3.7, and derived (as expected) that it is less than or equal to the hypercontrac-
tive constant, which is the global optimal solution. We now portray the significance of these two
quantities in terms of the Data Processing Inequality (DPI). To this end, we state the DPIs for KL
divergence and mutual information below [2].

Theorem 3.3.2 (Data Processing Inequality for KL Divergence). For a fixed channel transition
probability kernel PY |X , given marginal input distributions PX and RX , and marginal output dis-
tributions PY = PY |XPX and RY = PY |XRX , we have:

D(RY ||PY ) ≤ D(RX ||PX).

Theorem 3.3.3 (Data Processing Inequality for Mutual Information). Given the random variables
U , X, and Y in a common probability space, such that U → X → Y forms a Markov chain, we
have:

I(U ;Y ) ≤ I(U ;X).

When considering the DPIs, a natural question arises concerning the tightness of the inequalities
when PX,Y is kept fixed. We now interpret the operational meanings of the hypercontractive
constant and the Rényi correlation in terms of the tightness of the DPIs. From equation 3.16,
we see that the hypercontractive constant, s∗(X;Y ), is the tightest factor we can insert into both
DPIs. In other words, tighter DPIs for fixed PX and PY |X are:

D(RY ||PY ) ≤ s∗(X;Y )D(RX ||PX) (3.29)

for the KL divergence case, and:

I(U ;Y ) ≤ s∗(X;Y )I(U ;X) (3.30)

for the mutual information case. Conceptually, this gracefully unifies the two DPIs by characterizing
the hypercontractive constant as the common tightest factor that can be inserted into either of them.
Likewise, using equation 3.17, we see that the squared Rényi correlation is the tightest factor that
can be inserted into both DPIs under local approximations. Hence, for fixed PX and PY |X , we
have:

D(RY ||PY )
local
≤ ρ2(X;Y )D(RX ||PX) (3.31)

for the KL divergence case, and:

I(U ;Y )
local
≤ ρ2(X;Y )I(U ;X) (3.32)

for the mutual information case, where the precise meaning of
local
≤ is exactly the sense in which

Rényi correlation is the local optimal solution to problem 3.7.

Therefore, the hypercontractive constant depicts the largest fraction of information that can be
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sent down a Markov chain in the global case, and the squared Rényi correlation also depicts this
under local approximations. Furthermore, we know the intuitive fact that s∗(X;Y ) ≥ ρ2(X;Y )
from Theorem 3.3.1. By associating the squared Rényi correlation to the optimal performance of
algorithms which use local approximations along the linear information coupling framework, we
effectively measure performance with respect to how well such algorithms preserve information
down a Markov chain. Hence, our performance analysis is based on analyzing the tightness of the
DPIs. s∗(X;Y ) represents the maximum amount of information that can be preserved, and our
local algorithms evidently fall short of this.

3.3.2 KL Divergence Bounds using χ2-Divergence

Having proved Theorem 3.3.1, we now seek to find an upper bound on the hypercontractive con-
stant using the squared Rényi correlation. This will limit how much worse local algorithms can
perform with respect to the globally optimal preservation of information down a Markov chain.
The tightness of this bound will essentially assess the quality of the local approximation of KL
divergence. The central idea to upper bound s∗(X;Y ) is to begin with Definition 3.1.5, upper and
lower bound the KL divergences with appropriate χ2-divergences (which are local KL divergences),
and finally use the singular value characterization of Rényi correlation in Corollary 3.2.5.

We first consider lower bounding KL divergence with the χ2-divergence. This can be accomplished
using two different approaches. The first approach is more statistical in flavor. It hinges around
using Pinsker’s inequality, which is perhaps the most well-known lower bound on KL divergence
using a norm. The next lemma presents our first lower bound on KL divergence.

Lemma 3.3.4 (KL Divergence Lower Bound). Given pmfs PX and RX on the discrete and finite
alphabet X , such that ∀x ∈ X , PX(x) > 0 and RX = PX + JX , where JX is a valid additive
perturbation, we have:

D(RX ||PX) ≥
‖JX‖2PX

2

(∑
x∈X

1

PX(x)

) =
χ2 (RX , PX)

2

(∑
x∈X

1

PX(x)

) .

Proof.
By Pinsker’s inequality, we have:

D(RX ||PX) ≥ 2D2
TV (RX , PX)

where DTV (RX , PX) , sup
A⊆2X

|RX(A)− PX(A)| is the total variation distance. For a discrete and

finite alphabet X , the total variation distance can be written in terms of the 1-norm:

DTV (RX , PX) =
1

2
‖RX − PX‖1 =

1

2

∑
x∈X
|RX(x)− PX(x)|.

Hence, we have:

D(RX ||PX) ≥ 1

2
‖JX‖21 ≥

1

2
‖JX‖22
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where the second inequality holds because the 1-norm of a finite dimensional vector is greater than
or equal to its 2-norm. Next, from the Cauchy-Schwarz inequality, we get:

‖JX‖2PX =

∥∥∥∥[√PX]−1
JX

∥∥∥∥2

2

≤
∥∥∥∥[√PX]−1

∥∥∥∥2

Fro

‖JX‖22 =

(∑
x∈X

1

PX(x)

)
‖JX‖22

where ‖·‖Fro denotes the Frobenius norm of a matrix. This implies:

‖JX‖22 ≥
‖JX‖2PX(∑

x∈X

1

PX(x)

)
which gives:

D(RX ||PX) ≥
‖JX‖2PX

2

(∑
x∈X

1

PX(x)

) =
χ2 (RX , PX)

2

(∑
x∈X

1

PX(x)

)
as claimed.

The second approach to proving Lemma 3.3.4 has a convex analysis flavor. It involves recognizing
that KL divergence is a Bregman divergence associated with the negative Shannon entropy function.
Then, the convexity properties of the negative Shannon entropy function can be used to bound KL
divergence. This alternative proof of Lemma 3.3.4 is provided next.

Proof.
Without loss of generality, let X = {1, . . . , n}. Moreover, let P ⊆ Rn be the probability simplex in
Rn. Then, recall from equation 2.22 that the negative Shannon entropy function is:

∀P = [p1 . . . pn]T ∈ P, H−(P ) =
n∑
i=1

pi log (pi)

and its corresponding Bregman divergence (Definition 2.2.1) is the KL divergence:

∀P ∈ P, ∀Q ∈ relint(P), D(P ||Q) = H−(P )−H−(Q)−∇H−(Q)T (P −Q).

Next, we recall from equation 2.23 that H− is twice differentiable on relint(P):

∀P ∈ relint(P), ∇2H−(P ) = [P ]−1 � I

where � denotes the Löwner partial order on symmetric matrices, I is the identity matrix, and
[P ]−1− I is positive semidefinite because it is a diagonal matrix with non-negative diagonal entries
(as the elements of P are between 0 and 1). From chapter 9 of [13], we know that a twice continu-
ously differentiable convex function f : S → R, where the domain S ⊆ Rn is open, is called strongly
convex if and only if ∃m > 0 such that ∀x ∈ S, ∇2f(x) � mI. This means that H− is a strongly
convex function on relint(P). A consequence of strong convexity is the following quadratic lower
bound [13]:

∀P ∈ P,∀Q ∈ relint(P), H−(P ) ≥ H−(Q) +∇H−(Q)T (P −Q) +
1

2
‖P −Q‖22
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where we allow P ∈ P\relint(P) due to the continuity of H−. This gives us:

∀P ∈ P,∀Q ∈ relint(P), D(P ||Q) ≥ 1

2
‖P −Q‖22 .

Hence, for PX ∈ relint(P) and RX ∈ P, we have:

D(RX ||PX) ≥ 1

2
‖JX‖22

which is precisely what we had in the previous proof after loosening Pinsker’s inequality using the
fact that 1-norm of a finite dimensional vector is greater than or equal to its 2-norm. Hence, the
rest of this proof is identical to the previous proof.

We note that unfortunately, such a Bregman divergence and convexity based approach cannot be
used to easily derive an upper bound on KL divergence. It is known that if ∃r > 0 such that
∀P ∈ relint(P), ∇2H−(P ) � rI, or if ∇H− is Lipschitz continuous on relint(P), then a quadratic
upper bound on H− can be derived [13]. However, the natural logarithm is not Lipschitz continuous
on the domain (0,∞). So, such approaches do not work. Returning to our first proof of Lemma
3.3.4, we see that it should be possible to tighten our bound after the use of Pinsker’s inequality.
A variant of Lemma 3.3.4 is presented next, which essentially uses Hölder’s inequality instead of
the norm inequality and Cauchy-Schwarz inequality to get a tighter bound.

Lemma 3.3.5 (KL Divergence Tighter Lower Bound). Given distinct pmfs PX and RX on the
discrete and finite alphabet X , such that ∀x ∈ X , PX(x) > 0 and RX = PX + JX , where JX is a
valid additive perturbation, we have:

D(RX ||PX) ≥
‖JX‖4PX

2

(
max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣)2 =
χ2 (RX , PX)2

2

(
max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣)2 .

Proof.
As in the first proof of Lemma 3.3.4, from Pinsker’s inequality, we have:

D(RX ||PX) ≥ 1

2
‖JX‖21 .

Next, note that:

‖JX‖2PX =
∑
x∈X
|JX(x)|

∣∣∣∣JX(x)

PX(x)

∣∣∣∣ ≤ (max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣)∑
x∈X
|JX(x)| =

(
max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣) ‖JX‖1 .
This can also be obtained from Hölder’s inequality:

‖JX‖2PX =
∑
x∈X
|JX(x)|

∣∣∣∣JX(x)

PX(x)

∣∣∣∣ ≤ ‖JX‖p ∥∥∥[PX ]−1 JX

∥∥∥
q

where p, q ∈ (1,∞) are the Hölder conjugates which satisfy 1
p + 1

q = 1. Taking the limit of the right

hand side as p→ 1+, we have:

‖JX‖2PX ≤ lim
p→1+

‖JX‖p
∥∥∥[PX ]−1 JX

∥∥∥
q

= lim
p→1+

‖JX‖p lim
q→∞

∥∥∥[PX ]−1 JX

∥∥∥
q

= ‖JX‖1
∥∥∥[PX ]−1 JX

∥∥∥
∞
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Hence, we have:

‖JX‖2PX ≤ ‖JX‖1
(

max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣)
as before. This gives us:

‖JX‖1 ≥
‖JX‖2PX

max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣
where the denominator on the right hand side is strictly positive as RX 6= PX . Using the above
inequality and the result from Pinsker’s inequality: D(RX ||PX) ≥ 1

2 ‖JX‖
2
1, we get:

D(RX ||PX) ≥
‖JX‖4PX

2

(
max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣)2 =
χ2 (RX , PX)2

2

(
max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣)2

as claimed.

We now consider upper bounding KL divergence with χ2-divergence. To do this, we use a well-
known bound provided in [9] which is actually quite easy to prove using Jensen’s inequality. The
bound is presented in Lemma 3.3.6.

Lemma 3.3.6 (KL Divergence Upper Bound). Given pmfs PX and RX on the discrete and finite
alphabet X , such that ∀x ∈ X , PX(x) > 0 and RX = PX + JX , where JX is a valid additive
perturbation, we have:

D(RX ||PX) ≤ ‖JX‖2PX = χ2 (RX , PX) .

Proof.
Noting that the natural logarithm is a concave function, using Jensen’s inequality, we have:

D(RX ||PX) = ERX

[
log

(
RX(X)

PX(X)

)]
≤ log

(
ERX

[
RX(X)

PX(X)

])
.

Observe that:

ERX

[
RX(X)

PX(X)

]
=
∑
x∈X

R2
X(x)

PX(x)
=
∑
x∈X

J2
X(x)

PX(x)
+ PX(x) + 2JX(x) = 1 + ‖JX‖2PX .

Hence, we have:

D(RX ||PX) ≤ log
(

1 + ‖JX‖2PX
)
≤ ‖JX‖2PX = χ2 (RX , PX) (3.33)

where the second inequality follows from: ∀x > −1, log(1 + x) ≤ x, which is fondly known as
Gallager’s favorite inequality in MIT.

We remark that the first bound in equation 3.33 is clearly tighter than the second bound. However,
we will not use this tighter bound, because we will require the χ2-divergence term to be isolated in
the proofs that follow.
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3.3.3 Performance Bound

Using the lemmata from the previous section, we can upper bound the hypercontractive constant in
terms of the squared Rényi correlation. Combining Lemmata 3.3.4 and 3.3.6 gives Theorem 3.3.7,
and combining Lemmata 3.3.5 and 3.3.6 gives Theorem 3.3.8. These are presented next.

Theorem 3.3.7 (Upper Bound on Hypercontractive Constant). For random variables X and Y
with joint pmf PX,Y defined over X × Y, such that ∀x ∈ X , PX(x) > 0 and ∀y ∈ Y, PY (y) > 0,
we have:

s∗(X;Y ) ≤ 2

(∑
x∈X

1

PX(x)

)
ρ2(X;Y ).

Proof.
Let W be the column stochastic conditional probability matrix with conditional pmfs PY |X along
its columns, as shown in equation 1.23. For any pmf RX = PX + JX on X such that JX 6= 0 is a
valid additive perturbation, we have RY = WRX . Using Lemmata 3.3.4 and 3.3.6, we get:

D(RY ||PY )

D(RX ||PX)
≤ 2

(∑
x∈X

1

PX(x)

)
‖WJX‖2PY
‖JX‖2PX

.

Taking the supremum over RX on the left hand side first, and then the supremum over JX on the
right hand side, we have:

sup
RX :RX 6=PX

D(RY ||PY )

D(RX ||PX)
≤ 2

(∑
x∈X

1

PX(x)

)
sup

JX :JX 6=0
1T JX=0

‖WJX‖2PY
‖JX‖2PX

Using Definition 3.1.5 and Corollary 3.2.5, we get:

s∗(X;Y ) ≤ 2

(∑
x∈X

1

PX(x)

)
ρ2(X;Y ).

This completes the proof.

Theorem 3.3.8 (Tighter Upper Bound on Hypercontractive Constant). For random variables X
and Y with joint pmf PX,Y defined over X×Y, such that ∀x ∈ X , PX(x) > 0 and ∀y ∈ Y, PY (y) >
0, we have:

s∗(X;Y ) ≤

 2

min
x∈X

PX(x)

 ρ2(X;Y ).

Proof.
Once again, let W be the column stochastic conditional probability matrix with conditional pmfs
PY |X along its columns, as shown in equation 1.23. For any pmf RX = PX + JX on X such that
JX 6= 0 is a valid additive perturbation, we have RY = WRX . Using Lemmata 3.3.5 and 3.3.6, we
get:

D(RY ||PY )

D(RX ||PX)
≤ 2

‖JX‖2PX

(
max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣)2 ‖WJX‖2PY
‖JX‖2PX

.
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As in the proof of Theorem 3.3.7, we take the supremum over RX on the left hand side first, and
then the supremum over JX on the right hand side. Moreover, since the supremum of a non-negative
product is less than or equal to the product of the suprema, we have:

s∗(X;Y ) ≤ 2ρ2(X;Y ) sup
JX :JX 6=0
1T JX=0

1

‖JX‖2PX

(
max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣)2

(3.34)

using Definition 3.1.5 and Corollary 3.2.5. Furthermore, note that:

1

‖JX‖2PX

(
max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣)2

≤ 1

min
x∈X

PX(x)

max
x∈X

J2
X(x)

PX(x)

‖JX‖2PX
≤ 1

min
x∈X

PX(x)
.

which gives us:

sup
JX :JX 6=0
1T JX=0

1

‖JX‖2PX

(
max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣)2

≤ 1

min
x∈X

PX(x)
.

Hence, we get:

s∗(X;Y ) ≤

 2

min
x∈X

PX(x)

 ρ2(X;Y ).

This completes the proof.

Theorem 3.3.8 is a tighter upper bound on the hypercontractive constant than Theorem 3.3.7,
because we use the tighter Lemma 3.3.5 to prove it. We note that inequality 3.34 is a tighter bound
than Theorem 3.3.8, but we loosen it to provide a more agreeable form. This loosening can be
understood through the equivalence of norms. For any vector x ∈ Rn, the 2-norm is equivalent to
the ∞-norm, because:

‖x‖2∞ ≤ ‖x‖
2
2 ≤ n ‖x‖

2
∞ (3.35)

where n, which is the dimension of the vector space, is the tightest factor that does not invalidate
the upper bound. In inequality 3.34, we have the term:

sup
JX :JX 6=0
1T JX=0

1

‖JX‖2PX

(
max
x∈X

∣∣∣∣JX(x)

PX(x)

∣∣∣∣)2

which can be intuitively perceived as the tightest factor that can be inserted when a squared
weighted 2-norm is upper bounded by a squared weighted∞-norm. From inequality 3.35, we know
that this tightest factor must correspond to the dimension of the vector space. Indeed, our factor
satisfies:

1

min
x∈X

PX(x)
≥ |X |

and it models the dimension of the vector space. We now present the main result of this section.
The tighter bound in Theorem 3.3.8 is used to conclude this result (rather than Theorem 3.3.7).
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Theorem 3.3.9 (Performance Bound). For random variables X and Y with joint pmf PX,Y defined
over X × Y, such that ∀x ∈ X , PX(x) > 0 and ∀y ∈ Y, PY (y) > 0, we have:

ρ2(X;Y ) ≤ s∗(X;Y ) ≤

 2

min
x∈X

PX(x)

 ρ2(X;Y ).

This theorem does not require a proof; it is a direct consequence of writing Theorems 3.3.1 and
3.3.8 together. The lower bound of Theorem 3.3.9 asserts the intuitive fact that local algorithms
perform poorer than global ones in a data processing sense. The upper bound limits how much
worse local optimal algorithms can perform with respect to the global optimal performance. For
this reason, we designate Theorem 3.3.9 as the “performance bound.”
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Figure 3.2: Plots of quantities corresponding to (X,Y ), where X ∼ Bernoulli (P(X = 1)) is passed
through a BSC with flip-over probability p to produce Y . (a) Squared Rényi correlation of (X,Y ),

ρ2(X;Y ). (b) Hypercontractive constant of (X,Y ), s∗(X;Y ). (c) Comparison of s∗(X;Y )
ρ2(X;Y )

(red plot)

and its upper bound 2
min(P(X=0),P (X=1)) (cyan plot). (d) Performance bound illustrating ρ2(X;Y )

(blue plot), s∗(X;Y ) (yellow plot), and
(

2
min(P(X=0),P(X=1))

)
ρ2(X;Y ) (green plot).

Figure 3.2 illustrates many facets of the performance bound in the special case where X is an
input Bernoulli random variable to a BSC and Y is the corresponding output Bernoulli random
variable. In particular, Figures 3.2(a) and 3.2(b) depict how the squared Rényi correlation and
hypercontrative constant values change with the parameters of the input Bernoulli random variable
and the BSC. Figure 3.2(d) depicts the performance bound itself, and verifies that the upper bound
(green plot) is non-trivial since it remains below 1 for a large subset of the parameter space. In
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fact, if we let (X,Y ) ∼ DSBS(p) for 0 ≤ p ≤ 1 (which is a slice along P(X = 1) = 0.5 in Figure
3.2(d)), we know from equation 3.28 that ρ2(X;Y ) = s∗(X;Y ) = (1− 2p)2. The upper bound in
Theorem 3.3.9 is:

2

min (P(X = 0),P(X = 1))
ρ2(X;Y ) = 4 (1− 2p)2

and it satisfies:

4 (1− 2p)2 < 1⇔ 1

4
< p <

3

4
.

So, although the upper bound is loose in this scenario, it is tighter than the trivial bound of 1 for
1
4 < p < 3

4 .

Simulations displayed in Figure 3.2(c) illustrate that the ratio between s∗(X;Y ) and ρ2(X;Y )
increases significantly near the edges of the input probability simplex when one or more of the
probability masses of the input pmf are close to 0. This effect is unsurprising given the skewed
nature of stochastic manifolds at the edges of the probability simplex. It is captured in the upper
bound of Theorem 3.3.9 because the constant 2

minx∈X PX(x) increases when one of the probability

masses tends to 0. However, the constant 2
minx∈X PX(x) does not tensorize, while both s∗(X;Y ) and

ρ2(X;Y ) tensorize (Lemmata 3.1.3 and 3.2.1). This can make the upper bound quite loose. For
example, if X ∼ Bernoulli

(
1
2

)
, then 2

minx∈X PX(x) = 4. If we now consider Xn
1 = (X1, . . . , Xn),

where X1, . . . , Xn are i.i.d. Bernoulli
(

1
2

)
, then Xn

1 has a 2n-point uniform pmf. Here, the con-
stant of the upper bound is: 2

minx∈{0,1}n PXn1
(xn1 ) = 2n+1. However, s∗(Xn

1 ;Y n
1 ) = s∗(X1;Y1) and

ρ2(Xn
1 ;Y n

1 ) = ρ2(X1;Y1), due to their tensorization properties when the channel is memoryless.
There is a quick fix for this i.i.d. loosening attack, which is presented in the next corollary.

Corollary 3.3.10 (I.I.D. Performance Bound). For jointly distributed random vectors Xn
1 and

Y n
1 , where (X1, Y1), . . . , (Xn, Yn) are i.i.d. with joint pmf PX,Y defined over X × Y, such that
∀x ∈ X , PX(x) > 0 and ∀y ∈ Y, PY (y) > 0, we have:

ρ2(Xn
1 ;Y n

1 ) ≤ s∗(Xn
1 ;Y n

1 ) ≤

 2

min
x∈X

PX(x)

 ρ2(Xn
1 ;Y n

1 )

where min
x∈X

PX(x) =

(
min
xn1∈Xn

PXn
1

(xn1 )

) 1
n

.

The corollary is trivially seen to be true since Lemmata 3.1.3 and 3.2.1 ensure that s∗(Xn
1 ;Y n

1 ) =
s∗(X1;Y1) and ρ2(Xn

1 ;Y n
1 ) = ρ2(X1;Y1). This means we may use the factor:

2

min
x∈X

PX(x)

instead of the looser factor:
2

min
xn1∈Xn

PXn
1

(xn1 )

in our upper bound. Therefore, Theorem 3.3.9 and Corollary 3.3.10 provide appropriate perfor-
mance bounds for our local approximations in the discrete and finite setting. While Corollary
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3.3.10 partially remedies the tensorization issue that ails Theorem 3.3.9, we ideally seek a constant
in the upper bound which naturally tensorizes and does not change blindly with the dimension of
the problem. This is a possible direction of future research.

3.4 Gaussian Case

The local approximation technique of [4] has also been applied to additive white Gaussian noise
(AWGN) channels in [23]. So, we now consider the relationship between the local and global opti-
mal values of problem 3.7 in the Gaussian case. As stated however, this is an ill-defined pursuit.
Indeed, problem 3.7 is only defined for the discrete and finite setting. Moreover, the local approx-
imation set-up in chapter 1 is also for the discrete and finite case. Recall that in section 2.1, we
defined local perturbations and derived the local f -divergence (and hence, local KL divergence)
in the continuous case. Using these definitions, we may define an analogous problem to problem
3.7 for the AWGN channel. For the sake of brevity, we do not explicitly define this problem, but
the ensuing discourse reveals why the hypercontractive constant (to be defined in this scenario)
and Rényi correlation represent the global and local optimal performance values, respectively. Fur-
thermore, for simplicity in this section, we will abstain from unnecessary rigor like appropriately
defining the underlying probability space every time.

We first introduce the AWGN channel. The AWGN channel is a well-known classical channel in
information theory. [2] contains a very accessible introduction to it. The channel is discrete-time,
but at each time instance we assume that the input and output are continuous random variables,
X and Y , respectively. The additive Gaussian noise at each time instance, W ∼ N (0, σ2

W ), is
independent of other time instances, and also independent of the input X. The channel model is
given in the next definition.

Definition 3.4.1 (Single Letter AWGN Channel). The single letter AWGN channel has jointly
distributed input random variable X and output random variable Y , where X and Y are related
by the equation:

Y = X +W, X ⊥⊥W ∼ N
(
0, σ2

W

)
where X is independent of the Gaussian noise W ∼ N

(
0, σ2

W

)
, σ2

W > 0, and X must satisfy the
average power constraint:

E
[
X2
]
≤ σ2

X

for some given power σ2
X > 0.

Traditionally, the average power constraint in Definition 3.4.1 is defined over codewords [2], but we
provide an alternative definition to avoid considering channel coding in our arguments. Given the
model in Definition 3.4.1, it is well-known that the information capacity of the AWGN channel is:

C ,
1

2
log

(
1 +

σ2
X

σ2
W

)
(3.36)

where the capacity achieving input distribution is X ∼ N
(
0, σ2

X

)
.
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We next observe that Definition 3.2.1 of Rényi correlation is valid for continuous random vari-
ables. So, ρ(X;Y ) is a well-defined quantity for the AWGN channel. The DPI for KL divergence in
Theorem 3.3.2 also holds for continuous random variables with pdfs. However, the hypercontractive
constant is defined only for discrete and finite random variables in Definition 3.1.5. Hence, to study
the DPI for AWGN channels, we define a new and analogous notion of s∗(X;Y ) for continuous
random variables with a power constraint.

Definition 3.4.2 (Hypercontractive Constant with Power Constraint). For a pair of jointly con-
tinuous random variables X and Y with joint pdf PX,Y and average power constraint E

[
X2
]
≤ σ2

X ,
the hypercontractive constant is defined as:

s∗σ2
X

(X;Y ) , sup
RX :RX 6=PX
ERX [X2]≤σ2

X

D(RY ||PY )

D(RX ||PX)

where we take the supremum over all pdfs RX 6= PX , which means that the pdfs RX and PX
must differ on a set with non-zero Lebesgue measure. Moreover, RY denotes the marginal pdf of
RX,Y = PY |XRX , and we assume that PX,Y is fixed.

Although we call s∗
σ2
X

(X;Y ) the hypercontractive constant with a power constraint and use similar

notation to describe it, the nomenclature and notation do not reflect any deep relation to hypercon-
tractivity. We simply wish to conform to the naming convention in the discrete and finite case. For
the ensuing discussion, we fix the capacity achieving distribution, X ∼ N

(
0, σ2

X

)
, σ2

X > 0, as the
input distribution to the AWGN channel with average power constraint E

[
X2
]
≤ σ2

X . This defines
a joint distribution PX,Y for the AWGN channel from which we can compute the hypercontractive
constant with power constraint and the Rényi correlation. Is is easy to observe from Definition
3.4.2 that the hypercontractive constant with power constraint represents the tightest factor that
can be inserted into the DPI for KL divergence (as in equation 3.29) if the power constraint is
imposed on all input distributions RX . Moreover, it turns out that the squared Rényi correlation
represents the tightest DPI in the local case [23]. Therefore, we explicitly compute the Rényi
correlation, ρ(X;Y ), and the hypercontractive constant with power constraint, s∗

σ2
X

(X;Y ), of the

AWGN channel for comparison.

3.4.1 Rényi Correlation of AWGN Channel

In order to find the Rényi correlation of the AWGN channel with capacity achieving input dis-
tribution, we first compute the Rényi correlation of two jointly Gaussian random variables. The
strategy for this is to use Theorem 3.2.6, the MMSE characterization of Rényi correlation, to in-
fer the optimizing functions for the Rényi correlation. It is well-known that if (X,Y ) are jointly
Gaussian, then the MMSE estimator of X given Y is also the linear least squares error (LLSE)
estimator. Since Theorem 3.2.6 states that the optimizing functions of Definition 3.2.1 of Rényi
correlation satisfy f∗(X) ∝ E [g∗(Y )|X] and g∗(Y ) ∝ E [f∗(X)|Y ], we can conjecture that f∗ and
g∗ are linear functions of X and Y , respectively, normalized to have zero mean and unit variance.
This is proven in the next theorem.

Theorem 3.4.1 (Gaussian Rényi Correlation). For jointly Gaussian random variables (X,Y ) with

distribution (X,Y ) ∼ N
([

µX
µY

]
,

[
σ2
X σXY

σXY σ2
Y

])
, the following are true:
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1. The Rényi correlation is the absolute value of the Pearson correlation coefficient:

ρ(X;Y ) =

∣∣∣∣ σXYσXσY

∣∣∣∣ .
2. A pair of optimizing functions of the Rényi correlation, ρ(X;Y ), are:

f∗(x) = ±x− µX
σX

and g∗(y) = ±y − µY
σY

,

where the signs of f∗ and g∗ are chosen so that their covariance is non-negative. This means

that (f∗(X), g∗(Y )) ∼ N
([

0
0

]
,

[
1 ρ(X;Y )

ρ(X;Y ) 1

])
.

Proof.
Part 1 of the theorem is Rényi’s seventh axiom [19]. So, the Rényi correlation must satisfy it.

We now prove part 2. Consider a guess of the optimizing function, f(X) = X−µX
σX

. Clearly,

E[f(X)] = 0 and E
[
f2(X)

]
= 1. We will derive g(Y ) from this guess, and show that the resulting

f(X) and g(Y ) pair satisfy part 1. (The pair will also satisfy the conditions in Theorem 3.2.6.) To
this end, note that:

COV (f(X), Y ) = E [f(X)Y ] = E
[
XY − µXY

σX

]
=
σXY
σX

and hence, (f(X), Y ) ∼ N

([
0
µY

]
,

[
1 σXY

σX
σXY
σX

σ2
Y

])
. We now find the MMSE estimator of f(X)

given Y = y:

E [f(X)|Y = y] =
E [X|Y = y]− µX

σX
.

For jointly Gaussian (X,Y ), the MMSE estimator is the LLSE estimator, given by E [X|Y = y] =
µX + σXY

σ2
Y

(y − µY ). Using this, we get:

E [f(X)|Y = y] =
σXY
σXσ2

Y

(y − µY )

from which, we have:
E [E [f(X)|Y ]] = E [f(X)] = 0,

VAR (E [f(X)|Y ]) = E
[
E [f(X)|Y ]2

]
=

σ2
XY

σ2
Xσ

4
Y

E
[
(Y − µY )2

]
=

σ2
XY

σ2
Xσ

2
Y

.

Using intuition from Theorem 3.2.6, we normalize E [f(X)|Y = y] to have unit variance and let this
be g(y):

g(y) = ±σXσY
σXY

σXY
σXσ2

Y

(y − µY ) = ±y − µY
σY

where the sign of g is chosen such that E [f(X)g(Y )] ≥ 0. Observe that g has the same form as
f . So, starting with g, we may use a similar argument to get f . (This shows that f and g satisfy
the conditions of Theorem 3.2.6, which optimizing functions of Rényi correlation must satisfy.)
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Hence, f and g are valid candidates for the optimizing functions. In fact, the Pearson correlation
coefficient between them is the Rényi correlation given in part 1 of this theorem as shown below:

E [f(X)g(Y )] =

∣∣∣∣E [(X − µXσX

)(
Y − µY
σY

)]∣∣∣∣ =

∣∣∣∣ σXYσXσY

∣∣∣∣ = ρ(X;Y )

where the absolute values ensure the covariance is non-negative. So, f and g are indeed the
optimizing functions of Rényi correlation: f∗ = f and g∗ = g. This proves part 2.

Using Theorem 3.4.1, we may compute the Rényi correlation of the AWGN channel with capacity
achieving input distribution. This is shown in the next corollary.

Corollary 3.4.2 (AWGN Rényi Correlation). Given an AWGN channel, Y = X+W , with average
power constraint E

[
X2
]
≤ σ2

X , X ⊥⊥W , and W ∼ N
(
0, σ2

W

)
, if X takes on the capacity achieving

distribution X ∼ N
(
0, σ2

X

)
, then the Rényi correlation between X and Y is:

ρ(X;Y ) =
σX√

σ2
X + σ2

W

.

Proof.
Using Theorem 3.4.1, we have:

ρ(X;Y ) =
|COV(X,Y )|√
VAR(X)VAR(Y )

=
|E[XY ]|√

E [X2]E [Y 2]

where the last equality follows from E[X] = E[Y ] = 0. Moreover, E[XY ] = E[X(X + W )] =
E
[
X2
]

+ E[X]E[W ] = σ2
X and E

[
Y 2
]

= σ2
X + σ2

W . Hence, we get:

ρ(X;Y ) =
σ2
X√

σ2
X

(
σ2
X + σ2

W

) =
σX√

σ2
X + σ2

W

.

We remark that just as in the discrete and finite setting, for the AWGN channel, ρ(X;Y ) is the
second largest singular value of the divergence transition map which takes perturbations of the
Gaussian input along right singular vector directions of Hermite polynomials to perturbations of
the Gaussian output [23]. Hence, it represents the local optimal performance in a linear information
coupling sense. The spectral decomposition of continuous channels will be the agenda of chapter
5, so we do not discuss the Gaussian case in detail here.

3.4.2 Hypercontractive Constant of AWGN Channel

To compute the hypercontractive constant with power constraint for an AWGN channel with ca-
pacity achieving input distribution, we first use the notion of exponential families to estimate it.
The exponential family is a framework for studying large classes of distributions. It unifies many
areas of probability and statistics including efficient estimation and large deviation bounds. We
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find an explicit form of the hypercontractive constant with the additional constraint that all dis-
tributions lie along an exponential family. Then, we prove that this constrained hypercontractive
constant is actually the correct hypercontractive constant using the entropy power inequality [6]
and a variant of Bernoulli’s inequality [24]. We begin by recalling the definition and pertinent
properties of canonical exponential families [25].

Definition 3.4.3 (Canonical Exponential Family). The parametrized family of pdfs with parameter
x, {PY (·;x)}, is called a regular canonical exponential family when the support of the pdfs do not
depend on x, and each pdf in the family has the form:

PY (y;x) = exp [xt(y)− α(x) + β(y)] , y ∈ R

where t(y) is the sufficient statistic of the distribution, PY (y; 0) = exp [β(y)] is a valid pdf known
as the base distribution, and:

exp [α(x)] =

∫ +∞

−∞
exp [xt(y) + β(y)] dλ(y)

is the partition function with α(0) = 0 without loss of generality, where λ denotes the Lebesgue
measure and the integral is the Lebesgue integral. The parameter x is called the natural parameter,
and it takes values from the natural parameter space X ⊆ R, defined as:

X , {x ∈ R : α(x) <∞}

which ensures that PY (·;x) is a valid pdf when x ∈ X .

While Definition 3.4.3 defines exponential families as pdfs (because this is all we require in this
chapter), the definition can be generalized to pmfs and other distributions [25]. Moreover, Definition
3.4.3 only introduces the one parameter exponential family. In general, exponential families are
defined with any finite number of parameters. We now list some properties of canonical exponential
families in the next lemma. The proofs of these properties are not provided as they can be easily
derived or found in reference texts [25].

Lemma 3.4.3 (Properties of Canonical Exponential Family). For a canonical exponential family
{PY (·;x)} with natural parameter x ∈ R, such that R is the natural parameter space and PY (y;x) =
exp [xt(y)− α(x) + β(y)] , y ∈ R, the following statements are true:

1. Complementarity:

∀x ∈ R, D (PY (·;x)||PY (·; 0)) + α(x) = xEPY (·;x)[t(Y )].

2. Properties of log-partition function:

∀x ∈ R, α(x) = log
(
EPY (·;0)

[
ext(Y )

])
∀x ∈ R, α′(x) = EPY (·;x)[t(Y )]

∀x ∈ R, α′′(x) = VARPY (·;x) (t(Y )) = VARPY (·;x) (S(Y ;x)) = − ∂

∂x
S(Y ;x) = JY (x)
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where under regularity conditions such that the order of differentiation and integration can be
changed:

∀x ∈ R, JY (x) , −EPY (·;x)

[
∂2

∂x2
log (PY (Y ;x))

]
is the Fisher information, and:

∀x ∈ R, S(Y ;x) ,
∂

∂x
log (PY (Y ;x))

is the score function, which can be written as S(Y ;x) = t(Y )− EPY (·;x)[t(Y )] for a canonical
exponential family.

3. Derivative of KL divergence:

∀x ∈ R,
∂

∂x
D (PY (·;x)||PY (·; 0)) = xα′′(x) = xJY (x).

Given these properties of canonical exponential families, we compute the hypercontractive constant
with power constraint with an additional constraint on the marginal distributions being canonical
exponential families. Theorem 3.4.4 illustrates that the constant becomes dependent on the Fisher
information of the input and output marginal distributions. Note that once again, we describe the
theorem as “hypercontractive constant” for consistency in nomenclature rather than any deep ties
with hypercontractivity itself.

Theorem 3.4.4 (Hypercontractive Constant with Exponential Family Constraint). For a pair of
jointly continuous random variables (X,Y ) with joint pdf PX,Y , such that the marginal pdfs are
canonical exponential families:

PX(x;µ) = exp [µt(x)− α(µ) + β(x)] , x ∈ R

PY (y;µ) = exp [µτ(y)−A(µ) +B(y)] , y ∈ R

with common natural parameter µ ∈ R, we have:

sup
µ:µ6=0

D(PY (·;µ)||PY (·; 0))

D(PX(·;µ)||PX(·; 0))
=
JY (µ∗)

JX(µ∗)

where µ∗ = arg sup
µ:µ 6=0

D(PY (·;µ)||PY (·; 0))

D(PX(·;µ)||PX(·; 0))
.

Proof.
We prove this by recognizing that µ∗ is also the arg sup of:

log (D(PY (·;µ)||PY (·; 0)))− log (D(PX(·;µ)||PX(·; 0))) .

Using Lemma 3.4.3, we have:

µ∗ = arg sup
µ:µ6=0

log
(
µA′(µ)−A(µ)

)
− log

(
µα′(µ)− α(µ)

)
.
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Differentiating the right hand side expression with respect to µ and setting it equal to 0, we have:

µA′(µ)−A(µ)

µα′(µ)− α(µ)
=
A′′(µ)

α′′(µ)
.

The above equation is satisfied by µ = µ∗. Hence, using Lemma 3.4.3, we get:

D(PY (·;µ∗)||PY (·; 0))

D(PX(·;µ∗)||PX(·; 0))
=
JY (µ∗)

JX(µ∗)
.

This completes the proof.

The elegance in the way Fisher information appears in Theorem 3.4.4 is primarily due to the canon-
ical exponential family assumptions. Essentially, the canonical exponential family assumption can
be thought of as locally approximating some arbitrary family of distributions. Under such a local
view, KL divergences begin to look like Fisher information metrics, as mentioned in section 2.1
in chapter 2. This local assumption will in general not give us the global supremum s∗

σ2
X

(X;Y ).

However, it turns out that in the jointly Gaussian case, the local supremum is also the global
supremum. Intuitively, this is because Gaussian distributions have the fundamental property that
they are completely characterized locally (by only first and second order moments).

Theorem 3.4.4 is used to derive the hypercontractive constant with power constraint for an AWGN
channel with the additional constraint that the input and output marginal distributions are in
canonical exponential families with common natural parameter. This derivation is presented in
the next lemma. Observe that if JY (µ) = JY and JX(µ) = JX are constant, then Theorem 3.4.4
implies that:

sup
µ:µ 6=0

D(PY (·;µ)||PY (·; 0))

D(PX(·;µ)||PX(·; 0))
=
JY
JX

.

Gaussian random variables with fixed variance and exponentially tilted means form a canonical
exponential family with constant Fisher information. This allows a simple derivation of the addi-
tionally constrained hypercontractive constant for the AWGN channel, but we must take care to
ensure that the usual average power constraint is met.

Lemma 3.4.5 (AWGN Hypercontractive Constant with Exponential Family Constraint). Given
an AWGN channel, Y = X + W , with X ⊥⊥ W , W ∼ N

(
0, σ2

W

)
, and average power constraint

E
[
X2
]
≤ σ2

X + ε for any ε > 0, the hypercontractive constant with average power and marginal
canonical exponential family constraints is:

sup
µ:µ6=0

PX(·;µ)=N(µ,σ2
X)

EPX (·;µ)[X2]≤σ2
X+ε

D(PY (·;µ)||PY (·; 0))

D(PX(·;µ)||PX(·; 0))
=

σ2
X

σ2
X + σ2

W

where we fix the marginal distribution of X ∼ N
(
0, σ2

X

)
, and restrict the distributions we take the

supremum over to be PX(·;µ) = N
(
µ, σ2

X

)
.
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Proof.
Let PX(x;µ) = exp [µt(x)− α(µ) + β(x)] with natural parameter space R (i.e. µ ∈ R) be a canon-
ical exponential family with:

exp [β(x)] = N
(
0, σ2

X

)
, α(µ) =

µ2

2σ2
X

, and t(x) =
x

σ2
X

.

It is easily verified that PX(·;µ) = N
(
µ, σ2

X

)
. We now show that PY (·;µ) is a canonical ex-

ponential family with natural parameter µ ∈ R as well. For the AWGN channel, PX(·;µ) =
N
(
µ, σ2

X

)
has corresponding output distribution PY (·;µ) = N

(
µ, σ2

X + σ2
W

)
. So, PY (y;µ) =

exp [µτ(y)−A(µ) +B(y)] is also a canonical exponential family with:

exp [B(y)] = N
(
0, σ2

X + σ2
W

)
, A(µ) =

µ2

2(σ2
X + σ2

W )
, and τ(y) =

y

σ2
X + σ2

W

.

Using Lemma 3.4.3, we compute the Fisher information of the input and the output models:

JX(µ) = α′′(µ) =
1

σ2
X

,

JY (µ) = A′′(µ) =
1

σ2
X + σ2

W

.

Hence, using Theorem 3.4.4, we have:

sup
µ:µ6=0

PX(·;µ)=N(µ,σ2
X)

D(PY (·;µ)||PY (·; 0))

D(PX(·;µ)||PX(·; 0))
=

σ2
X

σ2
X + σ2

W

.

However, we also need to satisfy the average power constraint: EPX(·;µ)

[
X2
]
≤ σ2

X + ε, where ε > 0
is some small additional power. To this end, notice from Lemma 3.4.3 that for every µ 6= 0:

D(PY (·;µ)||PY (·; 0))

D(PX(·;µ)||PX(·; 0))
=
µA′(µ)−A(µ)

µα′(µ)− α(µ)
=

σ2
X

σ2
X + σ2

W

(3.37)

which does not depend on µ. Since X ∼ PX(·;µ) has expectation EPX(·;µ)[X] = µ and variance
VARPX(·;µ)(X) = σ2

X , the average power constraint corresponds to:

EPX(·;µ)

[
X2
]

= µ2 + σ2
X ≤ σ2

X + ε ⇔ |µ| ≤
√
ε.

As ε > 0, ∃µ 6= 0 such that |µ| ≤
√
ε. So there exists µ which satisfies the average power constraint.

Such a µ also satisfies equation 3.37. Thus, we have:

sup
µ:µ6=0

PX(·;µ)=N(µ,σ2
X)

EPX (·;µ)[X2]≤σ2
X+ε

D(PY (·;µ)||PY (·; 0))

D(PX(·;µ)||PX(·; 0))
=

σ2
X

σ2
X + σ2

W

as claimed. This completes the proof.
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We remark that Theorem 3.4.4 is not essential to the proof of Lemma 3.4.5. Indeed, the observation
in equation 3.37 suffices in playing the same role in the proof. Moreover, the proof of Lemma 3.4.5
elucidates why we use the additional slack of ε > 0 in the average power constraint: E

[
X2
]
≤ σ2

X+ε.
If ε = 0 and we take the supremum over PX(·;µ) = N

(
µ, σ2

X

)
for µ 6= 0, then the average power

constraint is never satisfied, and the supremum over an empty set is −∞. Hence, in order to make
the supremum well-defined, we add a slack of ε to the average power constraint and use a nearly
capacity achieving input distribution like X ∼ N

(√
ε, σ2

X

)
as input to the AWGN channel. We

next prove that the constrained hypercontractive constant in Lemma 3.4.5 equals s∗
σ2
X

(X;Y ) for

the AWGN channel.

Theorem 3.4.6 (AWGN Hypercontractive Constant). Given an AWGN channel, Y = X + W ,
with X ⊥⊥W , X ∼ PX = N

(
0, σ2

X

)
, W ∼ N

(
0, σ2

W

)
, and average power constraint E

[
X2
]
≤ σ2

X ,
the hypercontractive constant with average power constraint is:

s∗σ2
X

(X;Y ) = sup
RX :RX 6=PX
ERX [X2]≤σ2

X

D(RY ||PY )

D(RX ||PX)
=

σ2
X

σ2
X + σ2

W

where RY = PY |XRX and PY |X(·|x) = N
(
x, σ2

W

)
, x ∈ R.

Proof.

Lemma 3.4.5 shows that the ratio of KL divergences can achieve
σ2
X

σ2
X+σ2

W
if some additional slack of

ε > 0 is allowed in the average power constraint. Since ε is arbitrary, this means that the supremum

of the ratio of KL divergences should be able to achieve
σ2
X

σ2
X+σ2

W
with effectively no additional slack.

So, it is sufficient to prove that:
D(RY ||PY )

D(RX ||PX)
≤

σ2
X

σ2
X + σ2

W

(3.38)

for every pdf RX 6= PX (which means that the pdfs RX and PX must differ on a set with non-zero
Lebesgue measure) satisfying ERX

[
X2
]
≤ σ2

X . Let RX and RY have second moments ERX
[
X2
]

=
σ2
X + p and ERY

[
Y 2
]

= σ2
X + σ2

W + p, for some −σ2
X < p ≤ 0. Since PX = N

(
0, σ2

X

)
and

PY = N
(
0, σ2

X + σ2
W

)
are Gaussian, we have from Definition 1.0.1 that:

D(RX ||PX) = ERX [log (RX)]− ERX [log (PX)]

=
1

2
log
(
2πσ2

X

)
+

1

2σ2
X

ERX
[
X2
]
− h (RX)

=
1

2
log
(
2πeσ2

X

)
+

p

2σ2
X

− h (RX)

= h (PX)− h (RX) +
p

2σ2
X

and in a similar manner:

D(RY ||PY ) = h (PY )− h (RY ) +
p

2
(
σ2
X + σ2

W

)
where for any pdf P : R→ R+, we define:

h (P ) , −EP [log (P )]
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as the differential entropy of P . Hence, we know from inequality 3.38 that it is sufficient to prove:

(
σ2
X + σ2

W

)(
h(PY )− h(RY ) +

p

2
(
σ2
X + σ2

W

)) ≤ σ2
X

(
h(PX)− h(RX) +

p

2σ2
X

)
which simplifies to: (

σ2
X + σ2

W

)
(h(PY )− h(RY )) ≤ σ2

X (h(PX)− h(RX)) . (3.39)

We transform this conjectured inequality into one with entropy power terms rather than differential
entropy terms. (

e2h(PY )−2h(RY )
)σ2

X+σ2
W ≤

(
e2h(PX)−2h(RX)

)σ2
X

(
1

2πee
2h(PY )

1
2πee

2h(RY )

)σ2
X+σ2

W

≤

(
1

2πee
2h(PX)

1
2πee

2h(RX)

)σ2
X

Introducing entropy powers, we have:(
N(PY )

N(RY )

)σ2
X+σ2

W

≤
(
N(PX)

N(RX)

)σ2
X

where for any pdf P : R→ R+, the entropy power of P is defined as:

N(P ) ,
1

2πe
e2h(P ).

For PX = N
(
0, σ2

X

)
and PY = N

(
0, σ2

X + σ2
W

)
, the entropy powers are N(PX) = σ2

X and N(PY ) =
σ2
X + σ2

W . Applying the entropy power inequality [6] to the AWGN channel, we have:

N(RY ) ≥ N(RX) +N
(
N (0, σ2

W )
)

= N(RX) + σ2
W .

Hence, it is sufficient to prove that:(
σ2
X + σ2

W

N(RX) + σ2
W

)σ2
X+σ2

W

≤
(

σ2
X

N(RX)

)σ2
X

.

Since a Gaussian uniquely maximizes entropy under a second moment constraint and RX 6= PX ,
we know that h(RX) < h(PX)⇒ N(RX) < N(PX) = σ2

X . We also assume that h(RX) > −∞. Let
a = σ2

X + σ2
W , b = σ2

X −N(RX), and c = σ2
X . Then, we have a > c > b > 0, and we are required

to prove: (
a

a− b

)a
≤
(

c

c− b

)c
which is equivalent to proving:

a > c > b > 0⇒
(

1− b

c

)c
≤
(

1− b

a

)a
.

This statement is a variant of Bernoulli’s inequality proved in equation (r′′7) in [24]. Thus, we have
shown: (

σ2
X + σ2

W

N(RX) + σ2
W

)σ2
X+σ2

W

≤
(

σ2
X

N(RX)

)σ2
X

which completes the proof.

74



CHAPTER 3. BOUNDS ON LOCAL APPROXIMATIONS

We now derive an interesting corollary of Theorem 3.4.6. The corollary can be regarded as a funda-
mental bound on the deviation of the mutual information from the capacity of an AWGN channel
in terms of the deviation of the differential entropy of the input distribution from the maximum
differential entropy of the capacity achieving input distribution, where the input distributions sat-
isfy the average power constraint. Note that mutual information for continuous random variables
is defined in an analogous manner to Definition 1.0.3 by using integrals and pdfs instead of summa-
tions and pmfs [2]. In fact, the KL divergence characterization of mutual information in Definition
1.0.3 holds for both discrete and continuous random variables.

Corollary 3.4.7 (Mutual Information and Entropy Deviation Bound). Given an AWGN channel,
Y = X +W , with X ⊥⊥ W , W ∼ N

(
0, σ2

W

)
, and average power constraint E

[
X2
]
≤ σ2

X , for any
input pdf RX satisfying the average power constraint, we have:

C − I
(
RX ;PY |X

)
≤

σ2
X

σ2
X + σ2

W

(
1

2
log
(
2πeσ2

X

)
− h(RX)

)
where C , 1

2 log
(

1 +
σ2
X

σ2
W

)
is the AWGN channel capacity, and PY |X(.|x) = N

(
x, σ2

W

)
, x ∈ R is

fixed.

Proof.
Let PX = N

(
0, σ2

X

)
be the capacity achieving input pdf; it is also the maximum differential

entropy pdf given the second moment constraint. Let PY = N
(
0, σ2

X + σ2
W

)
be the output pdf

corresponding to PX . From Theorem 3.4.6, we have:

D(RY ||PY )

D(RX ||PX)
≤

σ2
X

σ2
X + σ2

W

for any pdf RX 6= PX (which means that the pdfs RX and PX must differ on a set with non-zero
Lebesgue measure) satisfying ERX

[
X2
]
≤ σ2

X . Note that if RX = PX a.e., then the inequality in
the statement of Corollary 3.4.7 trivially holds with equality. So, we only prove the inequality for
the case when RX 6= PX . Following the proof of Theorem 3.4.6, we again get inequality 3.39:

(h(PY )− h(RY )) ≤
σ2
X

σ2
X + σ2

W

(h(PX)− h(RX)) .

Now observe that h(X + W,X) = h(X + W |X) + h(X) = h(W ) + h(X) by the chain rule [2]
and X ⊥⊥ W . Moreover, h(X + W,X) = h(X|X + W ) + h(X + W ) by the chain rule. So,
h(X +W ) = h(W ) + h(X)− h(X|X +W ) = h(W ) + I(X +W ;X). This means:

h(RY ) = h
(
RX ?N

(
0, σ2

W

))
= h

(
N
(
0, σ2

W

))
+ I

(
RX ;PY |X

)
where ? denotes the convolution operator. This gives:

h(PY )− h
(
N
(
0, σ2

W

))
− I

(
RX ;PY |X

)
≤

σ2
X

σ2
X + σ2

W

(h(PX)− h(RX)) .

By definition of channel capacity, C = h(PY )− h
(
N
(
0, σ2

W

))
. Hence, we have:

C − I
(
RX ;PY |X

)
≤

σ2
X

σ2
X + σ2

W

(
1

2
log
(
2πeσ2

X

)
− h(RX)

)
as claimed.
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Corollary 3.4.7 has a cute analog in the discrete and finite case. Consider a discrete memoryless
channel (Definition 1.3.1) with input random variable X which takes values on a finite alphabet
X , output random variable Y which takes values on a finite alphabet Y, and conditional pmfs
PY |X . Let PX be the capacity achieving input pmf, and PY be the corresponding output pmf. If
∀x ∈ X , PX(x) > 0, then for every pmf RX on X :

I
(
PX ;PY |X

)
− I

(
RX ;PY |X

)
= D (RY ||PY ) (3.40)

where RY = PY |XRX . This can be proved using the equidistance property of channel capacity [3]
which states that PX achieves capacity C if and only if D

(
PY |X=x||PY

)
= C for every x ∈ X such

that PX(x) > 0 and D
(
PY |X=x||PY

)
≤ C for every x ∈ X such that PX(x) = 0. Equations 3.29

and 3.40 imply that:

I
(
PX ;PY |X

)
− I

(
RX ;PY |X

)
= D (RY ||PY ) ≤ s∗(X;Y )D (RX ||PX) (3.41)

where s∗(X;Y ) is computed using PX and PY |X . This parallels Corollary 3.4.7 in the discrete and
finite setting.

We return to briefly discuss Corollary 3.4.7 itself. The inequality in Corollary 3.4.7 is tight and
equality can be achieved. The inequality can also be written in terms of the signal-to-noise ratio,

SNR ,
σ2
X

σ2
W

, as follows:

C − I
(
RX ;PY |X

)
≤ SNR

1 + SNR

(
1

2
log
(
2πeσ2

X

)
− h(RX)

)
. (3.42)

Intuitively, this says that if SNR → 0, then I
(
RX ;PY |X

)
→ C, which means that any input

distribution satisfying the power constraint achieves capacity. This is because in the low SNR
regime, capacity is also very small and it is easier to achieve it. On the other hand, under moderate
or high SNR regimes, the capacity gap (between capacity and mutual information) is controlled
solely by the input distribution. In particular, the capacity gap is sensitive to perturbations of
the input distribution from the capacity achieving input distribution, and the input distribution
achieves capacity if and only if it is Gaussian.

3.4.3 AWGN Channel Equivalence

In this final subsection, we state the main result we have been developing. The proof is trivial from
Corollary 3.4.2 and Theorem 3.4.6, and is thus omitted.

Theorem 3.4.8 (AWGN Channel Equivalence). For an AWGN channel, Y = X + W , with
X ⊥⊥ W , X ∼ N

(
0, σ2

X

)
, W ∼ N

(
0, σ2

W

)
, and average power constraint E

[
X2
]
≤ σ2

X , the
hypercontractive constant with average power constraint equals the squared Rényi correlation:

s∗σ2
X

(X;Y ) = ρ2(X;Y ) =
σ2
X

σ2
X + σ2

W

.

The implications of this theorem are quite profound. Recall that s∗
σ2
X

(X;Y ) represents the tightest

factor that can be inserted into the DPI for KL divergence with power constraint. Hence, it
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CHAPTER 3. BOUNDS ON LOCAL APPROXIMATIONS

represents the globally optimal performance in the sense of preserving information down an AWGN
channel. On the other hand, ρ2(X;Y ) represents the locally optimal performance in the same
sense. Theorem 3.4.8 conveys that the local and global optima coincide in the Gaussian case.
This conforms to our understanding of Gaussian distributions, where many local properties become
global ones. We have essentially proved that for AWGN channels, the local approximation approach
performs as well as any global approach in an information preservation sense.
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CHAPTER 4. LARGE DEVIATIONS AND SOURCE-CHANNEL DECOMPOSITION

Chapter 4

Large Deviations and Source-Channel
Decomposition

We have heretofore established the local approximation of KL divergence by constructing perturba-
tion spaces around reference distributions, and assessed the performance of algorithms which might
employ such approximations by examining the tightness of the DPI. Moving forward, we develop
an application of this approximation technique to better understand the large deviation behavior
of sources and channels. Some of this work has been published in [8], and [26] provides a rigorous
development of the pertinent large deviation theory for the interested reader.

In our discussion, we assume that all random variables are defined on a common underlying prob-
ability space (Ω,F ,P). We will seldom refer to this probability space explicitly. Suppose we are
given a pair of jointly distributed discrete random variables (X,Y ) with joint pmf PX,Y . Let the
alphabet sets of X and Y be X and Y respectively, where |X | < ∞ and |Y| < ∞. Moreover, we
assume that the joint pmf satisfies ∀x ∈ X ,∀y ∈ Y, PX,Y (x, y) > 0. This means the marginal pmfs
satisfy ∀x ∈ X , PX(x) > 0 and ∀y ∈ Y, PY (y) > 0. Then, we can think of X as the source or in-
put random variable to a discrete memoryless channel (Definition 1.3.1) with transition probability
matrix W . W is column stochastic as in equation 1.23; its columns are the conditional pmfs PY |X ,
and all its entries are strictly positive. The output to the channel is the random variable Y and
its marginal pmf satisfies PY = WPX . We will conform to the notation introduced in sections 1.1,
1.2, and 1.3 of chapter 1. For example, pmfs will be represented as column vectors. The channel
view of (X,Y ) is given in Figure 4.1.

Suppose further that we draw i.i.d. (Xi, Yi) ∼ PX,Y for i = 1, . . . , n to get (Xn
1 , Y

n
1 ). Let us denote

the empirical distribution of a sequence of i.i.d. random variables Xn
1 by P̂Xn

1
. We formally define

this below.

Definition 4.0.4 (Empirical Distribution). For a sequence of random variables Xn
1 , for some

n ∈ Z+, such that ∀i ∈ {1, . . . , n}, Xi takes values on X , we define the empirical distribution of
the sequence as:

∀x ∈ X , P̂Xn
1

(x) =
1

n

n∑
i=1

I (Xi = x)

where I (Xi = x) = I ({ω ∈ Ω : Xi(ω) = x}), and the indicator function for any event A ∈ F ,
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Figure 4.1: Channel view of (X,Y ).

denoted by I (A), is defined as:

I (A) =

{
1 , if ω ∈ A .
0 , if ω /∈ A

If n is large, then P̂Xn
1

and P̂Y n1 are “close” to PX and PY , respectively, with high probability by

Sanov’s Theorem [26]. In particular, the empirical distributions, P̂Xn
1

and P̂Y n1 , lie on uniform KL
divergence balls around the theoretical distributions, PX and PY . This is illustrated in Figure 4.2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 4.2: Uniform KL divergence balls.

Since we may think of i.i.d. (Xi, Yi) ∼ PX,Y for i = 1, . . . , n as inputting i.i.d. Xn
1 into a dis-

crete memoryless channel to get i.i.d. Y n
1 , the fact that the empirical output distribution resides

uniformly on a divergence ball with high probability seemingly contradicts the elegant work in [4].
For large n, P̂Xn

1
can be perceived as a perturbation of PX as it is close to PX : P̂Xn

1
= PX + εJX ,

where ε > 0 is small and JX is a valid additive perturbation. [4] portrays that although the input
perturbation can be in any uniform direction around PX , the output perturbation directions are
not uniform because different directions are scaled by different singular values. This is depicted in
Figure 4.3. In particular, the scenario in [4] assumes that P̂Xn

1
is another theoretical distribution

perturbed from PX , and then finds the theoretical perturbation of P̂Y = WP̂Xn
1

from PY = WPX
using the SVD on the DTM. Since all the singular values of the DTM are less than or equal to 1
(from the proof of Theorem 3.2.4), the input sphere shrinks to the output ellipsoid. The ellipsoidal
shape naturally occurs because certain singular vector directions have larger associated singular
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CHAPTER 4. LARGE DEVIATIONS AND SOURCE-CHANNEL DECOMPOSITION

values than others. The apparent paradox is that the output empirical perturbations should lie on
a uniform sphere as Y n

1 are i.i.d. random variables. This is resolved by realizing that P̂Y 6= P̂Y n1 .

P̂Y is the theoretical output when P̂Xn
1

is used as the theoretical input distribution, but P̂Y n1 is the

actual empirical output distribution. It is fruitful to consider the relationship between P̂Y and P̂Y n1
more closely. This is pursued in the next section.
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Figure 4.3: SVD characterization of output perturbations due to source.

For brevity and notational clarity, we will not write the ε factor when using perturbations in
the remainder of this chapter. We will also neglect all o

(
ε2
)

terms. For example, we will use

P̂Xn
1

= PX + JX to denote the perturbed empirical distribution instead of the more rigorous

P̂Xn
1

= PX + εJX , where JX is a valid additive perturbation. As another example, we will write:

D(P̂Xn
1
||PX)

local
=

1

2
‖JX‖2PX

instead of the more rigorous statement from Definition 1.1.2:

D(P̂Xn
1
||PX) =

1

2
ε2 ‖JX‖2PX + o

(
ε2
)
.

The notation
local
= will be used throughout this chapter to mean “equality under appropriate local

approximations.”

4.1 Source-Channel Perturbation Decomposition

From the previous discussion, we see that the perturbation between P̂Y n1 and PY is located on a

uniform divergence ball. It is caused in part by the perturbation between P̂Xn
1

and PX , which is
also located on a uniform divergence ball. The effect of the source perturbation is presented in the
SVD analysis of [4] and leads to the ellipsoidal perturbation P̂Y − PY . When we compute P̂Y , we
take the perturbation of the source P̂Xn

1
into account, but assume that the channel is fixed at W .

In reality, the conditional distributions of the channel will also perturb to give empirical conditional
distributions. This channel perturbation also causes a perturbation of the output, and transforms
the ellipsoid (due to the source perturbations) back into a sphere. Hence, the perturbation between
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4.1. SOURCE-CHANNEL PERTURBATION DECOMPOSITION

P̂Y n1 and PY is caused by a combination of source and channel perturbations.

Since empirical distributions are close to theoretical distributions when n is large, we let:

P̂Xn
1

= PX + JX (4.1)

and:
P̂Y n1 = PY + JY (4.2)

where JX and JY are valid additive perturbations. We further let the column stochastic transition
probability matrix be:

W =
[
W1 · · ·W|X |

]
(4.3)

where for each x ∈ X , Wx is the conditional pmf of Y given X = x written as a column vector. We
define the column stochastic empirical transition probability matrix as:

V =
[
V1 · · ·V|X |

]
= W + JW (4.4)

where for each x ∈ X , Vx = Wx + Jx is the empirical conditional pmf of Y given X = x, and
JW =

[
J1 · · · J|X |

]
is a perturbation matrix whose columns are the valid additive perturbation vec-

tors of the conditional pmfs Wx, x ∈ X . Recall that a valid additive perturbation vector has the
properties that the perturbed probability masses are between 0 and 1 (inclusive), and the sum of
all entries in the vector is 0. The former constraint is not imposed in ensuing optimizations because
it can be imposed by inserting the arbitrarily small ε > 0 parameter in front of the perturbation
vectors. The latter constraint is always imposed when optimizing.

Using these definitions, we derive the relationship between P̂Y and P̂Y n1 . First, we note that:

∀x ∈ X ,∀y ∈ Y, Vx(y) =

n∑
j=1

I (Xj = x, Yj = y)

n∑
i=1

I (Xi = x)

(4.5)

which correctly extends Definition 4.0.4 for empirical conditional distributions. We have to as-
sume the denominator of equation 4.5 is non-zero for the ratio to be well-defined; this holds with
probability 1 asymptotically as ∀x ∈ X , PX(x) > 0. From equation 4.5, it is easily shown that:

∀y ∈ Y, P̂Y n1 (y) =
∑
x∈X

P̂Xn
1

(x)Vx(y)

which simplifies to:
P̂Y n1 = V P̂Xn

1
(4.6)

using matrix-vector notation. Since V = W + JW , we have:

P̂Y n1 = P̂Y + JW P̂Xn
1

(4.7)

where P̂Y = WP̂Xn
1

. This is the relationship between P̂Y and P̂Y n1 . To see this relationship in
terms of perturbation vectors, we can subtract PY = WPX on both sides of equation 4.7 and use
equations 4.1 and 4.2 to get:

JY = WJX + JWPX + JWJX (4.8)
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where JX and JY are uniform perturbations around PX and PY respectively, and WJX is the
ellipsoidal perturbation analyzed in [4]. If we neglect the second order term JWJX (as this term
would technically have an ε2 factor in front of it), we have:

JY
local
= WJX + JWPX (4.9)

where equality holds under the obvious local approximations. This first order perturbation model is
very elegant because it conveys that JY is the result of adding the source perturbation going through
the unperturbed channel and the channel perturbation induced by the unperturbed source. JY is
thus caused in part by the source perturbation, WJX , and in part by the channel perturbation,
JWPX . This is a source-channel decomposition of the output perturbation JY . The decomposition
setup engenders several natural questions:

1. If we observe JY , what are the most probable source and channel perturbations?

2. If we observe JY , what is the most probable source perturbation with fixed channel?

3. If we observe JY , what is the most probable channel perturbation with fixed source?

Analysis of the second question was the subject of [4]. The first and third questions will be explored
in the sections 4.2 and 4.3, respectively. Section 4.4 will use the results of section 4.3 to model
channel perturbations as additive Gaussian noise.

4.2 Most Probable Source and Channel Perturbations

Suppose we only observe the output Y n
1 of the discrete memoryless channel W as i.i.d. Xn

1 are
inputted into it. We assume we have full knowledge of the theoretical distribution PX,Y . All
probabilities in this section will be computed with respect to this distribution. In particular, we
will use the notation PnX,Y to denote the probability distribution of (Xn

1 , Y
n

1 ). Observing Y n
1 tells us

P̂Y n1 , but there are many possible P̂Xn
1

and V which can cause P̂Y n1 = V P̂Xn
1

. A pertinent question

is to try to find the most probable P̂Xn
1

and V which produce P̂Y n1 . Our analysis to answer this
question will require a well-established concept from large deviation and information theory. This
concept is defined next.

Definition 4.2.1 (Exponential Approximation). Given two functions f : R → R and g : R → R,
we let

.
= denote the exponential approximation which is defined as:

f(n)
.
= g(n)⇔ lim

n→∞

1

n
log (f(n)) = lim

n→∞

1

n
log (g(n))

where the limits are assumed to be well-defined.

Let PX be the probability simplex of pmfs on X , and PY be the probability simplex of pmfs on
Y. Using the notation from Definition 4.1.1, simple combinatorial arguments can be used to derive
the probabilities of the following empirical marginal distributions [26]:

∀pX ∈ PX , PnX,Y
(
P̂Xn

1
= pX

)
.
= e−nD(pX ||PX) (4.10)

∀pY ∈ PY , PnX,Y
(
P̂Y n1 = pY

)
.
= e−nD(pY ||PY ) (4.11)
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and empirical conditional distributions:

∀x ∈ X , ∀pX ∈ PX ,∀vx ∈ PY , PnX,Y
(
Vx = vx | P̂Xn

1
= pX

)
.
= e−npX(x)D(vx||Wx) (4.12)

where we require the conditioning on P̂Xn
1

= pX in equation 4.12 because we need to know∑n
i=1 I (Xi = x) = npX(x) in order to define Vx. Note that equations 4.10, 4.11, and 4.12 are

(rigorously) true when pX , pY , and vx are type classes. However, we do not use a rigorous treat-
ment in this chapter for the sake of brevity. Using equation 4.12, we derive the exponential ap-

proximation of PnX,Y

(
V = v | P̂Xn

1
= pX

)
, where v =

[
v1 · · · v|X |

]
, and {V = v} denotes the event

{V = v} = {V1 = v1} ∩ · · · ∩
{
V|X | = v|X |

}
. For any pX ∈ PX , and for any v =

[
v1 · · · v|X |

]
such

that ∀x ∈ X , vx ∈ PY , we have:

PnX,Y

(
V = v | P̂Xn

1
= pX

)
=
∏
x∈X

PnX,Y

(
Vx = vx | P̂Xn

1
= pX

)
(4.13)

because the probabilities of empirical conditional distributions for different values of x are con-
ditionally independent given P̂Xn

1
= pX . This can be understood by considering how we infer

information about V2 from V1, for example. Let N(X = x) denote the number of samples in Xn
1

which are equal to x. For fixed n, we can infer information about N(X = 1) given V1 = v1, and
this gives information about N(X = 2). This in turn provides information about V2. So, the way
in which different empirical conditional distributions reveal information about a particular Vx is by
narrowing down the possible choices for N(X = x). We cannot get any other information about
the distribution of the Yi within these N(X = x) samples because the samples are drawn i.i.d.
Due to the conditioning in equation 4.13, we know n and P̂Xn

1
= pX , which means we also know

N(X = x) for all x ∈ X . Given this information, as the (Xn
1 , Y

n
1 ) are drawn i.i.d., the different Vx

become conditionally independent.

We slightly digress to point out that asymptotically:

PnX,Y (V = v) =
∏
x∈X

PnX,Y (Vx = vx)

is also intuitively true, because the events {Vx = vx} are asymptotically independent as n → ∞.
This is certainly not a trivial observation. For example, if n is fixed, we can infer information
about N(X = 1) from V1 and this gives information about N(X = 2). So, we effectively get some
information about V2 from V1, as discussed earlier. However, if we let n → ∞, then the laws of
large numbers imply that there are roughly nPX(1) samples where Xi = 1 and nPX(2) samples
where Xi = 2. Since the samples are drawn i.i.d., the resulting empirical conditional pmfs, V1 and
V2, are independent. This result can be rigorously established, but we do not pursue it here.

Returning to our discussion, using equations 4.12 and 4.13, we have:

PnX,Y

(
V = v | P̂Xn

1
= pX

)
.
= exp

(
−n

∑
x∈X

pX(x)D(vx||Wx)

)
. (4.14)

We can write this expression more elegantly using the notation for conditional KL divergence. This
is defined next.
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Definition 4.2.2 (Discrete Conditional KL Divergence). Given a marginal pmf PX on the count-
able set X , and two sets of conditional pmfs V and W , representing {Vx : x ∈ X} and {Wx : x ∈ X}
respectively, such that Vx and Wx are conditional pmfs on the countable set Y given x ∈ X , the
conditional KL divergence between V and W , denoted D(V ||W |PX), is given by:

D(V ||W |PX) ,
∑
x∈X

PX(x)D(Vx||Wx).

Using the notation from Definition 4.1.2, we rewrite equation 4.14 as:

PnX,Y

(
V = v | P̂Xn

1
= pX

)
.
= e−nD(v||W |pX). (4.15)

Next, we consider PnX,Y

(
P̂Y n1 = pY

)
more closely. From the total probability law, we get:

∀pY ∈ PY , PnX,Y
(
P̂Y n1 = pY

)
=

∑
pX ,v:

vpX=pY

PnX,Y

(
P̂Xn

1
= pX

)
PnX,Y

(
V = v | P̂Xn

1
= pX

)
which using equation 4.10 and 4.15, we can write (non-rigorously) as:

∀pY ∈ PY , PnX,Y
(
P̂Y n1 = pY

)
=

∑
pX ,v:

vpX=pY

e−n(D(pX ||PX)+D(vx||W |pX))

where the sum indexes over a polynomial in n number of terms, because the number of possible
empirical pmfs pX and v =

[
v1 · · · v|X |

]
which satisfy vpX = pY are both polynomial in n for fixed

n. As all the terms in the sum decay exponentially, the term with the slowest decay rate dominates
the sum by the Laplace principle [26]. This gives us:

∀pY ∈ PY , PnX,Y
(
P̂Y n1 = pY

)
.
= exp

(
−n min

pX ,v:
vpX=pY

D(pX ||PX) +D(v||W |pX)

)
. (4.16)

However, comparing equations 4.11 and 4.16, we have:

∀pY ∈ PY , D(pY ||PY ) = min
pX ,v:

vpX=pY

D(pX ||PX) +D(v||W |pX) (4.17)

where the minimization is over all pX ∈ PX and all vx ∈ PY for each x ∈ X . This is an appealing
decomposition of the output perturbation in terms of the source perturbation and the channel
perturbation. The perturbations are measured in KL divergence and the minimization intuitively
identifies the most probable source-channel decomposition.

We now set up the problem of finding the most probable source and channel empirical pmfs,
P̂ ∗Xn

1
and V ∗, such that V ∗P̂ ∗Xn

1
= pY , where P̂Y n1 = pY is the observed output empirical pmf. As

one would intuitively expect, the problem turns out to equivalent to the right hand side of equation
4.17. We want to maximize PnX,Y (P̂Xn

1
= pX , V = v | P̂Y n1 = pY ) over all pX ∈ PX and all vx ∈ PY

for each x ∈ X such that vpX = pY . Using Bayes’ rule, we have:

PnX,Y

(
P̂Xn

1
= pX , V = v | P̂Y n1 = pY

)
=


PnX,Y

(
P̂Xn1

=pX

)
PnX,Y

(
V=v|P̂Xn1 =pX

)
PnX,Y

(
P̂Y n1

=pY

) , if vpX = pY

0 , otherwise
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because:

PnX,Y

(
P̂Y n1 = pY | P̂Xn

1
= pX , V = v

)
=

{
1 , if vpX = pY
0 , otherwise

.

Hence, assuming that the constraint vpX = pY is satisfied, we get:

PnX,Y

(
P̂Xn

1
= pX , V = v | P̂Y n1 = pY

)
.
= e−n(D(pX ||PX)+D(v||W |pX)−D(pY ||PY )) (4.18)

using equations 4.10, 4.11, and 4.15. Note that D(pY ||PY ) is a constant as P̂Y n1 = pY is given.

Hence, to maximize PnX,Y (P̂Xn
1

= pX , V = v | P̂Y n1 = pY ), we must minimize the remaining portion

of the exponent in equation 4.18. Our optimization problem to find P̂ ∗Xn
1

and V ∗ is thus:

min
pX ,v:

vpX=pY

D(pX ||PX) +D(v||W |pX) (4.19)

where P̂Y n1 = pY is known, and the minimization is over all pX ∈ PX and all vx ∈ PY for each
x ∈ X . The problem in statement 4.19 is precisely the right hand side of equation 4.17. In fact,
equation 4.17 illustrates that the minimum value of the objective function is D(pY ||PY ). So, we
simply need to recover the optimal arguments, P̂ ∗Xn

1
and V ∗, which generate this minimum value.

This is equivalent to finding the most probable source and channel perturbations, J∗X = P̂ ∗Xn
1
−PX

and J∗W = V ∗ −W , when the output empirical distribution is perturbed by JY = pY − PY . We
note that we mean “most probable” in the exponential approximation sense, as is evident from our
derivation of the problem. The next subsection solves problem 4.19.

4.2.1 Global Solution using Information Projection

For the sake of clarity, in our ensuing derivations, we will use the notation P̂Xn
1

, P̂Y n1 , and V ,
instead of pX , pY , and v, to mean particular values of the empirical distributions rather than
random variables which represent these empirical distributions. This should not generate any
confusion since we will not compute any large deviation probabilities in this subsection. Using this
notation, we can rewrite the optimization problem in statement 4.19 as:

min
P̂Xn1

,V :

V P̂Xn1
=P̂Y n1

D(P̂Xn
1
||PX) +D(V ||W |P̂Xn

1
) (4.20)

where P̂Y n1 is known, and the minimization is over all empirical pmfs P̂Xn
1

and all empirical chan-

nels (conditional pmfs) V . The optimizing P̂ ∗Xn
1

and V ∗ are the most probable (in the exponential

approximation sense) source and channel empirical pmfs given the output empirical pmf is P̂Y n1 .

We will globally solve problem 4.20 by setting it up as an information projection (i-projection). The
i-projection is a highly useful notion which imparts elegant geometric structure into many large
deviation theoretic arguments in information theory; [1] and [10] are both wonderful resources
which introduce it. We will assume some familiarity with the i-projection in this chapter. The next
theorem solves problem 4.20 using i-projections.
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Theorem 4.2.1 (Most Probable Empirical Source and Channel PMFs). The most probable empir-
ical source pmf and empirical channel conditional pmfs, P̂ ∗Xn

1
and V ∗, which are global optimizing

arguments of the extremal problem in statement 4.20, are given by:

∀x ∈ X , P̂ ∗Xn
1

(x) = PX(x)

1 +
∑
y∈Y

Wx(y)
JY (y)

PY (y)

 , and

∀x ∈ X ,∀y ∈ Y, V ∗x (y) = Wx(y)


1 +

JY (y)

PY (y)

1 +
∑
z∈Y

Wx(z)
JY (z)

PY (z)

 ,

where JY = P̂Y n1 − PY , and the optimal value of the objective function of problem 4.20 is:

D(P̂ ∗Xn
1
||PX) +D(V ∗||W |P̂ ∗Xn

1
) = D(P̂Y n1 ||PY ).

Proof.
The optimal value of the objective function holds from equation 4.17. To compute the optimizing
arguments, we use the chain rule for KL divergence on the objective function of problem 4.20 to
get:

D(P̂Xn
1
||PX) +D(V ||W |P̂Xn

1
) = D(P̂Xn

1 ,Y
n
1
||PX,Y ).

The constraint V P̂Xn
1

= P̂Y n1 is a constraint on the marginal pmf of Y for P̂Xn
1 ,Y

n
1

. It can be written
as a linear family of distributions [10]:

L ,
{
QX,Y : QY = P̂Y n1

}
=
{
QX,Y : ∀y ∈ Y, EQX,Y [I(Y = y)] = P̂Y n1 (y)

}
where QX,Y denotes any joint pmf on X ×Y. With this linear family L, problem 4.20 can be recast
as an i-projection:

P̂ ∗Xn
1 ,Y

n
1

= arg min
P̂Xn1 ,Y

n
1
∈L
D(P̂Xn

1 ,Y
n
1
||PX,Y ).

Solving this i-projection produces the unique solution:

∀x ∈ X ,∀y ∈ Y, P̂ ∗Xn
1 ,Y

n
1

(x, y) = PX|Y (x|y)P̂Y n1 (y)

where we substitute P̂Y n1 = PY + JY to get:

∀x ∈ X , ∀y ∈ Y, P̂ ∗Xn
1 ,Y

n
1

(x, y) = PX,Y (x, y)

(
1 +

JY (y)

PY (y)

)
.

Marginalizing this solution gives:

∀x ∈ X , P̂ ∗Xn
1

(x) = PX(x)

1 +
∑
y∈Y

Wx(y)
JY (y)

PY (y)

 = PX(x)

(
1 + EWx

[
JY (Y )

PY (Y )

])
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and the definition of conditional probability gives:

∀x ∈ X ,∀y ∈ Y, V ∗x (y) =
P̂ ∗Xn

1 ,Y
n
1

(x, y)

P̂ ∗Xn
1

(x)
= Wx(y)


1 +

JY (y)

PY (y)

1 +
∑
z∈Y

Wx(z)
JY (z)

PY (z)


which are the global optimizing solutions of problem 4.20.

We note that there is a more elementary (but perhaps less insightful) method of proving Theorem
4.2.1. We can directly derive the optimal value of the objective function of problem 4.20 (or
equation 4.17) using the chain rule for KL divergence. Observe that for any two distributions QX,Y
and PX,Y , the chain rule gives:

D(QX,Y ||PX,Y ) = D(QX ||PX) +D(QY |X ||PY |X |QX)

= D(QY ||PY ) +D(QX|Y ||PX|Y |QY )

which by Gibbs’ inequality, implies that:

D(QY ||PY ) ≤ D(QX ||PX) +D(QY |X ||PY |X |QX)

with equality if and only if D(QX|Y ||PX|Y |QY ) = 0. Suppose we fix PX,Y and QY , and minimize
the right hand side of this inequality over all QX and QY |X such that the marginal distribution
of Y of QX,Y is QY . Then, choosing QX|Y = PX|Y ensures that D(QX|Y ||PX|Y |QY ) = 0, which
means that:

D(QY ||PY ) = min
QX ,QY |X :

QY |XQX=QY

D(QX ||PX) +D(QY |X ||PY |X |QX).

This is precisely equation 4.17 and the optimal value statement in Theorem 4.2.1. Moreover, the
optimizing Q∗X,Y has marginal distribution Q∗Y = QY and conditional distributions Q∗X|Y = PX|Y ,
as we saw in the proof of Theorem 4.2.1. Hence, this is an alternative derivation of Theorem 4.2.1.

Although Theorem 4.2.1 states that the minimum value of the objective function of problem 4.20 is
D(P̂Y n1 ||PY ) = D(P̂ ∗Xn

1
||PX)+D(V ∗||W |P̂ ∗Xn

1
), it is instructive to closely examine what D(P̂ ∗Xn

1
||PX)

and D(V ∗||W |P̂ ∗Xn
1

) are. To derive more insight on these quantities, we employ local approxima-
tions of KL divergence and solve problem 4.20 in the local case in subsection 4.2.2. For now, we
form local approximations of the global solution directly. This can be compared to the results of
subsection 4.2.2 later. We first reproduce the solutions in Theorem 4.2.1 by reinserting the ε > 0
factor:

∀x ∈ X , P̂ ∗Xn
1

(x) = PX(x) + ε
∑
y∈Y

PX|Y (x|y)JY (y) (4.21)

∀x ∈ X ,∀y ∈ Y, V ∗x (y) = Wx(y)


1 + ε

JY (y)

PY (y)

1 + ε
∑
z∈Y

Wx(z)
JY (z)

PY (z)

 (4.22)
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from which we see that P̂ ∗Xn
1

is already in local form because the second term which constitutes it
is a valid additive perturbation:∑

x∈X

∑
y∈Y

PX|Y (x|y)JY (y) =
∑
y∈Y

JY (y)
∑
x∈X

PX|Y (x|y) =
∑
y∈Y

JY (y) = 0.

The V ∗x , x ∈ X are not in local form because we cannot easily isolate additive, log-likelihood, or
normalized perturbations from them. To locally approximate them, we use the following substitu-
tion:

1

1 + ε
∑
z∈Y

Wx(z)
JY (z)

PY (z)

= 1− ε
∑
z∈Y

Wx(z)
JY (z)

PY (z)
+ o (ε)

where o (ε) denotes a function which satisfies lim
ε→0+

o (ε)

ε
= 0. The substitution produces:

∀x ∈ X , ∀y ∈ Y, V ∗x (y) = Wx(y)

(
1 + ε

JY (y)

PY (y)
− ε

∑
z∈Y

Wx(z)
JY (z)

PY (z)
+ o (ε)

)
which we rearrange to get:

∀x ∈ X ,∀y ∈ Y, V ∗x (y) = Wx(y) + ε

(
Wx(y)

JY (y)

PY (y)
−Wx(y)

∑
z∈Y

Wx(z)
JY (z)

PY (z)

)
+ o (ε) (4.23)

where the second term on the right hand side is a valid additive perturbation:∑
y∈Y

Wx(y)
JY (y)

PY (y)
−
∑
y∈Y

Wx(y)
∑
z∈Y

Wx(z)
JY (z)

PY (z)
=
∑
y∈Y

Wx(y)
JY (y)

PY (y)
−
∑
z∈Y

Wx(z)
JY (z)

PY (z)
= 0.

Hence, equations 4.21 and 4.23 are the local approximations to the global solution in Theorem
4.2.1. We rewrite them below by again neglecting the ε factors and terms:

∀x ∈ X , P̂ ∗Xn
1

(x) = PX(x) + PX(x)
∑
y∈Y

Wx(y)
JY (y)

PY (y)
(4.24)

∀x ∈ X ,∀y ∈ Y, V ∗x (y)
local
= Wx(y) +Wx(y)

(
JY (y)

PY (y)
−
∑
z∈Y

Wx(z)
JY (z)

PY (z)

)
(4.25)

where equation 4.24 is identical to the global solution, but equation 4.25 requires local approxima-
tions. Recognizing that P̂ ∗Xn

1
= PX + JX and ∀x ∈ X , V ∗x = Wx + J∗x , the most probable local

perturbations are:

∀x ∈ X , J∗X(x) = PX(x)
∑
y∈Y

Wx(y)
JY (y)

PY (y)
(4.26)

∀x ∈ X ,∀y ∈ Y, J∗x(y) = Wx(y)

(
JY (y)

PY (y)
−
∑
z∈Y

Wx(z)
JY (z)

PY (z)

)
(4.27)

using equations 4.24 and 4.25. In the next subsection, we verify that equations 4.26 and 4.27 are
indeed the solutions to the locally approximated problem 4.20.
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4.2.2 Local Solution using Lagrangian Optimization

To locally approximate problem 4.20, we assume that empirical distributions perturb very slightly
from theoretical distributions. This is a sound assumption when n→∞. Recall that we have:

P̂Xn
1

= PX + JX

P̂Y n1 = PY + JY

∀x ∈ X , Vx = Wx + Jx

where the additive perturbation vectors have elements that are small (or the ε factor which is
understood to be in front of them is small). This means that KL divergences can be approximated
using χ2-divergences.

D(P̂Xn
1
||PX)

local
=

1

2
‖JX‖2PX (4.28)

D(P̂Y n1 ||PY )
local
=

1

2
‖JY ‖2PY (4.29)

∀x ∈ X , D(Vx||Wx)
local
=

1

2
‖Jx‖2Wx

(4.30)

We may also locally approximate the conditional KL divergence, D(V ||W |P̂Xn
1

). Using Definition
4.2.2 and equation 4.30, we have:

D(V ||W |P̂Xn
1

) =
∑
x∈X

P̂Xn
1

(x)D(Vx||Wx)
local
=

1

2

∑
x∈X

PX(x) ‖Jx‖2Wx
+

1

2

∑
x∈X

JX(x) ‖Jx‖2Wx

which gives:

D(V ||W |P̂Xn
1

)
local
=

1

2

∑
x∈X

PX(x) ‖Jx‖2Wx
(4.31)

where we neglect the third order terms JX(x) ‖Jx‖2Wx
(as they are o

(
ε2
)

terms when we write
the ε factors explicitly). Equations 4.28 and 4.31 can be used to recast the extremal problem in
statement 4.20 in local form:

min
JX ,JW=[J1···J|X|]

1

2
‖JX‖2PX +

1

2

∑
x∈X

PX(x) ‖Jx‖2Wx

subject to: JTX1 = 0,

JTW 1 = 0,

and WJX + JWPX = JY (4.32)

where 1 denotes the vector of with all entries equal to 1, 0 is a scalar in the first constraint and a
column vector with all entries equal to 0 in the second constraint, and the third constraint imposes
equation 4.9 which ensures that P̂Y n1 is the observed output empirical pmf. The next theorem solves
the optimization problem in statement 4.32.

Theorem 4.2.2 (Most Probable Local Source and Channel Perturbations). The most probable
local source perturbation and local channel perturbations, which are optimizing arguments of the
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extremal problem in statement 4.32, are given by:

∀x ∈ X , J∗X(x) = PX(x)
∑
y∈Y

Wx(y)
JY (y)

PY (y)
, and

∀x ∈ X , ∀y ∈ Y, J∗x(y) = Wx(y)

(
JY (y)

PY (y)
−
∑
z∈Y

Wx(z)
JY (z)

PY (z)

)
,

and the optimal value of the objective function of problem 4.32 is:

1

2
‖J∗X‖

2
PX

+
1

2

∑
x∈X

PX(x) ‖J∗x‖
2
Wx

=
1

2
‖JY ‖2PY .

Proof.
We first set up the Lagrangian, L (JX , JW , λ, µ, τ), for problem 4.32:

L = JTX [PX ]−1 JX +
∑
x∈X

PX(x)JTx [Wx]−1 Jx + λT (WJX + JWPX − JY ) + µJTX1 + τTJTW 1

where µ ∈ R, λ =
[
λ1 · · ·λ|Y|

]T ∈ R|Y|, and τ =
[
τ1 · · · τ|X |

]T ∈ R|X | are Lagrange multipliers,

and we omit the factor of 1
2 in the objective function. We will take partial derivatives of L using

denominator layout notation, which means:

∂L
∂JX

=


∂L

∂JX(1)
...
∂L

∂JX(|X |)

 and ∀x ∈ X , ∂L
∂Jx

=


∂L

∂Jx(1)
...
∂L

∂Jx(|Y|)

 .
Taking partial derivatives and setting them equal to 0, we get:

∂L
∂JX

= 2 [PX ]−1 JX +W Tλ+ µ1 = 0

and:

∀x ∈ X , ∂L
∂Jx

= 2PX(x) [Wx]−1 Jx + PX(x)λ+ τx1 = 0.

Appropriately absorbing constants into the Lagrange multipliers, we have:

JX = [PX ]W Tλ+ µPX ,

∀x ∈ X , Jx = [Wx]λ+ τxWx.

We then impose the constraint, JTX1 = 0:

JTX1 = λTW [PX ] 1 + µP TX1 = λTPY + µ = 0

which gives:
µ = −λTPY .

We also impose the constraint, JTW 1 = 0 (or ∀x ∈ X , JTx 1 = 0):

∀x ∈ X , JTx 1 = λT [Wx] 1 + τxW
T
x 1 = λTWx + τx = 0
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which gives:
∀x ∈ X , τx = −λTWx.

Hence, we have:

JX =
(
[PX ]W T − PXP TY

)
λ,

∀x ∈ X , Jx =
(
[Wx]−WxW

T
x

)
λ.

Finally, we impose the constraint, WJX + JWPX = WJX +
∑
x∈X

PX(x)Jx = JY :

WJX + JWPX = W
(
[PX ]W T − PXP TY

)
λ+

∑
x∈X

PX(x)
(
[Wx]−WxW

T
x

)
λ = JY

(
W [PX ]W T − PY P TY + [PY ]−

∑
x∈X

PX(x)WxW
T
x

)
λ = JY

which is equivalent to: (
[PY ]− PY P TY

)
λ = JY .

To find λ, we must invert the matrix [PY ] − PY P TY , which is a rank 1 perturbation of the matrix
[PY ]. It is tempting to apply the Sherman-Morrison-Woodbury formula to invert [PY ]−PY P TY , but
we find that 1 − P TY [PY ]−1 PY = 0. This means that the Sherman-Morrison-Woodbury formula
cannot invert [PY ]− PY P TY because it is singular. On the other hand, we observe that:

λ = [PY ]−1 JY

satisfies the constraint
(
[PY ]− PY P TY

)
λ = JY :(

[PY ]− PY P TY
)

[PY ]−1 JY = JY − PY 1TJY = JY

where we use the fact that 1TJY = 0, because JY is a valid additive perturbation. Therefore, the
optimal JX and Jx, x ∈ X are:

J∗X = [PX ]W T [PY ]−1 JY ,

∀x ∈ X , J∗x =
(
[Wx]−WxW

T
x

)
[PY ]−1JY .

which we can rewrite as:

∀x ∈ X , J∗X(x) = PX(x)
∑
y∈Y

Wx(y)
JY (y)

PY (y)
,

∀x ∈ X ,∀y ∈ Y, J∗x(y) = Wx(y)

(
JY (y)

PY (y)
−
∑
z∈Y

Wx(z)
JY (z)

PY (z)

)
.

This completes the proof of the optimizing arguments.

From Theorem 4.2.1, we have that the global solution satisfies:

D(P̂ ∗Xn
1
||PX) +D(V ∗||W |P̂ ∗Xn

1
) = D(P̂Y n1 ||PY ).
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In analogy with this relation, we would like the local solution to satisfy:

1

2
‖J∗X‖

2
PX

+
1

2

∑
x∈X

PX(x) ‖J∗x‖
2
Wx

=
1

2
‖JY ‖2PY

which is clearly equivalent to satisfying:

‖J∗X‖
2
PX

+
∑
x∈X

PX(x) ‖J∗x‖
2
Wx

= ‖JY ‖2PY . (4.33)

We now directly prove equation 4.33. Observe that:

‖J∗X‖
2
PX

= JTY [PY ]−1W [PX ]W T [PY ]−1JY

=
∑
x∈X

PX(x)

∑
y∈Y

Wx(y)
JY (y)

PY (y)

2

= VAR
(
E
[
JY (Y )

PY (Y )

∣∣∣∣X]) (4.34)

where the third equality follows from E
[
E
[
JY (Y )
PY (Y )

∣∣∣X]] = E
[
JY (Y )
PY (Y )

]
= 0. Likewise, observe that:

∑
x∈X

PX(x) ‖J∗x‖
2
Wx

=
∑
x∈X

PX(x)
∑
y∈Y

Wx(y)

(
JY (y)

PY (y)
−
∑
z∈Y

Wx(z)
JY (z)

PY (z)

)2

= E

[(
JY (Y )

PY (Y )
− E

[
JY (Y )

PY (Y )

∣∣∣∣X])2
]

= E
[
VAR

(
JY (Y )

PY (Y )

∣∣∣∣X)]
= VAR

(
JY (Y )

PY (Y )

)
− VAR

(
E
[
JY (Y )

PY (Y )

∣∣∣∣X])
= ‖JY ‖2PY − VAR

(
E
[
JY (Y )

PY (Y )

∣∣∣∣X]) (4.35)

where the third equality holds by the tower property, the fourth equality holds by the law of total

variance, and the last equality holds because VAR
(
JY (Y )
PY (Y )

)
= ‖JY ‖2PY . Adding equations 4.34 and

4.35 produces equation 4.33. This completes the proof.

The most probable source and channel perturbations given in Theorem 4.2.2 are the same as
those in equations 4.26 and 4.27. Thus, the solutions to the locally approximated global problem
are consistent with the local approximations to the global solutions. We next consider explicitly
identifying the local approximations of D(P̂ ∗Xn

1
||PX) and D(V ∗||W |P̂ ∗Xn

1
). Using equation 4.28 and

Theorem 4.2.2, we have:

D(P̂ ∗Xn
1
||PX)

local
=

1

2
‖J∗X‖

2
PX

=
1

2

∥∥[PX ]W T [PY ]−1JY
∥∥2

PX
=

1

2
JTY [PY ]−1W [PX ]W T [PY ]−1JY .

93



4.2. MOST PROBABLE SOURCE AND CHANNEL PERTURBATIONS

Recall from section 1.2 in chapter 1 that:

KY =
[√

PY

]−1
JY

is the normalized perturbation corresponding to the additive perturbation JY . Using KY , we get:

D(P̂ ∗Xn
1
||PX)

local
=

1

2
‖J∗X‖

2
PX

=
1

2
KT
YBB

TKY (4.36)

where B is the DTM defined in Definition 1.3.4. Likewise, using equation 4.31 and Theorem 4.2.2,
we have:

D(V ∗||W |P̂ ∗Xn
1

)
local
=

1

2

∑
x∈X

PX(x) ‖J∗x‖
2
Wx

=
1

2

(
‖JY ‖2PY − ‖J

∗
X‖

2
PX

)
=

1

2

(
KT
YKY −KT

YBB
TKY

)
which simplifies to:

D(V ∗||W |P̂ ∗Xn
1

)
local
=

1

2

∑
x∈X

PX(x) ‖J∗x‖
2
Wx

=
1

2
KT
Y

(
I −BBT

)
KY . (4.37)

Hence, equations 4.36 and 4.37 illustrate local approximations of the KL divergences, D(P̂ ∗Xn
1
||PX)

and D(V ∗||W |P̂ ∗Xn
1

). They intuitively convey that in the most probable scenario (under the expo-

nential approximation), BBT controls the fraction of local output KL divergence arising from the
source perturbation, and I −BBT controls the fraction of local output KL divergence arising from
the channel perturbations. Hence, under local approximations, BBT determines the exponent of
the large deviation probability of observing P̂ ∗Xn

1
, and I − BBT determines the exponent of the

large deviation probability of observing V ∗.

Finally, we portray that BBT and I − BBT also govern the source-channel decomposition of the
output perturbation. From equation 4.9 and the third constraint of problem 4.32, we have:

JY = WJ∗X + J∗WPX (4.38)

where J∗W =
[
J∗1 · · · J∗|X |

]
, and we neglect all second order terms. We may rewrite this source-

channel decomposition using the normalized perturbation KY :

KY =
[√

PY

]−1
WJ∗X +

[√
PY

]−1
J∗WPX . (4.39)

The source perturbation component of KY is:[√
PY

]−1
WJ∗X =

[√
PY

]−1
W [PX ]W T [PY ]−1JY = BBTKY (4.40)

using Theorem 4.2.2. This means the channel perturbation component of KY is:[√
PY

]−1
J∗WPX =

(
I −BBT

)
KY (4.41)

because the proof of Theorem 4.2.2 ensures that equation 4.38 holds, which implies equation 4.39
also holds. Therefore, we may write equation 4.39 as:

KY = BBTKY +
(
I −BBT

)
KY . (4.42)

This is a source-channel decomposition of the normalized output perturbation KY , where the
source part is determined by BBT , as shown in equation 4.40, and the channel part is determined
by I −BBT , as shown in equation 4.41.

94



CHAPTER 4. LARGE DEVIATIONS AND SOURCE-CHANNEL DECOMPOSITION

4.3 Most Probable Channel Perturbations with Fixed Source

We now address the third question at the end of section 4.1. Suppose we observe both the i.i.d.
input Xn

1 and the i.i.d. output Y n
1 of the discrete memoryless channel W . A theoretical example of

this would be a sender in a perfect feedback channel. Once again, we assume we have full knowledge
of the theoretical distribution PX,Y , and calculate all probabilities with respect to this distribution.
In particular, we again use the notation PnX,Y to denote the probability distribution of (Xn

1 , Y
n

1 ).

Observing Xn
1 and Y n

1 reveals P̂Xn
1

and P̂Y n1 , but there are many possible V which are consistent

with P̂Y n1 = V P̂Xn
1

. In this scenario, the pertinent question is to try and find the most probable V

which satisfies P̂Y n1 = V P̂Xn
1

.

We want to maximize PnX,Y (V = v | P̂Xn
1

= pX , P̂Y n1 = pY ) over all vx ∈ PY for each x ∈ X
such that vpX = pY , where pX and pY are any observed input and output empirical pmfs. To this
end, we have using Bayes’ rule:

PnX,Y

(
V = v | P̂Xn

1
= pX , P̂Y n1 = pY

)
=


PnX,Y

(
V=v|P̂Xn1 =pY

)
PnX,Y

(
P̂Y n1

=pY |P̂Xn1 =pX

) , if vpX = pY

0 , otherwise

because:

PnX,Y

(
P̂Y n1 = pY | P̂Xn

1
= pX , V = v

)
=

{
1 , if vpX = pY
0 , otherwise

.

Moreover, PnX,Y (P̂Y n1 = pY | P̂Xn
1

= pX) is a constant because P̂Xn
1

= pX and P̂Y n1 = pY are given.

So, maximizing PnX,Y (V = v | P̂Xn
1

= pX , P̂Y n1 = pY ) is equivalent to maximizing its numerator

PnX,Y (V = v | P̂Xn
1

= pX) assuming that the constraint vpX = pY is satisfied. Recall from equation
4.15 that:

PnX,Y

(
V = v | P̂Xn

1
= pX

)
.
= e−nD(v||W |pX).

Hence, maximizing PnX,Y (V = v | P̂Xn
1

= pX) is equivalent to minimizing D(v||W |pX) over empirical
channel matrices v, under the exponential approximation. This means our optimization problem
to find the most probable empirical channel conditional pmfs V ∗ is:

min
v: vpX=pY

D(v||W |pX) (4.43)

where P̂Xn
1

= pX and P̂Y n1 = pY are known, and the minimization is over all vx ∈ PY for each x ∈ X .
Finding V ∗ also delivers us the most probable channel perturbations J∗W = V ∗−W when the input
and output empirical pmfs are perturbed by JX = pX − PX and JY = pY − PY , respectively. J∗W
contains intriguing information regarding which conditional distributions perturb more than others.

Although problem 4.43 is soundly set up, it does not address the title of this section: “most
probable channel perturbations with fixed source.” Indeed, the source is not fixed in the setup of
problem 4.43 as a perturbed empirical source pmf is observed. Another way to perceive this prob-
lem is to think of the fixed P̂Xn

1
= pX as a fixed composition which does not come from i.i.d. Xn

1 .

The sender fixes an empirical distribution P̂Xn
1

= pX and sends Xn
1 according to this distribution.

Each Xi is sent through the discrete memoryless channel. So, the theoretical input distribution is
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P̂Xn
1

and the theoretical output distribution is P̂Y = WP̂Xn
1

= WpX ; the original PX is meaningless

in this scenario. The receiver observes the output empirical distribution P̂Y n1 = pY and tries to find

the most probable empirical conditional distributions V given P̂Xn
1

= pX and P̂Y n1 = pY . What we
have effectively done is assumed that there is no source perturbation. So, the output perturbation
is only caused by the channel perturbations. This is the opposite scenario of [4] where the channel
did not perturb but the source did.

We now derive the problem of finding the most probable V under this alternative interpreta-
tion. Let the theoretical joint pmf of (X,Y ) be PX,Y , where PX,Y now has marginal pmfs QX
and PY = WQX , and conditional probabilities PY |X given by W . Moreover, we assume that
∀x ∈ X , ∀y ∈ Y, PX,Y (x, y) > 0. We again calculate all probabilities with respect to PnX,Y , which
denotes the distribution of (Xn

1 , Y
n

1 ). Since the empirical input distribution equals the theoretical
input distribution in the fixed composition scenario, we have:

QX = P̂Xn
1
. (4.44)

Moreover, we define:

QY , P̂Y n1 = PY + JY (4.45)

as the empirical output pmf, where JY is now the additive perturbation of QY = P̂Y n1 from PY .
Note that:

QY = V QX = (W + JW )QX = PY + JWQX

where JW is the matrix of channel perturbations. Hence, the source-channel decomposition in
equation 4.9 becomes:

JY = JWQX (4.46)

because the source perturbation is 0. We want to maximize PnX,Y (V = v | QY = qY ) over all
vx ∈ PY for each x ∈ X such that vQX = qY , where qY is any observed output empirical pmf.
Using Bayes’ rule, we have:

PnX,Y (V = v | QY = qY ) =

{
PnX,Y (V=v)

PnX,Y (QY =qY ) , if vQX = qY

0 , otherwise

because:

PnX,Y (QY = qY | V = v) =

{
1 , if vQX = qY
0 , otherwise

where we do not require any conditioning on P̂Xn
1

in the above equations because we use a fixed

composition QX = P̂Xn
1

. Thus, assuming that the constraint vQX = qY is satisfied, maximizing
PnX,Y (V = v | QY = qY ) is equivalent to maximizing PnX,Y (V = v), because PnX,Y (QY = qY ) is
constant since QY = qY is given.

To compute PnX,Y (V = v), we observe that for every x ∈ X and every empirical pmf vx:

PnX,Y (Vx = vx)
.
= e−nQX(x)D(vx||Wx) (4.47)
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in analogy with equation 4.12. This is because the channel is memoryless:

∀xn1 ∈ X n, ∀yn1 ∈ Yn, PY n1 |Xn
1

(yn1 | xn1 ) =
n∏
i=1

Wxi (yi)

which means that if we are given the Xi values, the Yi values are drawn independently. Once again,
note that we do not need to condition on QX when computing probabilities of V (or Vx) because
QX is a known fixed composition. Furthermore, for any v =

[
v1 · · · v|X |

]
, we have:

PnX,Y (V = v) =
∏
x∈X

PnX,Y (Vx = vx) (4.48)

which holds because empirical conditional distributions for different values of x ∈ X are independent
for a fixed composition QX . Indeed, knowing QX and n implies we know nQX(x) for all x ∈ X . This
is the only kind of information that can be inferred about one empirical conditional distribution
from another. The reason for this is no longer because samples are i.i.d. as in equation 4.13 in
section 4.2. In fact, the samples are clearly not i.i.d. However, memorylessness of the channel
implies that Yi is conditionally independent of all Yj , j 6= i and Xj , j 6= i, given Xi. To find Vx,
we must collect all Xi = x samples, and no other empirical conditional distribution requires these
samples. This means that the corresponding Yi values of the Xi = x samples (which determine
Vx) are independent of all samples with Xi 6= x. Hence, the empirical conditional distributions are
independent of one another. Combining this conclusion in equation 4.48 with equation 4.47, we
have:

PnX,Y (V = v)
.
= exp

(
−n

∑
x∈X

QX(x)D(wx||Wx)

)
which we may write using Definition 4.2.2 as:

PnX,Y (V = v)
.
= e−nD(v||W |QX) (4.49)

in analogy with equation 4.15.

Using equation 4.49, we see that the most probable V ∗ is given by minimizing the exponent
D(v||W |QX) over all empirical channel conditional pmfs v, under the exponential approximation.
Hence, the optimization problem which finds V ∗ is:

min
v: vQX=qY

D(v||W |QX) (4.50)

where the empirical pmf of Y , QY = qy, is given, and we use a fixed composition QX . This is ex-
actly the same problem as that in statement 4.43. Therefore, both problems find the most probable
channel perturbations J∗W = V ∗−W with fixed source composition QX given that QY is observed.
The ensuing subsections solve problem 4.50 in the global and local scenarios.

Before delving into the solutions, we draw attention to some miscellaneous observations. Firstly,
it is worth mentioning that the optimal value of problem 4.50 will be greater than or equal to the
optimal value of problem 4.19. Indeed, if we let QX = PX , then the convexity of KL divergence in
its arguments and Jensen’s inequality imply that:

D(v||W |QX) ≥ D(qY ||PY )
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for every set of empirical channel conditional pmfs v such that vQX = qY , where D(qY ||PY ) =
D(P̂Y n1 ||PY ) is the optimal value of problem 4.19 according to equation 4.17. This trivially gives
us:

min
v: vQX=qY

D(v||W |QX) ≥ min
pX ,v:

vpX=qY

D(pX ||QX) +D(v||W |pX) = D(qY ||PY ). (4.51)

On another note, we observe that Problem 4.50 actually finds the maximum a posteriori probablity
(MAP) estimate V ∗ after observing QY , because it maximizes PnX,Y (V = v | QY = qy) under
the exponential approximation. It turns out that we can also perceive V ∗ as the set of dominat-
ing empirical channel conditional distributions which lead to qY . To elucidate this, we first find
PnX,Y (QY = qY ). Unfortunately, we cannot blindly use equation 4.11:

PnX,Y (QY = qY )
.
= e−nD(qY ||PY )

because the Y n
1 are no longer i.i.d. Hence, we have from first principles:

PnX,Y (QY = qY ) =
∑

v: vQX=qY

PnX,Y (V = v)

into which we can substitute equation 4.49 (non-rigorously) to get:

PnX,Y (QY = qY ) =
∑

v: vQX=qY

e−nD(v||W |QX)

where the sum indexes over a polynomial in n number of terms, because the number of possible
empirical channel conditional pmfs v =

[
v1 · · · v|X |

]
which satisfy vQX = qY is polynomial in n for

fixed n. Then, the Laplace principle [26] gives:

PnX,Y (QY = qY )
.
= exp

(
−n min

v: vQX=qY
D(v||W |QX)

)
. (4.52)

The exponent in equation 4.52 is precisely the extremal problem in statement 4.50. Thus, for a
fixed composition QX , the exponential approximation of the probability of observing QY = qY
equals the exponential approximation of the probability of the dominating (most probable) V ∗.
This also agrees with equation 4.16, where letting P̂Xn

1
= pX = PX (which corresponds to fixing

the source composition or allowing no source perturbation) gives the same exponent as equation
4.52, because D(pX ||PX) = 0 when pX = PX . In the next subsection, we find an implicit global
solution for problem 4.50.

4.3.1 Implicit Global Solution

As in subsection 4.2.1, for the sake of clarity, we will alter notation slightly before solving problem
4.50. In our ensuing derivations, we will use the notation of problem 4.50 rather than its equivalent
formulation in statement 4.43. Furthermore, we will use V and QY , instead of v and qY , to mean
particular values of the empirical distributions rather than random variables which represent these
empirical distributions. This should not generate any confusion since we will not compute any
large deviation probabilities in this subsection. Using this altered notation, we can rewrite the
optimization problem in statement 4.50 as:

min
V : V QX=QY

D(V ||W |QX) (4.53)
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where the source compositionQX is fixed, the empirical pmfQY is observed, and the minimization is
over all empirical channels (conditional pmfs) V . The optimizing V ∗ is the most probable empirical
channel with fixed source composition QX . We will first attack problem 4.53 using the method of
Lagrange multipliers. The next theorem presents this Lagrangian optimization approach.

Theorem 4.3.1 (Most Probable Empirical Channel PMFs). The most probable empirical channel
conditional pmfs, V ∗, which are global optimizing arguments of the extremal problem in statement
4.53, are given by:

∀x ∈ X , ∀y ∈ Y, V ∗x (y) =
Wx(y)eλy∑

z∈Y
Wx(z)eλz

where the λy, y ∈ Y satisfy the marginal constraint:

∀y ∈ Y,
∑
x∈X

QX(x)

 Wx(y)eλy∑
z∈Y

Wx(z)eλz

 = QY (y).

Proof.
We seek to minimize D(V ||W |QX) over all empirical channel conditional pmfs V subject to the
constraint:

∀y ∈ Y,
∑
x∈X

QX(x)Vx(y) = QY (y)

by employing the method of Lagrange multipliers. We additionally impose the constraint:

∀x ∈ X ,
∑
y∈Y

Vx(y) = 1

to ensure that each Vx, x ∈ X is normalized like a valid pmf. However, we do not impose the
non-negativity constraints on Vx, x ∈ X as they will turn out to hold naturally. The Lagrangian,
L(V, λ, µ), for the problem is:

L =
∑
x∈X

QX(x)
∑
y∈Y

Vx(y) log

(
Vx(y)

Wx(y)

)
+
∑
y∈Y

λy
∑
x∈X

QX(x)Vx(y) +
∑
x∈X

µx
∑
y∈Y

Vx(y)

where λ =
[
λ1 · · ·λ|Y|

]T
and µ =

[
µ1 · · ·µ|X |

]T
are Lagrange multipliers. Taking the partial

derivatives of L with respect to Vx(y) and setting them equal to 0, we get:

∀x ∈ X , ∀y ∈ Y, ∂L
∂Vx(y)

= QX(x)

(
1 + λy + log

(
Vx(y)

Wx(y)

))
+ µx = 0.

By appropriately absorbing constants into the Lagrange multipliers and rearranging, we have:

∀x ∈ X , ∀y ∈ Y, Vx(y) = Wx(y)eλy−µx .

This clearly shows that each empirical conditional distribution, Vx, is exponentially tilted from the
theoretical conditional distribution Wx. The λy, y ∈ Y are natural parameters corresponding to
indicator sufficient statistics I(Y = y), and the µx, x ∈ X are the log-partition functions. We will
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provide an alternative proof of Theorem 4.3.1 using i-projections which will make this structure
clear. To find µx, x ∈ X , we impose the valid pmf normalization constraints:

∀x ∈ X ,
∑
y∈Y

Vx(y) = e−µx
∑
y∈Y

Wx(y)eλy = 1

which give:

∀x ∈ X , eµx =
∑
y∈Y

Wx(y)eλy .

This agrees with the observation that eµx , x ∈ X are partition functions. Using the expressions
for eµx , the optimal V ∗x have the form:

∀x ∈ X ,∀y ∈ Y, V ∗x (y) =
Wx(y)eλy∑

z∈Y
Wx(z)eλz

where the λy, y ∈ Y must satisfy the the marginal constraint:

∀y ∈ Y,
∑
x∈X

QX(x)V ∗x (y) =
∑
x∈X

QX(x)

 Wx(y)eλy∑
z∈Y

Wx(z)eλz

 = QY (y).

Hence, we have found the optimizing V ∗. Note that the non-negativity constraints on V ∗x , x ∈ X
which ensure they are valid pmfs automatically hold. We now justify that the V ∗ is indeed a
minimizer of problem 4.53 (as we have only shown it is a stationary point of the Lagrangian so far).
Observe that our objective function D(V ||W |QX) is a strictly convex function of V for fixed Wand
QX , because ∀x ∈ X , QX(x) > 0, and for each x ∈ X , D(Vx||Wx) is a strictly convex function
of Vx for fixed Wx. Moreover, the constraints V QX = QY and 1TV = 1T (where 1 is the column
vector with all entries equal to 1) are affine equality constraints. Theorem 2.2.8 in [27] asserts that
such convex minimization problems (with affine equality constraints) attain their global minimum
at the stationary point of their Lagrangian. This completes the proof.

Theorem 4.3.1 does not provide an explicit characterization of V ∗. It only presents an implicit
global solution of problem 4.53 by presenting each V ∗x , x ∈ X as functions of λy, y ∈ Y, where the
λy are implicitly defined by a marginal constraint. In fact, our proof using Lagrange multipliers
does not elaborate upon why such λy, y ∈ Y must exist. We now present an alternative proof of
Theorem 4.3.1 by setting problem 4.53 up as an i-projection. This proof offers more insight into
the existence, uniqueness, and exponential family form of V ∗.

Proof.
We first set up the extremal problem in statement 4.53 as an i-projection. Observe that:

D(V ||W |QX) = D(QX,Y ||PX,Y )

where QX,Y denotes the empirical joint pmf, with empirical conditional distributions of Y given X
given by V , and empirical marginal pmf of X given by QX (which is both the empirical and the
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theoretical distribution of X in the fixed composition scenario). Note that PX,Y is the theoretical
joint pmf, with empirical conditional distributions of Y given X given by W , and empirical marginal
pmf of X given by QX . The constraint V QX = QY is a marginal constraint on QX,Y . So, consider
the linear family of distributions:

L ,
{
QX,Y : ∀x ∈ X , EQX,Y [I (X = x)] = QX(x) ∧ ∀y ∈ Y, EQX,Y [I (Y = y)] = QY (y)

}
which is the set of joint pmfs on X × Y with marginal pmfs QX and QY . With this linear family
L, problem 4.53 can be recast as an i-projection:

Q∗X,Y = arg min
QX,Y ∈L

D(QX,Y ||PX,Y )

where we additionally know that the marginal pmf of X of PX,Y is also QX .

We now solve this i-projection. Let E be the (|X |+ |Y|)-dimensional canonical exponential family
which is “orthogonal” to the linear family L:

E ,

QX,Y : ∀x ∈ X , ∀y ∈ Y, QX,Y (x, y) =
PX,Y (x, y)eτx+λy∑

a∈X

∑
b∈Y

PX,Y (a, b)eτa+λb
for some τx, λy ∈ R


where QX,Y denotes any joint pmf on X ×Y, PX,Y is the base distribution, τx, x ∈ X and λy, y ∈ Y
are the natural parameters, I(X = x), x ∈ X and I(Y = y), y ∈ Y are the sufficient statistics, and
the normalization sum in the denominator is the partition function. We remark that Definition
3.4.3 of canonical exponential families was only for pdfs and had a single parameter. A more general
definition includes E as a canonical exponential family as well. It is well-known that the optimizing
Q∗X,Y of the i-projection exists, and is the unique distribution that is in both E and L [10]. Hence,
Q∗X,Y ∈ L ∩ E . Since Q∗X,Y ∈ E , we have:

∀x ∈ X , ∀y ∈ Y, Q∗X,Y (x, y) =
PX,Y (x, y)eτx+λy∑

a∈X

∑
b∈Y

PX,Y (a, b)eτa+λb
.

Furthermore, since Q∗X,Y ∈ L, we have:

∀x ∈ X ,
∑
y∈Y

Q∗X,Y (x, y) = QX(x),

∀y ∈ Y,
∑
x∈X

Q∗X,Y (x, y) = QY (y).

Imposing the marginal constraint on X gives:

∀x ∈ X ,

eτx
∑
y∈Y

PX,Y (x, y)eλy∑
a∈X

∑
b∈Y

PX,Y (a, b)eτa+λb
= QX(x)
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where we use the fact that PX,Y has marginal pmf QX to get:

∀x ∈ X , eτx
∑
y∈Y

Wx(y)eλy =
∑
a∈X

∑
b∈Y

PX,Y (a, b)eτa+λb .

Hence, the solution to the i-projection is:

∀x ∈ X ,∀y ∈ Y, Q∗X,Y (x, y) =
PX,Y (x, y)eλy∑
z∈Y

Wx(z)eλz

where the λy, y ∈ Y satisfy:

∀y ∈ Y,
∑
x∈X

Q∗X,Y (x, y) =
∑
x∈X

QX(x)

 Wx(y)eλy∑
z∈Y

Wx(z)eλz

 = QY (y)

which imposes the marginal constraint on Y . Since ∀x ∈ X ,∀y ∈ Y, Q∗X,Y (x, y) = V ∗x (y)QX(x),
the optimal empirical conditional distributions are:

∀x ∈ X ,∀y ∈ Y, V ∗x (y) =
Wx(y)eλy∑

z∈Y
Wx(z)eλz

where the λy, y ∈ Y satisfy:

∀y ∈ Y,
∑
x∈X

QX(x)

 Wx(y)eλy∑
z∈Y

Wx(z)eλz

 = QY (y).

This completes the proof.

From this alternative proof of Theorem 4.3.1 using i-projections, we glean a better understand-
ing of the form of V ∗. The most probable empirical channel conditional pmfs, V ∗x , x ∈ X , are
exponentially tilted versions of the theoretical conditional pmfs, Wx, x ∈ X , because we project
the theoretical conditional pmfs along exponential families onto the linear family which represents
the empirical observations. The geometric intuition behind Theorem 4.3.1 is further elaborated in
subsection 4.3.2. It is rather dissatisfying that we cannot find V ∗x , x ∈ X explicitly by solving the
conditions for λy, y ∈ Y. Thus, the next two corollaries illustrate scenarios where the λy, y ∈ Y,
can be found explicitly.

Corollary 4.3.2 (Identical Conditional Distributions). If all the theoretical conditional pmfs of Y
given X are identical:

∀x ∈ X , Wx = PY ,

then the most probable empirical conditional pmfs of Y given X are also all identical:

∀x ∈ X , V ∗x = QY .
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Proof.
From Theorem 4.3.1 and the assumption ∀x ∈ X , Wx = PY , we have:

∀x ∈ X ,∀y ∈ Y, V ∗x (y) =
PY (y)eλy∑

z∈Y
PY (z)eλz

where the λy, y ∈ Y satisfy the marginal constraint:

∀y ∈ Y,
∑
x∈X

QX(x)

 PY (y)eλy∑
z∈Y

PY (z)eλz

 =
PY (y)eλy∑

z∈Y
PY (z)eλz

= QY (y).

This marginal constraint can be rearranged to:

∀y ∈ Y,
∑
z∈Y

PY (z)eλz =
PY (y)eλy

QY (y)

which gives:
∀x ∈ X , ∀y ∈ Y, V ∗x (y) = QY (y).

In Corollary 4.3.2, we essentially determine the λy, y ∈ Y, by how much we exponentially tilt PY
to get QY . Then, as all the theoretical conditional distributions are identical to PY , we tilt them
all by the same amount.

Corollary 4.3.3 (Exponentially Tilted Empirical Output PMF). Suppose we are given that QY
is exponentially tilted from PY :

∀y ∈ Y, QY (y) =
PY (y) (1 + ly)

1 +
∑
z∈Y

PY (z)lz
.

If l =
[
l1 · · · l|Y|

]T
= v + c1 for any constant c ∈ R and any vector v ∈ nullspace

(
W T

)
, where

1 is the column vector with all entries equal to unity, then the most probable empirical channel
conditional pmfs are:

∀x ∈ X ,∀y ∈ Y, V ∗x (y) =
Wx(y) (1 + ly)

1 +
∑
z∈Y

Wx(z)lz
.

Proof.
Letting eλy = 1 + µy for each y ∈ Y in Theorem 4.3.1, we have:

∀x ∈ X , ∀y ∈ Y, V ∗x (y) =
Wx(y) (1 + µy)

1 +
∑
z∈Y

Wx(z)µz
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where the µy, y ∈ Y satisfy the marginal constraint:

∀y ∈ Y,
∑
x∈X

QX(x)

 Wx(y) (1 + µy)

1 +
∑
z∈Y

Wx(z)µz

 = QY (y).

Since QY is exponentially tilted from PY , we can write this marginal constraint as:

∀y ∈ Y,
∑
x∈X

QX(x)

 Wx(y) (1 + µy)

1 +
∑
z∈Y

Wx(z)µz

 =
PY (y) (1 + ly)

1 +
∑
z∈Y

PY (z)lz

=
∑
x∈X

QX(x)

 Wx(y) (1 + ly)

1 +
∑
a∈X

QX(a)
∑
b∈Y

Wa(b)lb

.
We can clearly see from this relation that if we have:

∀x ∈ X ,
∑
b∈Y

Wx(b)lb = c

for some constant c ∈ R, then: ∑
a∈X

QX(a)
∑
b∈Y

Wa(b)lb = c

and so, ∀y ∈ Y, µy = ly satisfies the marginal constraint:

∀y ∈ Y, QY (y) =
PY (y)ely∑

z∈Y
PY (z)elz

.

Let µ =
[
µ1 · · ·µ|Y|

]T
denote the vector of µy, y ∈ Y. We have shown that if W T l = c1 for some

constant c ∈ R, then µ = l satisfies the marginal constraint. So, if l = v+ c1 for any constant c ∈ R
and any vector v ∈ nullspace

(
W T

)
, then W T l = W T v + cW T 1 = c1, which means µ = l satisfies

the marginal constraint and:

∀x ∈ X , ∀y ∈ Y, V ∗x (y) =
Wx(y) (1 + ly)

1 +
∑
z∈Y

Wx(z)lz
.

In Corollary 4.3.3, we assume that QY is exponentially tilted from PY and write:

∀y ∈ Y, QY (y) =
PY (y) (1 + ly)

1 +
∑
z∈Y

PY (z)lz
.
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While this equation does not have the form of an exponential tilt, letting 1+ ly = eτy for each y ∈ Y
makes it clear that QY is indeed exponentially tilted from PY . We must be careful and recognize
that ∀y ∈ Y, ly > −1. This ensures the τy, y ∈ Y are well-defined and that ∀y ∈ Y, QY (y) > 0.
Corollary 4.3.3 illustrates that we can often explicitly find V ∗ when the dimension of the left
nullspace of W is large. For example, if W is a tall matrix and |Y| is much larger than |X |, QY is
more likely to satisfy the premise of Corollary 4.3.3.

Since we cannot generally find explicit global solutions to problem 4.53, we will also solve it using
local approximations of KL divergence in subsection 4.3.3. For comparison with those forthcoming
results, we compute local approximations of our global solutions directly. To this end, we reproduce
the solutions in Theorem 4.3.1 with altered form:

∀x ∈ X , ∀y ∈ Y, V ∗x (y) =
Wx(y) (1 + εµy)

1 + ε
∑
z∈Y

Wx(z)µz
(4.54)

where the µy, y ∈ Y, satisfy the marginal constraint:

∀y ∈ Y,
∑
x∈X

QX(x)

 Wx(y) (1 + εµy)

1 + ε
∑
z∈Y

Wx(z)µz

 = QY (y). (4.55)

Note that we write ∀y ∈ Y, eλy = 1 + εµy for some small ε > 0. The µy > −1, y ∈ Y, express
the exponential tilting as multiplicative perturbations (without loss of generality). The ε factor
enforces the assumption that the perturbed V ∗ is close to W . To complete the local approximation,
we use the following substitution:

1

1 + ε
∑
z∈Y

Wx(z)µz
= 1− ε

∑
z∈Y

Wx(z)µz + o (ε)

where o (ε) denotes a function which satisfies lim
ε→0+

o (ε)

ε
= 0. This gives the locally approximated

global solution:

∀x ∈ X , ∀y ∈ Y, V ∗x (y) = Wx(y) (1 + εµy)

(
1− ε

∑
z∈Y

Wx(z)µz + o (ε)

)

= Wx(y) + εWx(y)

(
µy −

∑
z∈Y

Wx(z)µz

)
+ o (ε) (4.56)

where the µy, y ∈ Y, satisfy:

∀y ∈ Y, εJY (y) =
∑
x∈X

QX(x)Wx(y)

(
1 + εµy − ε

∑
z∈Y

Wx(z)µz

)
− PY (y) + o (ε)

= ε
∑
x∈X

QX(x)Wx(y)

(
µy −

∑
z∈Y

Wx(z)µz

)
+ o (ε) (4.57)
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because QY = PY + εJY . Neglecting the ε factors and terms, equations 4.56 and 4.57 illustrate
that the most probable channel perturbations, J∗x = V ∗x −Wx, x ∈ X (when the global solutions
are locally approximated) are:

∀x ∈ X , J∗x = [Wx]
(
I − 1W T

x

)
µ (4.58)

where µ =
[
µ1 · · ·µ|Y|

]T
satisfies: (

[PY ]−W [QX ]W T
)
µ = JY (4.59)

where I is the identity matrix, and 1 denotes a column vector with all entries equal to 1. We will
see that solving the locally approximated problem 4.53 will produce these same results.

4.3.2 Geometric Interpretation of Global Solution

Before expounding the solutions to problem 4.53 under local approximations, we take a moment to
appreciate the geometry of its global solutions. From Theorem 4.3.1, we have:

∀x ∈ X ,∀y ∈ Y, V ∗x (y) =
Wx(y)eλy∑

z∈Y
Wx(z)eλz

where the λy, y ∈ Y satisfy the marginal constraint:

∀y ∈ Y,
∑
x∈X

QX(x)

 Wx(y)eλy∑
z∈Y

Wx(z)eλz

 = QY (y).

Figure 4.4 interprets these solutions by considering two spaces of pmfs on Y. For simplicity, we
assume that X = {1, 2, 3}. On the theoretical space, we have the conditional pmfs W1, W2, and
W3, which average with respect to QX to produce the marginal pmf PY . On the empirical space, we
have the empirical conditional pmfs V1, V2, and V3, which average with respect to QX to produce
some empirical marginal pmf. The most probable empirical channel conditional pmfs, V ∗x , x ∈ X ,
are obtained by exponentially tilting the theoretical conditional pmfs, Wx, x ∈ X , such that
V ∗x , x ∈ X average to the observed empirical marginal pmf QY . Hence, to get from the theoretical
space to the empirical space, we construct parallel canonical exponential families starting at W1,
W2, and W3 (base distributions), and travel along these exponential families by the same amount
λy, y ∈ Y (natural parameters), until the average of the Vx, x ∈ X with respect to QX becomes
QY . Therefore, we are essentially taking the entire theoretical space at PY and shifting it along a
canonical exponential family to align it with QY .

4.3.3 Local Solution using Lagrangian Optimization

To locally approximate problem 4.53, we once again assume that empirical distributions perturb
very slightly from theoretical distributions, as in subsection 4.2.2. This means we have:

QY = PY + JY

∀x ∈ X , Vx = Wx + Jx
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Figure 4.4: Geometric view of most probable empirical channel conditional pmfs.

where the additive perturbation vectors have elements that are small (or the ε factor which is un-
derstood to be in front of them is small). We also approximate KL divergences with χ2-divergences:

∀x ∈ X , D(Vx||Wx)
local
=

1

2
‖Jx‖2Wx

(4.60)

D(V ||W |QX)
local
=

1

2

∑
x∈X

QX(x) ‖Jx‖2Wx
(4.61)

where equations 4.60 and 4.61 are restatements of equations 4.30 and 4.31, respectively. Equation
4.61 can be used to recast the extremal problem in statement 4.53 in local form:

min
JW=[J1···J|X|]

1

2

∑
x∈X

QX(x) ‖Jx‖2Wx

subject to: JTW 1 = 0,

and JWQX = JY (4.62)

where 1 denotes the column vector of with all entries equal to 1, 0 denotes the column vector with
all entries equal to 0, and the second constraint imposes V QX = QY as required in problem 4.53.
The next theorem solves the optimization problem in statement 4.62.

Theorem 4.3.4 (Most Probable Local Channel Perturbations). The most probable local channel
perturbations, which are optimizing arguments of the extremal problem in statement 4.62, are given
by:

∀x ∈ X , J∗x =
(
[Wx]−WxW

T
x

) [√
PY

]−1 (
I −BBT

)† [√
PY

]−1
JY

where B =
[√
PY
]−1

W
[√
QX
]

is the divergence transition matrix, and † denotes the Moore-
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Penrose pseudoinverse. The optimal value of the objective function of problem 4.62 is:

1

2

∑
x∈X

QX(x) ‖J∗x‖
2
Wx

=
1

2
JTY

[√
PY

]−1 (
I −BBT

)† [√
PY

]−1
JY .

Proof.
We first set up the Lagrangian, L (JW , λ, µ), of problem 4.62:

L =
∑
x∈X

QX(x)
∑
y∈Y

J2
x(y)

Wx(y)
+
∑
y∈Y

λy
∑
x∈X

QX(x)Jx(y) +
∑
x∈X

µx
∑
y∈Y

Jx(y)

where λ =
[
λ1 · · ·λ|Y|

]T
and µ =

[
µ1 · · ·µ|X |

]T
are Lagrange multipliers. Note that we neglect the

factor of 1
2 in the objective function. Taking partial derivatives of L with respect to Jx(y) and

setting them equal to 0, we get:

∀x ∈ X , ∀y ∈ Y, ∂L
∂Jx(y)

= QX(x)

(
2Jx(y)

Wx(y)
+ λy

)
+ µx = 0

where we may appropriately absorb constants into the Lagrange multipliers to get:

∀x ∈ X ,∀y ∈ Y, Jx(y)

Wx(y)
= λy − µx.

Solving these equations will produce the stationary points of the Lagrangian. Observe that our
objective function is a strictly convex function of JW , because ∀x ∈ X , QX(x) > 0 and ∀x ∈
X ,∀y ∈ Y, Wx(y) > 0. Furthermore, the constraints JTW 1 = 0 and JWQX = JY are affine equality
constraints. As in the first proof of Theorem 4.3.1, we may appeal to Theorem 2.2.8 in [27] which
asserts that convex minimization problems with affine equality constraints attain their global min-
imum at the stationary point of their Lagrangian. Hence, we solve the equations derived from the
first derivatives of the Lagrangian to find the global minimizing arguments of problem 4.62.

Recall from section 1.2 in chapter 1 that we can define log-likelihood perturbations:

∀x ∈ X , Lx = [Wx]−1 Jx

LY = [PY ]−1 JY

using which we can rewrite the Lagrangian stationary conditions as:

∀x ∈ X , Lx = λ− µx1

where λ =
[
λ1 · · ·λ|Y|

]T
, and 1 denotes the column vector with all entries equal to 1. Imposing the

valid perturbation constraints, we have:

∀x ∈ X , W T
x Lx = W T

x λ− µxW T
x 1 = 0

∀x ∈ X , µx = W T
x λ

which gives:
∀x ∈ X , Lx = λ−

(
W T
x λ
)

1 =
(
I − 1W T

x

)
λ (4.63)
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where I is the identity matrix. Imposing the marginal constraint, we have:∑
x∈X

QX(x)Jx =
∑
x∈X

QX(x) [Wx]Lx =
∑
x∈X

QX(x) [Wx]
(
I − 1W T

x

)
λ = JY

which simplifies to: (
[PY ]−W [QX ]W T

)
λ = JY . (4.64)

Now recall from section 1.2 in chapter 1 that we can define normalized perturbations equivalent to
the additive and log-likelihood perturbations.

∀x ∈ X , Kx =
[√

Wx

]−1
Jx

KY =
[√

PY

]−1
JY

We now transfer the marginal constraint into the space of normalized perturbations for convenience.

KY =
[√

PY

]−1 (
[PY ]−W [QX ]W T

)
λ

=

(
I −

[√
PY

]−1
W
[√

QX

] [√
QX

]
W T

[√
PY

]−1
)[√

PY

]
λ

=
(
I −BBT

) [√
PY

]
λ

where B is the DTM from Definition 1.3.4. This means the most probable normalized channel
perturbations are:

∀x ∈ X , K∗x =
[√

Wx

] (
I − 1W T

x

)
λ

where λ satisfies: (
I −BBT

) [√
PY

]
λ = KY .

The matrix I−BBT is not invertible, because the matrix BBT has an eigenvalue of 1 which means
I − BBT has an eigenvalue of 0. Since we assumed that ∀x ∈ X , ∀y ∈ Y, PX,Y (x, y) > 0, every
entry of B is strictly positive. So, every entry of BBT is strictly positive. By the Perron-Frobenius
theorem, BBT has a unique largest real eigenvalue such that every other eigenvalue of BBT is
strictly smaller in magnitude. We know that this largest Perron-Frobenius eigenvalue of BBT is 1,
and all other eigenvalues are non-negative real numbers less than 1, as BBT is positive semidefinite.
Hence, the algebraic multiplicity of the eigenvalue 0 of I − BBT is 1. This means I − BBT has a
nullity of 1. It is known from [4] that for BBT , the eigenvector corresponding to the eigenvalue of
1 is
√
PY . This means that:

nullspace
(
I −BBT

)
= span

(√
PY

)
.

Thus, if we find any particular solution
[√
PY
]
λ = x to the marginal constraint:(

I −BBT
)
x = KY

then all other solutions are of the form
[√
PY
]
λ = x+ v, where v ∈ nullspace

(
I −BBT

)
. We first

argue that such a particular solution x exists. Since KY is a valid normalized perturbation, KY is

orthogonal to
√
PY :

√
PY

T
KY = 0. This means we have:

KY ∈ nullspace
(
I −BBT

)⊥
= range

((
I −BBT

)T)
= range

(
I −BBT

)
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where the first equality holds by the fundamental theorem of linear algebra, and the second equality
holds because I −BBT is symmetric. Hence, a particular solution x exists for

(
I −BBT

)
x = KY .

We can find a particular solution using the Moore-Penrose pseudoinverse:

x =
(
I −BBT

)†
KY

where † denotes the Moore-Penrose pseudoinverse. It can be shown that this x is actually the
minimum 2-norm solution to the associated system of equations, which means that it does not
contain any component in the nullspace of I − BBT . So, solutions to the marginal constraint are
of the form: [√

PY

]
λ =

(
I −BBT

)†
KY + c

√
PY

λ =
[√

PY

]−1 (
I −BBT

)†
KY + c1

where c ∈ R is an arbitrary constant, and 1 is a column vector with all entries equal to 1. Now
notice that the most probable normalized channel perturbations are:

∀x ∈ X , K∗x =
[√

Wx

] (
I − 1W T

x

)([√
PY

]−1 (
I −BBT

)†
KY + c1

)
=

[√
Wx

] (
I − 1W T

x

) [√
PY

]−1 (
I −BBT

)†
KY + c

[√
Wx

] (
I − 1W T

x

)
1

=
[√

Wx

] (
I − 1W T

x

) [√
PY

]−1 (
I −BBT

)†
KY (4.65)

which shows that the component of λ corresponding to the nullspace of I−BBT vanishes. Therefore,
we are left with a unique solution as we would expect from the strict convexity of the objective
function of problem 4.62. Rewriting equation 4.65 using additive perturbations, we have:

∀x ∈ X , J∗x =
(
[Wx]−WxW

T
x

) [√
PY

]−1 (
I −BBT

)† [√
PY

]−1
JY

as claimed.

We must now find the optimal value of the objective function of problem 4.62:

1

2

∑
x∈X

QX(x) ‖J∗x‖
2
Wx

=
1

2

∑
x∈X

QX(x) ‖K∗x‖
2.

Using equation 4.65, we have:∑
x∈X

QX(x) ‖K∗x‖
2 =

∑
x∈X

QX(x)K∗x
TK∗x =

KT
Y

(
I −BBT

)† [√
PY

]−1
(∑
x∈X

QX(x)
(
I −Wx1T

)
[Wx]

(
I − 1W T

x

)) [√
PY

]−1 (
I −BBT

)†
KY
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where we also use the fact that the Moore-Penrose pseudoinverse of a symmetric matrix is sym-
metric. The summation in the middle can be evaluated to be:∑

x∈X
QX(x)

(
I −Wx1T

)
[Wx]

(
I − 1W T

x

)
= [PY ]−

∑
x∈X

QX(x)WxW
T
x

= [PY ]−W [QX ]W T

=
[√

PY

] (
I −BBT

) [√
PY

]
which implies that:∑

x∈X
QX(x) ‖K∗x‖

2 = KT
Y

(
I −BBT

)† (
I −BBT

) (
I −BBT

)†
KY

= KT
Y

(
I −BBT

)†
KY

where the second equality follows from the definition of the Moore-Penrose pseudoinverse. There-
fore, we have:

1

2

∑
x∈X

QX(x) ‖K∗x‖
2 =

1

2
KT
Y

(
I −BBT

)†
KY (4.66)

which is equivalent to:

1

2

∑
x∈X

QX(x) ‖J∗x‖
2
Wx

=
1

2
JTY

[√
PY

]−1 (
I −BBT

)† [√
PY

]−1
JY .

This completes the proof.

The local solutions in Theorem 4.3.4 match the local approximations to the global solutions of
Theorem 4.3.1. This can be seen by comparing equations 4.63 and 4.64 with equations 4.58 and
4.59, respectively. The next section utilizes Theorem 4.3.4 to model channel perturbations as
additive Gaussian noise.

4.4 Modeling Channel Perturbations as Gaussian Noise

In this section, we conform to the notation set forth in section 4.1. We are given a pair of jointly
distributed discrete random variables (X,Y ) with joint pmf PX,Y , where the marginal pmfs of X
and Y are PX and PY = WPX , respectively. We perceive X as the input to a discrete memoryless
channel with output Y . Recall from section 4.1 that:

P̂Xn
1

= PX + JX (4.67)

P̂Y n1 = PY + JY (4.68)

∀x ∈ X , Vx = Wx + Jx (4.69)

where JX , JY , and Jx, x ∈ X , are additive perturbations of the empirical distributions from their
corresponding theoretical distributions. The empirical distributions are computed from (Xn

1 , Y
n

1 ),
where Xn

1 ∈ X n is some input string which may not be i.i.d., and Y n
1 ∈ Yn is the output of Xn

1
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through the discrete memoryless channel. We will let PnX,Y denote the probability distribution of
(Xn

1 , Y
n

1 ) in the ensuing derivations. In section 4.1, we derived the source-channel decomposition
of the output perturbation in equation 4.9:

JY
local
= WJX + JWPX (4.70)

where we neglect all second order terms. Although we were assuming that Xn
1 are i.i.d. in section

4.1, equation 4.70 holds without this assumption. Indeed, all we really need to derive it is that
the empirical source and channel conditional distributions are close to the theoretical distributions
(i.e. JX and JW have a common ε > 0 factor in front of them). Observe that at the sender end,
we can control the empirical source pmf, and hence, the source perturbation JX . At the receiver
end, we are interested in the output perturbation JY and the corresponding empirical output pmf.
We neither have control over nor have much interest in the actual channel perturbations JWPX ,
besides their effect on JY . Hence, we now contemplate modeling the channel perturbations as
additive noise. Specifically, we seek to model JWPX in some meaningful sense as additive (jointly)
Gaussian noise Z. This changes equation 4.70 into:

JY = WJX + Z (4.71)

where we drop the
local
= , and it is understood that we are operating under appropriate local approx-

imations. It will be convenient to use normalized perturbations rather than additive perturbations
in our calculations. So, equation 4.71 is transformed into:

KY = BKX + Z (4.72)

where KX =
[√
PX
]−1

JX , KY =
[√
PY
]−1

JY , B is the DTM, and Z =
[√
PY
]−1

JWPX now
denotes the additive Gaussian noise corresponding to the transformed (but equivalent) model. For
some fixed large n, the source normalized perturbation KX is a random vector which has a certain
probability distribution associated to it. It can be perceived as the input to a multiple-input
multiple-output (MIMO) channel with output KY , channel matrix B, and additive Gaussian noise
Z. The next theorem characterizes Z by appropriately approximating the conditional probability
of KY given KX .

Theorem 4.4.1 (Gaussian MIMO Channel for Perturbations). For large n, the source-channel
decomposition of the output perturbation can be modeled as a MIMO channel with additive Gaussian
noise:

KY = BKX + Z

where B is the divergence transition matrix, Z ∼ N (0,Σ) is Gaussian distributed with covariance
matrix Σ = 1

n

(
I −BBT

)
, the input KX is independent of Z, and the model holds under exponential

and local approximations.

Proof.
We first appropriately approximate the conditional probability of KY given KX . Consider any input
normalized perturbation kX and any output normalized perturbation kY . Let pY = PY +ε

[√
PY
]
kY
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and pX = PX + ε
[√
PX
]
kX . Observe that:

PnX,Y (KY = kY | KX = kX) = PnX,Y

(
P̂Y n1 = pY | P̂Xn

1
= pX

)
=

∑
v: vpX=pY

PnX,Y

(
V = v | P̂Xn

1
= pX

)
.
= max

v: vpX=pY
PnX,Y

(
V = v | P̂Xn

1
= pX

)
where the summation indexes over a polynomial in n number of terms because the number of
possible empirical channel matrices v which satisfy vpX = pY is polynomial in n for fixed n, and
the third equation holds in an exponential approximation sense by the Laplace principle since each
term in the sum is exponentially decaying. We recognize that the right hand side of this equation
is precisely the problem of finding the most probable empirical channel conditional pmfs given the
input and output empirical pmfs. The global case of this problem was identified in statements 4.43,
4.50, and 4.53 of section 4.3. Using these results, we have:

PnX,Y (KY = kY | KX = kX)
.
= exp

(
−n min

v: vpX=pY
D(v||W |pX)

)
.

The local case of the constrained minimum conditional KL divergence problem in the exponent of
this equation is defined in problem 4.62, and the local optimal value of the exponent can be found in
Theorem 4.3.4. We note that the constraint vpX = pY is indeed locally equivalent (neglecting second
order terms) to the last constraint of problem 4.62 when we fix JY in the constraint appropriately.
Hence, using Theorem 4.3.4, we get:

PnX,Y (KY = kY | KX = kX)
local.
= exp

(
−n

2

∑
x∈X

PX(x) ‖K∗x‖
2

)

where the notation
local.
= implies we apply the exponential approximation and then employ local

approximations to solve the extremal problem in the exponent. The K∗x, x ∈ X , are given in
equation 4.65 in the proof of Theorem 4.3.4:

∀x ∈ X , K∗x =
[√

Wx

] (
I − 1W T

x

) [√
PY

]−1 (
I −BBT

)†
(kY −BkX)

where † denotes the Moore-Penrose pseudoinverse, and we fix KY (corresponding to JY ) of problem
4.62 to be kY −BkX . Using equation 4.66 in the proof of Theorem 4.3.4, we have:

PnX,Y (KY = kY | KX = kX)
local.
= exp

(
−n

2
(kY −BkX)T

(
I −BBT

)†
(kY −BkX)

)
(4.73)

which is exactly in the form of a Gaussian pdf without the normalization.

We now illustrate that equation 4.73 also represents an approximation to the probability of Z.
To this end, we argue that JW is independent of JX in equation 4.70, which will mean that Z is
independent of KX in equation 4.72. Notice that knowing JX is equivalent to knowing P̂Xn

1
. Given

P̂Xn
1

, we know that each Vx is constructed from nP̂Xn
1

(x) samples. However, the values of Vx(y) are
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determined by drawing independently (conditioned on knowing x) from Wx by the memorylessness
of the channel. So, the only information JX provides about each Jx is the number of samples used
to construct each Vx. As n → ∞, the number of samples used to construct each Vx also tends
to ∞, which means JW becomes independent of JX . This means we can model the noise Z as
independent of the source perturbation KX . Hence, for any input normalized perturbation kX and
any output normalized perturbation kY :

PnX,Y (KY = kY | KX = kX) = PnX,Y (Z = kY −BkX | KX = kX) = PnX,Y (Z = kY −BkX)

where the first equality follows from equation 4.72, and the second equality follows from the (asymp-
totic) independence of Z and KX . From equation 4.73, we get:

PnX,Y (Z = kY −BkX)
local.
= exp

(
−n

2
(kY −BkX)T

(
I −BBT

)†
(kY −BkX)

)
where we can let z = kY −BkX to give:

PnX,Y (Z = z)
local.
= exp

(
−1

2
zT
(

1

n

(
I −BBT

))†
z

)
. (4.74)

From this equation and our earlier argument, we see that it is reasonable to model Z as a jointly
Gaussian random vector independent of KX . It is evident that the model is more accurate when
n is large, and holds under exponential and local approximations. We let Z have jointly Gaussian
distribution:

Z ∼ N (0,Σ)

with covariance matrix:

Σ =
1

n

(
I −BBT

)
.

To characterize the set of values Z takes on, observe that by virtue of being valid normalized
perturbations, every kY is orthogonal to

√
PY and every kX is orthogonal to

√
PX . Since B has

right singular vector
√
PX and left singular vector

√
PY corresponding to singular value 1 (see proof

of Theorem 3.2.4), BkX is orthogonal to
√
PY as well. This means the set of values Z takes on is:{

z ∈ R :
√
PY

T
z = 0

}
which implies: √

PY
T
Z = 0.

We know from the proof of Theorem 4.3.4 that I −BBT is singular and has nullspace:

nullspace
(
I −BBT

)
= span

(√
PY

)
.

This is consistent with the linear dependence relation
√
PY

T
Z = 0 that Z must satisfy to be a

valid normalized perturbation of PY . It also means that Z is a degenerate jointly Gaussian random
vector. So, we cannot construct a pdf for Z with respect to the Lebesgue measure on R|Y|. However,
Z does have a pdf with respect to the “equivalent” Lebesgue measure on a (|Y| − 1)-dimensional
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subspace of R|Y|. The new measure can be defined using the disintegration theorem from measure
theory, and the pdf of Z with respect to this measure is:

fZ(z) =
1√

(2π)|Y|−1 pdet (Σ)

exp

(
−1

2
zTΣ†z

)

where pdet (·) is the pseudo-determinant (the product of the non-zero eigenvalues). This pdf
matches the form of equation 4.74. The appropriate normalization constant can be inserted into
equation 4.74 to get:

PnX,Y (Z = z)
local.
=

1√
(2π)|Y|−1 pdet

(
1
n (I −BBT )

) exp

(
−1

2
zT
(

1

n

(
I −BBT

))†
z

)

because the exponential approximation causes the constant to vanish. Indeed, we have:

lim
n→∞

1

n
log

 1√
(2π)|Y|−1 pdet

(
1
n (I −BBT )

)
 = −1

2
lim
n→∞

1

n
log

(
pdet

(
1

n

(
I −BBT

)))

=
|Y| − 1

2
lim
n→∞

log (n)

n
= 0

where the second equality holds because I −BBT has a nullity of 1. This completes the proof.

Theorem 4.4.1 models channel perturbations as additive Gaussian noise Z under exponential and
local approximations. We illustrate the elegant intuition behind this result with some modest
calculations. Recall from the discussion at the onset of this chapter that drawing i.i.d. Xn

1 engenders
a uniform KL divergence ball of perturbations, KX , around PX . By the memorylessness of the
channel, Y n

1 are also i.i.d. and the perturbations, KY , form a uniform KL divergence ball around
PY . From equations 4.10 and 4.11, we have for any input normalized perturbation kX and any
output normalized perturbation kY :

PnX,Y (KX = kX)
local.
= exp

(
−n

2
kTX

(
I −

√
PX
√
PX

T
)†
kX

)
(4.75)

PnX,Y (KY = kY )
local.
= exp

(
−n

2
kTY

(
I −

√
PY
√
PY

T
)†
kY

)
(4.76)

where we apply local approximations to the KL divergences which normally reside in the exponents.
Note that the Moore-Penrose pseudoinverses in the exponents can be replaced by identity matrices

because
√
PX

T
kX = 0 and

√
PY

T
kY = 0. We model KX and KY as jointly Gaussian random

vectors:

KX ∼ N
(

0,
1

n

(
I −

√
PX
√
PX

T
))

and KY ∼ N
(

0,
1

n

(
I −

√
PY
√
PY

T
))

.

The nullspace of the covariance matrix of KX is the span of
√
PX and the nullspace of the covariance

matrix of KY is the span of
√
PY , because

√
PX

T
KX = 0 and

√
PY

T
KY = 0. Hence, the rank 1
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subtractions in the covariances ensure that KX and KY are valid normalized perturbations. On
the other hand, the identity matrices in the covariances portray that KX and KY lie on spherical
level sets around PX and PY , respectively. Our Gaussian MIMO channel model for normalized
perturbations is:

KY = BKX + Z

where Z ∼ N
(
0, 1

n

(
I −BBT

))
is the independent additive Gaussian noise from Theorem 4.4.1.

We verify that:

E
[
KYK

T
Y

]
= BE

[
KXK

T
X

]
BT + E

[
ZZT

]
=

1

n
B
(
I −

√
PX
√
PX

T
)
BT +

1

n

(
I −BBT

)
=

1

n

(
I −B

√
PX
√
PX

T
BT
)

=
1

n

(
I −

√
PY
√
PY

T
)

where the first equality holds by independence of KX and Z, the second equality holds by substi-
tuting in the covariances, and the final equality holds because B has right singular vector

√
PX and

left singular vector
√
PY corresponding to singular value 1 (see proof of Theorem 3.2.4). Hence,

when we consider the Gaussian MIMO channel model for normalized perturbations, we see that
spherical source perturbation level sets pass through the channel and are warped into ellipsoids gov-

erned by the spectral decomposition of BBT −
√
PY
√
PY

T
. The noise due to channel perturbations

then takes these ellipsoidal level sets and transforms them back into spherical output perturbation
level sets. This is the source-channel decomposition of the large deviation behavior of the output
perturbation when i.i.d. Xn

1 is sent through a discrete memoryless channel.

As a final remark, we briefly examine how the results of this chapter, which culminate in The-
orem 4.4.1, can be used for communications purposes. Envision a scenario where we are given
a discrete memoryless channel which has a random permutation attached to it. In other words,
codewords are randomly permuted before being passed through a classical discrete memoryless
channel. In traditional channel coding, it is known that fixed composition codes achieve capacity.
So, traditional codebooks typically try to fix the empirical distribution of codewords (at least ap-
proximately), and embed information through the permutations (ordering) of symbols within the
codewords. Such coding schemes would fail lamentably in a channel with random permutation,
because all information associated with the ordering of symbols in a codeword is lost. In such
a setting, information must be communicated by varying the empirical distributions of the code-
words. It is conceivable that we would want to use codeword empirical distributions around some
fixed source distribution PX (perhaps the capacity achieving distribution). Then, the normalized
perturbations, KX , carry the information from the messages. Theorem 4.4.1 allows us to view
the effect of any discrete memoryless channel on normalized perturbations as an additive Gaussian
noise MIMO channel. Therefore, we can select normalized perturbations which maximize the in-
formation sent down the MIMO channel based on the noise statistics. We encourage the interested
reader to refer to [8] for further details regarding the utility of Theorem 4.4.1 in communications.
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Chapter 5

Spectral Decomposition of Infinite
Alphabet Channels

In chapter 1, we delineated a method of analyzing linear information coupling problems on dis-
crete and finite channels using the singular value decomposition (SVD) of the DTM [4]. We then
explored several aspects of this framework in chapters 3 and 4. A natural next step is to consider
channels whose input and output random variables have infinite range. Since theory from linear
algebra specifies how the SVD of a matrix may be calculated, and numerical linear algebra provides
elegant algorithms that carry out this task, finding the SVD of the DTM is a trivial considera-
tion for discrete and finite channels. However, finding the SVD for more general channels requires
powerful analytical tools from functional analysis. Indeed, the spectral theory of linear operators
(which subsumes the SVD) in functional spaces is a deep and subtle subject. In this final discourse,
we turn our attention to the many intricacies of computing the SVD for channels which are not
discrete and finite. Much of the measure theory, integration theory, and functional analysis used
in this chapter may be found in texts on functional analysis like [28] and [29].

Due to the dearth of algorithms which readily compute SVDs in functional spaces, the SVD for
more general channels must be computed on a case by case basis. [23] derives it for AWGN channels
with Gaussian input, and [8] derives it for Poisson channels with exponential input. In this chapter,
we reintroduce the appropriate perturbation spaces and notation for general channels, and then
present a criterion to verify whether the singular vectors of such channels (after transformation)
are orthogonal polynomials. This criterion is used to generalize the spectral decomposition results
for Poisson channels, and also find SVDs for other channels.

5.1 Preliminary Definitions and Notation

In this section, we reiterate and generalize several definitions pertaining to local perturbation spaces
and the divergence transition matrix (DTM) from sections 1.2 and 1.3 in chapter 1. Some of these
generalizations were briefly mentioned in section 2.1 in chapter 2, and implicitly used in section
3.4 in chapter 3. Throughout this chapter, we will be primarily interested in channels whose input
and output random variables have infinite range. We now define the notion of an “infinite alphabet
channel” more precisely.
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Definition 5.1.1 (Infinite Alphabet Channel). Given a probability space, (Ω,F ,P), an infinite
alphabet channel consists of a discrete or continuous input random variable X : Ω → X with
infinite range X ⊆ R, a discrete or continuous output random variable Y : Ω → Y with infinite
range Y ⊆ R, and conditional probability distributions PY |X(·|x), x ∈ X .

The AWGN and Poisson channels we mentioned earlier are both infinite alphabet channels. They
will be formally defined later as we proceed through our discussion. We will use the notation PX
and PY to denote the probability laws of X and Y , respectively. These are both push-forward
measures of P. Moreover, we will always restrict ourselves to situations where PX is absolutely
continuous with respect to a σ-finite measure λ, and PY is absolutely continuous with respect to
a σ-finite measure µ. The Radon-Nikodym derivative of PX with respect to λ is denoted PX ,
and the Radon-Nikodym derivative of PY with respect to µ is denoted PY . In particular, we will
consider two special cases of λ and µ. If X (respectively Y ) is a discrete random variable and X
(respectively Y) is countably infinite, then PX (respectively PY ) is a probability measure and λ
(respectively µ) is the counting measure on the measurable space

(
X , 2X

)
(respectively

(
Y, 2Y

)
),

so that PX (respectively PY ) is a pmf with infinite non-zero mass points. If X (respectively Y ) is a
continuous random variable and X (respectively Y) is uncountably infinite, then PX (respectively
PY ) is a probability measure and λ (respectively µ) is the Lebesgue measure on the measurable
space (R,B), where B is the Borel σ-algebra, so that PX (respectively PY ) is a pdf. The conditional
distributions PY |X(·|x), x ∈ X , and PX|Y (·|y), y ∈ Y, will be regarded as pmfs or pdfs with respect
to µ and λ, respectively. Finally, we note that all integrals in this chapter will refer to abstract
Lebesgue integrals with respect to general measures. For example, if λ is the counting measure,
then for any integrable measurable function f : X → R, we have:

E [f(X)] =

∫
X
f dPX =

∫
X
fPX dλ =

∑
x∈X

PX(x)f(x).

Likewise, if λ is the Lebesgue measure, then for any integrable measurable function f : R→ R, we
have:

E [f(X)] =

∫
X
f dPX =

∫
X
fPX dλ

where the second integral is a standard Lebesgue integral.

We now create an analogous picture of perturbation spaces (as in the discrete and finite chan-
nel case) for infinite alphabet channels. Fix a reference pmf or pdf, PX , satisfying:

λ ({x ∈ X : PX(x) = 0}) = 0

which means PX is not at the edge of the stochastic manifold of distributions on X , and has a
well-defined neighborhood so that local perturbations can exist in all directions around it. The
perturbed input pmf or pdf, QX , can be written as:

∀x ∈ X , QX(x) = PX(x) + εJX(x) (5.1)

where the (measurable) additive perturbation function, JX , satisfies:∫
X
JX dλ = 0 (5.2)
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to ensure that QX is normalized, and ε > 0 is chosen small enough to ensure that:

λ ({x ∈ X : QX(x) < 0}) = 0.

As in the discrete and finite channel case, we may also define the (measurable) normalized and
log-likelihood perturbation functions, KX and LX , respectively:

∀x ∈ X , KX(x) ,
JX(x)√
PX(x)

(5.3)

∀x ∈ X , LX(x) ,
JX(x)

PX(x)
(5.4)

which are well-defined because λ ({x ∈ X : PX(x) = 0}) = 0. Note that KX satisfies the valid
normalized perturbation constraint: ∫

X

√
PXKX dλ = 0 (5.5)

and LX satisfies the valid log-likelihood perturbation constraint:∫
X
LX dPX =

∫
X
PXLX dλ = 0. (5.6)

The infinite alphabet channel transforms the input marginal pmfs or pdfs, PX and QX , into output
marginal pmfs or pdfs, PY and QY , respectively. Formally, we have:

∀y ∈ Y, PY (y) =

∫
X
PY |X(y|x)PX(x) dλ(x) (5.7)

∀y ∈ Y, QY (y) =

∫
X
PY |X(y|x)QX(x) dλ(x) (5.8)

where we write the variable x inside the integrals to clarify what we are integrating over. We can
also define output perturbations analogously to input perturbations. The (measurable) additive
output perturbation function, JY , is defined by:

∀y ∈ Y, QY (y) = PY (y) + εJY (y) (5.9)

where ε > 0 is chosen small enough to ensure that:

µ ({y ∈ Y : QY (x) < 0}) = 0.

Note that the infinite alphabet channel transforms the input additive perturbation JX into the
output additive perturbation JY :

∀y ∈ Y, JY (y) =

∫
X
PY |X(y|x)JX(x) dλ(x). (5.10)

Finally, the (measurable) normalized and log-likelihood perturbation functions, KY and LY , cor-
responding to JY are:

∀y ∈ Y, KY (y) ,
JY (y)√
PY (y)

(5.11)

∀y ∈ Y, LY (y) ,
JY (y)

PY (y)
(5.12)
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where we assume that µ ({y ∈ Y : PY (y) = 0}) = 0. The perturbations functions JY , KY , and LY
satisfy: ∫

Y
JY dµ = 0 (5.13)∫

Y

√
PYKY dµ = 0 (5.14)∫

Y
LY dPY =

∫
Y
PY LY dµ = 0 (5.15)

to ensure that QY normalizes to 1. It is easily verified that the input and output additive, normal-
ized, and log-likelihood perturbations form separate vector spaces.

From equation 5.10, we see that the channel (conditional distributions PY |X) transforms any JX
into JY . We may also define operators which transform input normalized and log-likelihood pertur-
bations into output normalized and log-likelihood perturbations. The operator which transforms
KX to KY is called the Divergence Transition Map (DTM), because 2-norms of normalized per-
turbations are proportional to local KL divergences. The operator which transforms LX to LY is
called the Log-likelihood Transition Map (LTM). We formally define these operators below.

Definition 5.1.2 (Perturbation Transition Maps). Consider an infinite alphabet channel with
input random variable X, output random variable Y , and conditional probability distributions
PY |X(·|x), x ∈ X . Suppose the marginal distributions ofX and Y satisfy λ ({x ∈ X : PX(x) = 0}) =
0 and µ ({y ∈ Y : PY (y) = 0}) = 0, respectively. Then, the channel, denoted A, transforms additive
input perturbation functions into additive output perturbation functions:

∀y ∈ Y, A(JX)(y) =

∫
X
PY |X(y|x)JX(x) dλ(x) = JY (y),

the divergence transition map (DTM), denoted B, transforms normalized input perturbation func-
tions into normalized output perturbation functions:

∀y ∈ Y, B(KX)(y) =
1√
PY (y)

∫
X
PY |X(y|x)

√
PX(x)KX(x) dλ(x) = KY (y),

and the log-likelihood transition map (LTM), denoted C, transforms log-likelihood input pertur-
bation functions into log-likelihood output perturbation functions:

∀y ∈ Y, C(LX)(y) =
1

PY (y)

∫
X
PY |X(y|x)LX(x) dPX(x)

=
1

PY (y)

∫
X
PY |X(y|x)PX(x)LX(x) dλ(x)

=

∫
X
PX|Y (x|y)LX(x) dλ(x)

= LY (y).

From Definition 5.1.2, it is easily verified that A (channel), B (DTM), and C (LTM) are linear
operators which transform vectors in an input perturbation vector space to vectors in an output
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perturbation vector space. We are interested in computing the SVD of B. Indeed, this was part
of the analysis in chapter 1 for discrete and finite channels. The first step towards computing an
SVD is to find the spectral decomposition of the Gramian operator; this is in fact the majority of
the computation of the SVD in the matrix case. The Gramian of a linear operator A is A∗A, where
A∗ denotes the adjoint operator of A. We note that referring to A∗A as the Gramian operator is
non-standard usage. Typically, this terminology is reserved for matrices, but we use it for operators
on functional spaces for lack of a better name. Regularity conditions which ensure that the spectral
decompositions of self-adjoint Gramian operators exist come from the theory of Hilbert spaces in
functional analysis. We will state and explain the pertinent regularity conditions in the theorem
statements that follow, but a complete discussion of this topic is omitted for the sake of brevity.
Gramian operators for the channel, DTM, and LTM are derived next. Technically, to find the
adjoint operator of a given operator, we must first define the input and output Hilbert spaces
and their inner products precisely. We must also assume that the original operator is bounded so
that Riesz’ representation theorem can be used to guarantee a unique adjoint. (In fact, the term
“operator” is usually reserved for bounded linear maps on Banach spaces.) We will omit the proofs
of boundedness in the next theorem despite the loss in rigor, because the Gramian operators of the
channel and LTM will not be used in our main results. The derivation of the Gramian operator of
B will be done rigorously before it is used.

Theorem 5.1.1 (Gramian Operators of Perturbation Transition Maps). Consider an infinite al-
phabet channel with input random variable X, output random variable Y , and conditional prob-
ability distributions PY |X(·|x), x ∈ X . Suppose the marginal distributions of X and Y satisfy
λ ({x ∈ X : PX(x) = 0}) = 0 and µ ({y ∈ Y : PY (y) = 0}) = 0, respectively. Then, under appropri-
ate regularity conditions:

1. The Gramian operator of the channel, A∗A, is given by:

(A∗A)(JX)(x) =

∫
X

ΛA(x, t)JX(t) dλ(t) a.e. with respect to λ

where equality holds for all x ∈ X except a set with measure 0, and the kernel of the operator

is: ΛA(x, t) =

∫
Y
PY |X(y|x)PY |X(y|t) dµ(y).

2. The Gramian operator of the DTM, B∗B, is given by:

(B∗B)(KX)(x) =

∫
X

ΛB(x, t)KX(t) dλ(t) a.e. with respect to λ

where equality holds for all x ∈ X except a set with measure 0, and the kernel of the operator

is: ΛB(x, t) =

√
PX(t)

PX(x)

∫
Y
PX|Y (x|y)PY |X(y|t) dµ(y).

3. The Gramian operator of the LTM, C∗C, is given by:

(C∗C)(LX)(x) =

∫
X

ΛC(x, t)LX(t) dλ(t) a.e. with respect to λ

where equality holds for all x ∈ X except a set with measure 0, and the kernel of the operator

is: ΛC(x, t) =

∫
Y
PX|Y (x|y)PX|Y (t|y) dµ(y).
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Proof.
We only derive the Gramian operator of A. The Gramian operators B and C can be found similarly.
Suppose we are given the Hilbert space H1 of measurable, real, λ-square integrable functions on
X , and the Hilbert space H2 of measurable, real, µ-square integrable functions on Y. Let the
associated inner product of H1 be:

∀f1, f2 ∈ H1, 〈f1, f2〉1 ,
∫
X
f1f2 dλ,

and the associated inner product of H2 be:

∀g1, g2 ∈ H2, 〈g1, g2〉2 ,
∫
Y
g1g2 dµ.

To find the Gramian of the channel, A : H1 → H2, we first find the adjoint operator, A∗ : H2 → H1.
By definition of the adjoint operator, for any f ∈ H1 and any g ∈ H2, we have:

〈A (f) , g〉2 = 〈f,A∗ (g)〉1∫
Y
A (f) g dµ =

∫
X
fA∗ (g) dλ∫

Y

(∫
X
PY |X(y|x)f(x) dλ(x)

)
g(y) dµ(y) =

∫
X
f(x) (A∗ (g)) (x) dλ(x)∫

X
f(x)

(∫
Y
PY |X(y|x)g(y) dµ(y)

)
dλ(x) =

∫
X
f(x) (A∗ (g)) (x) dλ(x)

where the second line follows from the definitions of the inner products, the third line follows from
Definition 5.1.2, and the final line follows from the Fubini-Tonelli theorem because A(f)g must be
µ-integrable by the Cauchy-Schwarz-Bunyakovsky inequality in H2. Since the final equality is true
for all f ∈ H1 and all g ∈ H2, the unique adjoint operator (assuming A is bounded or continuous)
A∗ is:

∀x ∈ X , A∗ (g) (x) =

∫
Y
PY |X(y|x)g(y) dµ(y) (5.16)

for every function g ∈ H2. The Gramian operator, A∗A : H1 → H1, is straightforward to derive
once we have the adjoint. For any f ∈ H1, we have:

∀x ∈ X , (A∗A) (f) (x) =

∫
Y
PY |X(y|x)

(∫
X
PY |X(y|t)f(t) dλ(t)

)
dµ(y)

(A∗A) (f) (x) =

∫
X

(∫
Y
PY |X(y|x)PY |X(y|t) dµ(y)

)
f(t) dλ(t) a.e.

where the second equality holds almost everywhere with respect to λ, and it can be justified by the
Fubini-Tonelli theorem. Since A∗A(f) ∈ H1, we have A∗A(f) < ∞ a.e. with respect to λ. This
means the iterated integral in the first line is finite almost everywhere, which implies:∫

Y
PY |X(y|x)

(∫
X
PY |X(y|t) |f(t)| dλ(t)

)
dµ(y) <∞ a.e.

with respect to λ. Applying the Fubini-Tonelli theorem to the iterated integral in the first line
produces the second equality. This defines the Gramian operator of A.
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The Gramian operators A∗A, B∗B, and C∗C are self-adjoint. It can be checked that their kernels
are symmetric. This is evident for A∗A and C∗C:

∀x, t ∈ X , ΛA(x, t) = ΛA(t, x), (5.17)

∀x, t ∈ X , ΛC(x, t) = ΛC(t, x). (5.18)

It holds for B∗B with a little more algebra using Bayes’ rule:

∀x, t ∈ X , ΛB(x, t) =

√
PX(t)

PX(x)

∫
Y
PX|Y (x|y)PY |X(y|t) dµ(y)

=

√
PX(t)

PX(x)

∫
Y

PY |X(y|x)PX(x)

PY (y)

PX|Y (t|y)PY (y)

PX(t)
dµ(y)

=

√
PX(x)

PX(t)

∫
Y
PX|Y (t|y)PY |X(y|x) dµ(y)

= ΛB(t, x). (5.19)

These observations parallel the real matrix case, where the Gramian matrix of a matrix is al-
ways symmetric. In the next section, we study the spectral decomposition of compact self-adjoint
Gramian operators, and then specialize these results to find SVDs of DTMs. In particular, we
concentrate on polynomial eigenfunctions because this unveils deeper insights into the fortuitous
results of [23] and [8].

5.2 Polynomial Spectral Decomposition

Before we delve into spectral decompositions of compact self-adjoint operators, we pause to elucidate
our interest in polynomial eigenfunctions. The importance of the spectral decomposition itself
is evident from our discussion regarding linear information coupling problems for discrete and
finite channels; this can be naturally extended to infinite alphabet channels. For infinite alphabet
channels, the type of eigenfunction (for example, decaying exponential, sinusoid, or polynomial)
can make a difference to its practicality in real-world applications. It is a worthwhile endeavor to
find polynomial eigenfunctions because polynomials are easy to evaluate using computers, and this
makes data analysis methods which use the local approximation technique computationally more
efficient. [23] and [8] find that the eigenfunctions of Gramian operators of the DTM of the AWGN
and Poisson channels are (appropriately weighted) orthogonal polynomials. Such results propel us
to try and characterize the class of infinite alphabet channels which have (appropriately weighted)
orthogonal polynomials as eigenfunctions of the Gramian operators of their DTMs.

5.2.1 Orthogonal Polynomial Eigenbasis for Compact Self-Adjoint Operators

The literature on spectral decomposition methods in Hilbert spaces does not offer any systematic
means of computing spectral decompositions of compact self-adjoint operators. So, it is difficult
to methodically derive polynomial spectral decompositions of Gramian operators corresponding to
infinite alphabet channels. In the next theorem, we provide an elementary and intuitive condition
which can be tested to determine if the orthogonal eigenbasis of a compact self-adjoint operator
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in a Hilbert space consists of orthogonal polynomials. To present this theorem clearly, we first
precisely state our assumptions.

Suppose we are given a measurable space (X,G, ν) where X ⊆ R is an infinite set and ν is a
σ-finite measure, and a separable Hilbert space H over R:

H = L2 (X, ν) , {f : X → R : f measurable and ν-square integrable}

which is the space of square integrable functions with domain (X,G) and codomain (R,B), where
B is the Borel σ-algebra. The Hilbert space has inner product:

∀f, g ∈ H, 〈f, g〉 ,
∫
X
fg dν (5.20)

and induced norm:
∀f ∈ H, ‖f‖ ,

√
〈f, f〉. (5.21)

In such a Hilbert space of functions, equality is defined as equality almost everywhere with respect
to the measure ν. Each vector in this space is really an equivalence class of functions that are all
equal almost everywhere. In the remainder of our discussion in this chapter, equality of functions
should be correctly interpreted in this manner. The σ-finiteness of ν ensures that several convenient
results like the Radon-Nikodym theorem, the Fubini-Tonelli theorem, and Carathéodory’s extension
theorem are valid. Such results will be useful in ensuing derivations. For example, the Fubini-Tonelli
theorem was already used to prove Theorem 5.1.1. On a different note, if X is a compact interval
in R and ν is absolutely continuous with respect to the Lebesgue measure on X, then the Radon-
Nikodym derivative of ν with respect to the Lebesgue measure can be thought of as a weight function
of the inner product on H. This portrays that equation 5.20 generalizes familiar weighted inner
products which are used to define well-known orthogonal polynomials. The separability of H is
equivalent to the existence of a countable complete orthonormal basis of H. Here, “complete” refers
to the denseness of the span of the vectors in the orthonormal basis. We only consider separable
Hilbert spaces which have a unique countable complete orthonormal basis of polynomials. Assume
that this unique complete orthonormal basis is P = {p0, p1, p2, . . . } ⊆ H, where pk : X → R is
a polynomial with degree k. We can find P by starting with the monomials

{
1, x, x2, . . .

}
and

applying the Gram-Schmidt algorithm. Note that when we say P is unique, we still allow arbitrary
sign changes for each orthonormal polynomial. The existence of P implies that:∫

X
|x|n dν(x) <∞ (5.22)

for every n ∈ N = {0, 1, 2, . . . }. We now define two properties of bounded linear operators on H
(endomorphisms) which will be useful in presenting our results.

Definition 5.2.1 (Closure over Polynomials). A bounded linear operator T : H1 → H2 between
two Hilbert spaces is closed over polynomials if for any polynomial p ∈ H1, T (p) ∈ H2 is also a
polynomial.

Definition 5.2.2 (Degree Preservation). A bounded linear operator T : H1 → H2 between two
Hilbert spaces which is closed over polynomials is degree preserving if for any polynomial p ∈ H1

with degree k, T (p) ∈ H2 is also a polynomial with degree at most k. T is strictly degree preserving
if for any polynomial p ∈ H1 with degree k, T (p) ∈ H2 is also a polynomial with degree exactly k.
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Using the assumptions stated earlier and these definitions, we present an equivalent condition to
determine if the orthogonal eigenbasis of a compact self-adjoint operator consists of orthogonal
polynomials.

Theorem 5.2.1 (Condition for Orthogonal Polynomial Eigenbasis). Let T : H → H be a com-
pact self-adjoint linear operator. Then, the orthonormal eigenbasis of T is the orthonormal basis
of polynomials P = {p0, p1, p2, . . . } of H if and only if T is closed over polynomials and degree
preserving.

Proof.
We first check that there exists a complete orthonormal eigenbasis of T . Indeed, by the spectral
theorem for compact self-adjoint operators on a separable Hilbert space [28], T has a countable
complete orthonormal eigenbasis with real eigenvalues. Let this complete orthonormal eigenbasis
be Q = {q0, q1, q2, . . . } ⊆ H. Hence, we have:

T (qi) = αiqi

for every i ∈ N, where αi ∈ R are the real eigenvalues.

If Q = P , then T is trivially closed over polynomials and degree preserving. This is because
any polynomial in H with degree k is a linear combination of {p0, . . . , pk}. So, it suffices to prove
the converse direction.

We prove the converse by strong induction. Suppose T is closed over polynomials and degree
preserving. We need to show that Q = P . The first eigenfunction of T is the constant function
(which is an orthonormal polynomial) q0 = p0 6= 0, because T is closed over polynomials and degree
preserving. This is the base case. Assume that the first k + 1 eigenfunctions are the first k + 1
orthonormal polynomials:

qi = pi, for i ∈ {0, . . . , k} .

This is the inductive hypothesis. We now prove that qk+1 = pk+1, which is the inductive step.

Since pk+1 is orthogonal to span (p0, . . . , pk) = span (q0, . . . , qk), where the equality holds by the
inductive hypothesis, we may write:

pk+1 =
∞∑

j=k+1

〈pk+1, qj〉 qj

which means that the partial sums converge to pk+1 in the sense of the induced norm in H:

lim
m→∞

∥∥∥∥∥∥pk+1 −
m∑

j=k+1

〈pk+1, qj〉 qj

∥∥∥∥∥∥ = 0.

Since T is a compact operator, it is bounded by definition. This means ∃C > 0 such that:

∀f ∈ H, ‖T (f)‖ ≤ C ‖f‖ .
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Hence, we have for any m ≥ k + 1:∥∥∥∥∥∥T
pk+1 −

m∑
j=k+1

〈pk+1, qj〉 qj

∥∥∥∥∥∥ ≤ C

∥∥∥∥∥∥pk+1 −
m∑

j=k+1

〈pk+1, qj〉 qj

∥∥∥∥∥∥
lim
m→∞

∥∥∥∥∥∥T (pk+1)−
m∑

j=k+1

〈pk+1, qj〉T (qj)

∥∥∥∥∥∥ ≤ C lim
m→∞

∥∥∥∥∥∥pk+1 −
m∑

j=k+1

〈pk+1, qj〉 qj

∥∥∥∥∥∥
lim
m→∞

∥∥∥∥∥∥T (pk+1)−
m∑

j=k+1

αj 〈pk+1, qj〉 qj

∥∥∥∥∥∥ = 0

where the second line follows from the linearity of T , and the third line uses the fact that qj are
eigenfunctions of T . We have shown that:

T (pk+1) =
∞∑

j=k+1

αj 〈pk+1, qj〉 qj

where the equality holds in the sense of the induced norm in H (as derived). Note that our
argument is effectively a continuity argument, but we can use boundedness because the two notions
are equivalent for linear operators on Banach spaces. Now observe that for any m ≥ k + 1:〈

m∑
j=k+1

αj 〈pk+1, qj〉 qj , pi

〉
= 0 for i ∈ {0, . . . , k}

which holds by the inductive hypothesis. Hence, for any i ∈ {0, . . . , k} and any m ≥ k + 1:∣∣∣∣∣∣〈T (pk+1) , pi〉 −

〈
m∑

j=k+1

αj 〈pk+1, qj〉 qj , pi

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈
T (pk+1)−

m∑
j=k+1

αj 〈pk+1, qj〉 qj , pi

〉∣∣∣∣∣∣
≤

∥∥∥∥∥∥T (pk+1)−
m∑

j=k+1

αj 〈pk+1, qj〉 qj

∥∥∥∥∥∥ ‖pi‖
by the Cauchy-Schwarz-Bunyakovsky inequality. This means we can let m→∞ to get:

〈T (pk+1) , pi〉 = 0 for i ∈ {0, . . . , k} .

We have effectively used the continuity of the inner product to prove this. As T is closed over
polynomials and degree preserving, T (pk+1) is a polynomial with degree at most k + 1 that is
orthogonal to all polynomials of degree k or less. Hence, T (pk+1) must be a scaled version of the
orthonormal polynomial with degree k + 1:

T (pk+1) = βpk+1

for some β ∈ R which is possibly zero. This implies (without loss of generality) that αk+1 = β and
qk+1 = pk+1. Therefore, by strong induction, the complete orthonormal eigenbasis of T is Q = P .
This proves the converse direction.
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Some remarks regarding Theorem 5.2.1 are in order. Firstly, we explain the compactness assumption
on T . A bounded linear operator T on a separable Hilbert space is compact if the closure of the
image of the closed unit ball is compact [28]. Intuitively, such operators are a natural extension of
finite rank operators. We impose the compactness assumption on T , because the spectral theorem
asserts that a complete orthonormal eigenbasis exists for compact self-adjoint operators. Secondly,
we note that although Theorem 5.2.1 holds for any compact self-adjoint operator, we are only
interested in Gramian operators of perturbation transition maps in this thesis. Gramian operators
are positive (or positive semidefinite) self-adjoint operators, and perturbation transition maps are
integral operators (using Theorem 5.1.1). Hence, the compact, positive, self-adjoint operators that
we consider have the form:

∀x ∈ X, T (f) (x) ,
∫
X

Λ(x, s)f(s) dν(s)

where Λ : X ×X → R is the symmetric kernel of the integral operator.

Finally, we elaborate on the separable Hilbert spaces, H = L2(X, ν), by offering particular in-
sight on why countable complete polynomial bases exist for such spaces. Let us restrict ourselves
to the case where X = [a, b] for some −∞ < a < b < ∞, its associated σ-algebra G = B ([a, b]) is
the Borel σ-algebra on the compact interval, and ν is the (uniform) Lebesgue measure on (X,G).
Observe that polynomials are dense in the space of all continuous functions on X in the sup-norm
sense (uniform convergence) by the Stone-Weierstrass theorem [30]. Since convergence in sup-norm
implies convergence in L2(X, ν), polynomials are dense in the space of all continuous functions in
the L2(X, ν) norm sense as well. Continuous functions on X (a compact interval) are in L2(X, ν)
because they are bounded by the boundedness theorem. In fact, L2(X, ν) is the completion of
the space of continuous functions with respect to the L2(X, ν) norm. So, continuous functions are
dense in L2(X, ν). This means polynomials (which are dense in the continuous functions) are also
dense in L2(X, ν) in the L2(X, ν) norm sense. Hence, orthogonal polynomials form a complete
basis of H = L2(X, ν). As a concrete example, letting a = −1 and b = 1 leads to a complete basis
of Legendre polynomials. On the other hand, when we consider an infinite (unbounded and hence,
non-compact) interval X, polynomials are no longer square integrable with respect to the Lebesgue
measure as the boundedness theorem fails to hold. So, the inner product of H must be weighted,
or more generally, the measure ν must be altered to include polynomials in the Hilbert space and
permit them to form a complete basis. For example, letting L = R and ν be the Gaussian measure
(Gaussian pdf weight with Lebesgue measure) leads to a complete basis of Hermite polynomials.

Since we have Theorem 5.2.1 at our disposal, our next affair is to determine which Gramian op-
erator (A∗A, B∗B, or C∗C) it applies to. The operator in Theorem 5.2.1 must have the constant
function as an eigenfunction. We check whether this is true for any of our Gramian operators. Let
γ 6= 0 be the constant function on X :

∀x ∈ X , γ(x) = γ 6= 0

with slight abuse of notation. Using Theorem 5.1.1, the Gramian operator of the channel, A∗A,
applied to γ produces:

(A∗A)(γ)(x) = γ

∫
X

∫
Y
PY |X(y|x)PY |X(y|t) dµ(y) dλ(t) a.e. with respect to λ
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which means A∗A does not necessarily have a constant eigenfunction. Using Theorem 5.1.1, the
Gramian operator of the DTM, B∗B, applied to γ produces:

(B∗B)(γ)(x) =
γ√
PX(x)

∫
X

√
PX(t)

∫
Y
PX|Y (x|y)PY |X(y|t) dµ(y) dλ(t) a.e. with respect to λ

which means B∗B does not necessarily have a constant eigenfunction. Using Theorem 5.1.1, the
Gramian operator of the LTM, C∗C, applied to γ produces:

(C∗C)(γ)(x) = γ

∫
X

∫
Y
PX|Y (x|y)PX|Y (t|y) dµ(y) dλ(t) a.e. with respect to λ

= γ

∫
Y
PX|Y (x|y)

∫
X
PX|Y (t|y) dλ(t) dµ(y) a.e. with respect to λ

= γ

∫
Y
PX|Y (x|y) dµ(y) a.e. with respect to λ

where the second equality uses Tonelli’s theorem, as all functions involved are non-negative and
measurable, and all measures involved are σ-finite. This means C∗C does not necessarily have a
constant eigenfunction. Hence, none of the Gramian operators we are considering lend themselves
to the application of Theorem 5.2.1. The next subsection remedies this dilemma.

5.2.2 Construction of Transformed Gramian Operator of DTM

Propelled by the importance of the DTM in the analysis of discrete and finite channels, we focus
our attention on the DTM B. Recall that we are considering an infinite alphabet channel with
input random variable X, output random variable Y , and conditional probability distributions
PY |X(·|x), x ∈ X . Moreover, we are assuming that the marginal distributions of X and Y satisfy
λ ({x ∈ X : PX(x) = 0}) = 0 and µ ({y ∈ Y : PY (y) = 0}) = 0, respectively, where λ and µ are
typically Lebesgue or counting measures. Suppose we are given the separable Hilbert space L2 (X , λ)
of measurable, real, λ-square integrable functions on X , and the separable Hilbert space L2 (Y, µ) of
measurable, real, µ-square integrable functions on Y. Let the associated inner product of L2 (X , λ)
be:

∀f1, f2 ∈ L2 (X , λ) , 〈f1, f2〉X ,
∫
X
f1f2 dλ (5.23)

with induced norm:

∀f ∈ L2 (X , λ) , ‖f‖X ,
√
〈f, f〉X , (5.24)

and the associated inner product of L2 (Y, µ) be:

∀g1, g2 ∈ L2 (Y, µ) , 〈g1, g2〉Y ,
∫
Y
g1g2 dµ (5.25)

with induced norm:
∀g ∈ L2 (Y, µ) , ‖g‖Y ,

√
〈g, g〉Y . (5.26)

The DTM, B : L2 (X , λ) → L2 (Y, µ), is a bounded linear operator from L2 (X , λ) to L2 (Y, µ).
This requires a proof. Recall from Definition 5.1.2 that for any f ∈ L2 (X , λ):

∀y ∈ Y, B(f)(y) =
1√
PY (y)

∫
X
PY |X(y|x)

√
PX(x)f(x) dλ(x). (5.27)

The next lemma uses this definition to verify the codomain and boundedness of B.
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Lemma 5.2.2 (DTM is a Bounded Linear Operator). The DTM, B : L2 (X , λ) → L2 (Y, µ), is a
bounded linear operator.

Proof. The linearity of B follows from its definition as an integral. It suffices to prove that the
operator norm of B is 1:

‖B‖ , sup
f∈L2(X ,λ)

‖B(f)‖Y
‖f‖X

= 1. (5.28)

This guarantees that B(f) ∈ L2 (Y, µ) if f ∈ L2 (X , λ) (which justifies why the codomain of B is
L2 (Y, µ)), and proves that B is bounded. First observe that

√
PX ∈ L2 (X , λ) because:∥∥∥√PX∥∥∥2

X
=

∫
X
PX dλ = 1.

Furthermore, we have:

∀y ∈ Y, B
(√

PX

)
(y) =

1√
PY (y)

∫
X
PY |X(y|x)PX(x) dλ(x) =

√
PY (y)

which means B
(√
PX
)

=
√
PY ∈ L2 (Y, µ) because:∥∥∥√PY ∥∥∥2

Y
=

∫
Y
PY dµ = 1.

Hence, ‖B‖ ≥ 1. Now fix any f ∈ L2 (X , λ). Then, we have:

‖B(f)‖2Y =

∥∥∥∥∥ 1√
PY (y)

∫
X
PY |X(y|x)

√
PX(x)f(x) dλ(x)

∥∥∥∥∥
2

Y

=

∥∥∥∥∥√PY (y)

∫
X
PX|Y (x|y)

f(x)√
PX(x)

dλ(x)

∥∥∥∥∥
2

Y

=

∫
Y
PY (y)

(
E

[
f(X)√
PX(X)

∣∣∣∣∣Y = y

])2

dµ(y)

= E

E[ f(X)√
PX(X)

∣∣∣∣∣Y
]2


≤ E
[
E
[
f2(X)

PX(X)

∣∣∣∣Y ]]
= E

[
f2(X)

PX(X)

]
=

∫
X
f2 dλ

where the second equality holds by Bayes’ rule, the inequality follows from the Cauchy-Schwarz
inequality, and the second to last equality holds by the tower property. This gives us:

‖B(f)‖2Y ≤ ‖f‖
2
X .

Since we have already derived ‖B‖ ≥ 1, this proves that ‖B‖ = 1.
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We now derive the Gramian operator of B (already stated in Theorem 5.1.1) by following the
proof of Theorem 5.1.1. To find B∗B : L2 (X , λ) → L2 (X , λ), we first find the unique adjoint
operator, B∗ : L2 (Y, µ) → L2 (X , λ), where the uniqueness of the adjoint is guaranteed by Riesz’
representation theorem as B is bounded. By definition of the adjoint operator, for any f ∈ L2 (X , λ)
and any g ∈ L2 (Y, µ), we have:

〈B (f) , g〉Y = 〈f,B∗ (g)〉X∫
Y

(
1√
PY (y)

∫
X
PY |X(y|x)

√
PX(x)f(x) dλ(x)

)
g(y) dµ(y) =

∫
X
f(x) (B∗ (g)) (x) dλ(x)

∫
Y

(√
PY (y)

∫
X
PX|Y (x|y)

f(x)√
PX(x)

dλ(x)

)
g(y) dµ(y) =

∫
X
f(x) (B∗ (g)) (x) dλ(x)

∫
X
f(x)

(
1√
PX(x)

∫
Y
PX|Y (x|y)

√
PY (y)g(y) dµ(y)

)
dλ(x) =

∫
X
f(x) (B∗ (g)) (x) dλ(x)

where the second line follows from the definitions of the inner products and equation 5.27, the third
line follows from Bayes’ rule, and the final line follows from the Fubini-Tonelli theorem because
B(f)g must be µ-integrable by the Cauchy-Schwarz-Bunyakovsky inequality in L2 (Y, µ). Since the
final equality is true for all f ∈ L2 (X , λ) and all g ∈ L2 (Y, µ), the unique bounded linear adjoint
operator (by Riesz’ representation theorem and the boundedness of B in Lemma 5.2.2) B∗ is:

∀x ∈ X , B∗ (g) (x) =
1√
PX(x)

∫
Y
PX|Y (x|y)

√
PY (y)g(y) dµ(y) (5.29)

for every function g ∈ L2 (Y, µ). B∗ is clearly the DTM of the reverse channel from Y to X. The
Gramian operator of the DTM, B∗B : L2 (X , λ)→ L2 (X , λ), is defined as:

∀x ∈ X , (B∗B) (f) (x) =
1√
PX(x)

∫
Y
PX|Y (x|y)

∫
X
PY |X(y|t)

√
PX(t)f(t) dλ(t) dµ(y) (5.30)

for any input f ∈ L2 (X , λ). We can use the Fubini-Tonelli theorem (as in the proof of Theorem
5.1.1) at this point to get an elegant expression for B∗B as an integral operator. However, we will
work with equation 5.30 for convenience.

Observe that B∗B : L2 (X , λ) → L2 (X , λ) is a bounded, positive, self-adjoint operator. The
boundedness stems from:

‖B∗B‖ ≤ ‖B∗‖ ‖B‖ = 1

because the operator norm of any bounded operator and its adjoint are equal, and equation 5.28
gives ‖B‖ = ‖B∗‖ = 1. Note that ‖B‖ = ‖B∗‖ can be proven using Riesz’ representation theorem
in a Hilbert space setting, or by the Hahn-Banach theorem in the more general Banach space
setting. The next lemma proves that B∗B has an eigenvalue of 1 with corresponding eigenvector√
PX ∈ L2 (X , λ).

Lemma 5.2.3 (Largest Eigenvalue and Eigenvector of Gramian of DTM). The largest eigenvalue of
B∗B : L2 (X , λ)→ L2 (X , λ) is ‖B∗B‖ = 1, and the corresponding eigenvector is

√
PX ∈ L2 (X , λ):

B∗B
(√

PX

)
= 1
√
PX .
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Proof.
First note that

√
PX ∈ L2 (X , λ) because

∥∥√PX∥∥X = 1. From equation 5.30, we have:

∀x ∈ X , (B∗B)
(√

PX

)
(x) =

1√
PX(x)

∫
Y
PX|Y (x|y)

∫
X
PY |X(y|t)PX(t) dλ(t) dµ(y)

=
1√
PX(x)

∫
Y
PX|Y (x|y)PY (y) dµ(y)

=
√
PX(x)

using the total probability law. This means B∗B has an eigenvalue of 1 with corresponding eigen-
vector

√
PX . Since the operator norm of B∗B is bounded by 1, ‖B∗B‖ ≤ 1, we must have that

‖B∗B‖ = 1. So, ‖B∗B‖ = 1 is the largest eigenvalue of B∗B.

The results of Lemma 5.2.3 parallel those presented in the proof of Theorem 3.2.4 in the discrete
and finite channel case. Indeed, B is derived from a Markov operator, so its largest eigenvalue
should intuitively be 1 (in analogy with Perron-Frobenius theory for Markov matrices).

Since we have formally established the Gramian operator of the DTM, B∗B, we turn to trans-
forming this Gramian operator into a self-adjoint operator which has a constant eigenfunction. For
any f ∈ L2 (X , λ), manipulating the definition of B∗B in equation 5.30 produces:

∀x ∈ X , (B∗B) (f) (x)√
PX(x)

=
1

PX(x)

∫
Y
PX|Y (x|y)

∫
X
PY |X(y|t)PX(t)

f(t)√
PX(t)

dλ(t) dµ(y).

As B∗B(f) ∈ L2 (X , λ), we have B∗B(f) < ∞ a.e. with respect to λ. This means the iterated
integral on the right hand side is finite almost everywhere, which implies:∫

Y
PX|Y (x|y)

∫
X
PY |X(y|t)PX(t)

|f(t)|√
PX(t)

dλ(t) dµ(y) <∞ a.e.

with respect to λ. Applying the Fubini-Tonelli theorem to the iterated integral produces:

(B∗B) (f) (x)√
PX(x)

=

∫
X

(
1

PX(x)

∫
Y
PX|Y (x|y)PY |X(y|t) dµ(y)

)
f(t)√
PX(t)

PX(t)dλ(t) a.e. (5.31)

where the equality holds almost everywhere with respect to λ. Prompted by this equation, consider
the new separable Hilbert space L2 (X ,PX) of measurable, real, PX -square integrable functions on
X with associated inner product:

∀f, g ∈ L2 (X ,PX) , 〈f, g〉PX ,
∫
X
fg dPX =

∫
X
fgPX dλ (5.32)

and induced norm:

∀f ∈ L2 (X ,PX) , ‖f‖PX ,
√
〈f, f〉PX . (5.33)

We now define a transformed Gramian operator of the DTM on this new Hilbert space based on
equation 5.31. The ensuing lemma relates this new operator to the Gramian of the DTM.
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Definition 5.2.3 (Transformed Gramian Operator of DTM). The transformed Gramian operator
of the DTM (TGDTM), D : L2 (X ,PX) → L2 (X ,PX), is defined for any function f ∈ L2 (X ,PX)
by:

∀x ∈ X , D (f) (x) ,
∫
X

ΛD(x, t)f(t) dPX(t)

where the kernel, ΛD : X × X → R, of the integral operator is:

ΛD(x, t) =
1

PX(x)

∫
Y
PX|Y (x|y)PY |X(y|t) dµ(y).

Lemma 5.2.4 (Isomorphism between Hilbert Spaces). The separable Hilbert spaces L2 (X , λ) and
L2 (X ,PX) are isometrically isomorphic, and the isomorphism between them is given by the map
T : L2 (X , λ)→ L2 (X ,PX) which is defined as:

∀f ∈ L2 (X , λ) , T (f) =
f√
PX

.

Furthermore, B∗B : L2 (X , λ)→ L2 (X , λ) and D : L2 (X ,PX)→ L2 (X ,PX) are equivalent opera-
tors on the isomorphic spaces in the sense that:

∀f ∈ L2 (X , λ) , T (B∗B (f)) = D (T (f)) a.e.

with respect to PX .

Proof.
First observe that f ∈ L2 (X , λ)⇔ T

(√
PX
)
∈ L2 (X ,PX) because:

‖f‖X = ‖T (f)‖PX =

∥∥∥∥ f√
PX

∥∥∥∥
PX

which means T is a well-defined map between L2 (X , λ) and L2 (X ,PX). T is clearly linear and
bijective. Moreover, we have:

∀f, g ∈ L2 (X , λ) , 〈f, g〉X = 〈T (f), T (g)〉PX

from the definitions of the inner products. Hence, T is an isometric isomorphism between L2 (X , λ)
and L2 (X ,PX), and the two spaces are isometrically isomorphic to each other by definition. Note
that this is expected since any two infinite-dimensional separable Hilbert spaces are isometrically
isomorphic to each other. Finally, observe that:

∀f ∈ L2 (X , λ) , T (B∗B (f)) =
B∗B (f)√

PX

a.e.
= D

(
f√
PX

)
= D (T (f))

where the second equality holds almost everywhere with respect to PX by equation 5.31 (and the
absolute continuity of PX with respect to λ). Note that T guarantees that the codomain of D is
indeed L2 (X ,PX) since the codomain of B∗B is L2 (X , λ).
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For readers unfamiliar with the concept of isomorphisms between Hilbert spaces, we remark that
Lemma 5.2.4 can be interpreted as saying that B∗B and D are similarity transformations of each
other (analogous to the matrix sense). This lemma will allow us to translate spectral decomposition
results proven for D to results regarding B∗B. We also note that any vector in L2 (X , λ) that is
orthogonal to

√
PX can be considered a normalized perturbation, because L2 (X , λ) is the domain

of the DTM. From equations 5.3 and 5.4, it is evident that T takes normalized perturbations to
log-likelihood perturbations. Indeed, any vector in L2 (X ,PX) that is orthogonal to the constant
function can considered a log-likelihood perturbation. We next present some properties of the
TGDTM which follow from Lemma 5.2.4.

Corollary 5.2.5 (Properties of TGDTM). The TGDTM, D : L2 (X ,PX) → L2 (X ,PX), is a
positive, self-adjoint, bounded, linear operator with operator norm ‖D‖ = 1. Moreover, the largest
eigenvalue of D is 1 with corresponding eigenvector γ ∈ L2 (X ,PX), which is a constant function
such that ∀x ∈ X , γ(x) = γ 6= 0:

D (γ) = γ.

Proof.
The linearity of D is obvious. Since B∗B is a positive, self-adjoint, bounded, linear operator
with operator norm ‖B‖ = 1, the isomorphism T from Lemma 5.2.4 easily implies that D is also a
positive, self-adjoint, bounded, linear operator with operator norm ‖D‖ = 1. That D has eigenvalue
1 with corresponding eigenvector γ also follows from the isomorphism T and Lemma 5.2.3. We
elaborate this part of the proof to provide an example of how T is used. From Lemma 5.2.4, we
have:

T
(
B∗B

(√
PX

))
= D

(
T
(√

PX

))
T
(√

PX

)
= D

(
T
(√

PX

))
1 = D (1)

where the second line follows from B∗B
(√
PX
)

=
√
PX in Lemma 5.2.3, and 1 denotes the constant

function with value 1 for all x ∈ X in the final line. This proves the eigenvector equation in the
statement of the corollary. Note that γ ∈ L2 (X ,PX) because ‖γ‖2PX = γ2 <∞.

That D is self-adjoint can also be inferred from the symmetry of its kernel. Indeed, observe using
Bayes’ rule that:

∀x, t ∈ X , ΛD(x, t) =
1

PX(x)

∫
Y
PX|Y (x|y)PY |X(y|t) dµ(y)

=
1

PX(x)

∫
Y

PY |X(y|x)PX(x)

PY (y)

PX|Y (t|y)PY (y)

PX(t)
dµ(y)

=
1

PX(t)

∫
Y
PX|Y (t|y)PY |X(y|x) dµ(y)

= ΛD(t, x). (5.34)

Since the transformed Gramian operator of the DTM, D : L2 (X ,PX) → L2 (X ,PX), has an
eigenvector that is the constant function, it retains the possibility of being closed over polynomials
and degree preserving. So, we can apply Theorem 5.2.1 to it with additional assumptions.
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5.2.3 Singular Value Decomposition of Divergence Transition Map

This subsection finds the singular value decomposition of the DTM B by first finding the spectral
decomposition of D. In order to apply Theorem 5.2.1 to D, we will assume that L2 (X ,PX) has a
countable complete orthonormal basis of polynomials that is unique up to sign changes, and D is a
compact operator. We will denote the orthonormal basis of polynomials as P = {p0, p1, p2, . . . } ⊆
L2 (X ,PX) where pk is the orthonormal polynomial with degree k. As mentioned in subsection
5.2.1, the first assumption implies that:

E [|X|n] =

∫
X
|x|n dPX(x) <∞ (5.35)

for every n ∈ N. So, we only consider channels with input random variable X such that all moments
of X exist. A sufficient condition for all moments existing is if the moment generating function of
X is finite on any open interval that contains 0. On the other hand, a sufficient condition which
ensures D is compact is given in the next lemma. This condition can be found in [31] as well, where
analysis on conditional expectation operators is performed using weak convergence arguments.

Lemma 5.2.6 (Hilbert-Schmidt Condition for Compactness). If the kernel of B : L2 (X , λ) →
L2 (Y, µ) is square integrable: ∫

X

∫
Y

P 2
X,Y (x, y)

PX(x)PY (y)
dµ(y) dλ(x) <∞

then B : L2 (X , λ) → L2 (Y, µ), its Gramian B∗B : L2 (X , λ) → L2 (X , λ), and its transformed
Gramian D : L2 (X ,PX)→ L2 (X ,PX) are all compact.

Proof.
Notice that we only need to find a sufficient condition for the compactness of B. If B is compact,
then its adjoint B∗ is also compact by Schauder’s theorem [29]; a simple proof of this theorem for
endomorphisms on Hilbert spaces can be found in [28]. So, the Gramian B∗B is also compact,
because the composition of compact operators is compact. This means D is compact using Lemma
5.2.4. We now derive the sufficient condition on the compactness of B. Recall from equation 5.27
that for any f ∈ L2 (X , λ):

∀y ∈ Y, B(f)(y) =

∫
X

PY |X(y|x)
√
PX(x)√

PY (y)
f(x) dλ(x).

Such integral operators are called Hilbert-Schmidt operators when their kernel is square integrable
with respect to the product measure of the input and output measures. So, B is a Hilbert-Schmidt
operator if:

∫
X

∫
Y

∣∣∣∣∣PY |X(y|x)
√
PX(x)√

PY (y)

∣∣∣∣∣
2

dµ(y) dλ(x) =

∫
X

∫
Y

P 2
X,Y (x, y)

PX(x)PY (y)
dµ(y) dλ(x) <∞.

Since Hilbert-Schmidt operators are compact [28], the above condition implies that B is compact.
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In section 5.3, we will assume that B is compact in each example without explicitly proving it.
These assumptions can be proven using notions like Lemma 5.2.6. We now return to finding the
spectral decomposition of D. The next lemma specifies a criterion using conditional moments which
ensures D is closed over polynomials and degree preserving, and hence its orthonormal eigenbasis
is P by Theorem 5.2.1. To present this lemma, we define L2 (Y,PY ) as the separable Hilbert space
of measurable, real, PY -square integrable functions on Y with associated inner product:

∀f, g ∈ L2 (Y,PY ) , 〈f, g〉PY ,
∫
Y
fg dPY =

∫
Y
fgPY dµ (5.36)

with induced norm:

∀f ∈ L2 (Y,PY ) , ‖f‖PY ,
√
〈f, f〉PY . (5.37)

We also assume that L2 (Y,PY ) has a countable complete orthonormal basis of polynomials that is
unique up to sign changes. We denote this basis as Q = {q0, q1, q2, . . . } ⊆ L2 (Y,PY ), where qk is
the orthonormal polynomial with degree k. Now note that the conditional expectation operators:

E [·|Y ] : L2 (X ,PX)→ L2 (Y,PY ) and E [·|X] : L2 (Y,PY )→ L2 (X ,PX)

are bounded linear operators. The linearity of these operators trivially holds, and the boundedness
can be justified by the Cauchy-Schwarz inequality and the tower property. For example, for any
∀f ∈ L2 (X ,PX):

‖E [f(X)|Y ]‖2PY = E
[
E [f(X)|Y ]2

]
≤ E

[
E
[
f2(X)|Y

]]
= E

[
f2(X)

]
= ‖f‖2PX

which shows that E [·|Y ] is bounded. We now present the conditions on the conditional moments
which ensure that D has a spectral decomposition with polynomial eigenvectors.

Theorem 5.2.7 (Conditional Moment Conditions for Spectral Decomposition). Suppose the DTM
B : L2 (X , λ)→ L2 (Y, µ) is compact. If the conditional expectation operators, E [·|Y ] : L2 (X ,PX)→
L2 (Y,PY ) and E [·|X] : L2 (Y,PY ) → L2 (X ,PX), are closed over polynomials and degree preserv-
ing, then D : L2 (X ,PX) → L2 (X ,PX) has an orthonormal eigenbasis P = {p0, p1, p2, . . . } ⊆
L2 (X ,PX) of orthonormal polynomials, and B∗B : L2 (X , λ) → L2 (X , λ) has an orthonormal
eigenbasis

√
PXP =

{√
PXp0,

√
PXp1,

√
PXp2, . . .

}
⊆ L2 (X , λ):

∀k ∈ N, D (pk) = αkpk

∀k ∈ N, B∗B
(√

PXpk

)
= αk

√
PXpk

where the eigenvalues αk are real, ∀k ∈ N, 0 ≤ αk ≤ 1, and α0 = 1.

Proof.
Recall from Definition 5.2.3 that for any function f ∈ L2 (X ,PX), we have:

∀x ∈ X , D (f) (x) =

∫
X

∫
Y

PX|Y (x|y)PY |X(y|t)
PX(x)

f(t) dµ(y) dPX(t)

=

∫
X

∫
Y
PY |X(y|x)PX|Y (t|y)f(t) dµ(y) dλ(t)
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where the second equality holds using Bayes’ rule. Using the Fubini-Tonelli theorem (whose validity
was justified in the derivation of equation 5.31), we have:

D (f) (x) =

∫
Y
PY |X(y|x)

∫
X
PX|Y (t|y)f(t) dλ(t) dµ(y) a.e.

where the equality holds almost everywhere with respect to λ, and hence, almost everywhere with
respect to PX (as PX is absolutely continuous with respect to λ). Equivalently, we have:

D (f) (x) = E [E [f(X)|Y ] |X = x] a.e. (5.38)

where the equality holds almost everywhere with respect to λ or PX . Since for every n ∈ N,
E [Xn|Y = y] is a polynomial in y with degree at most n and E [Y n|X = x] is a polynomial in x
with degree at most n, if f is a polynomial with degree k, then E [f(X)|Y ] is a polynomial in Y
with degree at most k and E [E [f(X)|Y ] |X = x] is a polynomial in x with degree at most k. Hence,
if f is a polynomial with degree k, then D(f) is a polynomial with degree at most k. This means
D is closed over polynomials and degree preserving. Since B is compact, D must be compact from
the proof of Lemma 5.2.6. D is also positive and self-adjoint from Corollary 5.2.5. Hence, using
Theorem 5.2.1, the spectral decomposition of D has orthonormal eigenbasis P . The eigenvalues of
D are all non-negative real numbers, because D is positive and self-adjoint. Moreover, Corollary
5.2.5 asserts that all the eigenvalues are bounded above by 1 since ‖D‖ = 1, and α0 = 1. The
spectral decomposition of B∗B then follows from the isomorphism in Lemma 5.2.4.

We clarify that Theorem 5.2.7 indeed provides conditions on the conditional moments because the
conditional expectation operators are closed over polynomials and degree preserving if and only if
for every n ∈ N, E [Xn|Y = y] is a polynomial in y with degree at most n and E [Y n|X = x] is a
polynomial in x with degree at most n. We now use this theorem to prove the pivotal result of this
chapter. The next theorem presents equivalent conditions on the conditional moments to assure
the existence of the singular value decomposition (SVD) of the DTM B where the singular vectors
are orthogonal polynomials.

Theorem 5.2.8 (Singular Value Decomposition of Divergence Transition Map). Suppose the DTM
of the channel B : L2 (X , λ) → L2 (Y, µ) is compact. Then, the conditional expectation operators,
E [·|Y ] : L2 (X ,PX)→ L2 (Y,PY ) and E [·|X] : L2 (Y,PY )→ L2 (X ,PX), are closed over polynomi-
als and strictly degree preserving if and only if the DTM of the channel B : L2 (X , λ) → L2 (Y, µ)
has right singular vector basis

√
PXP =

{√
PXp0,

√
PXp1,

√
PXp2, . . .

}
⊆ L2 (X , λ) and left singu-

lar vector basis
√
PYQ =

{√
PY q0,

√
PY q1,

√
PY q2, . . .

}
⊆ L2 (Y, µ), and the DTM of the reverse

channel B∗ : L2 (Y, µ) → L2 (X , λ) has right singular vector basis
√
PYQ and left singular vector

basis
√
PXP :

∀k ∈ N, B
(√

PXpk

)
=
√
αk
√
PY qk

∀k ∈ N, B∗
(√

PY qk

)
=
√
αk
√
PXpk

where the singular values
√
αk satisfy ∀k ∈ N, 0 <

√
αk ≤ 1 and

√
α0 = 1, and αk are the

eigenvalues of B∗B : L2 (X , λ)→ L2 (X , λ).
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Proof.
Recall from Definition 5.1.2 that for any f ∈ L2 (X , λ):

∀y ∈ Y, B(f)(y) =
1√
PY (y)

∫
X
PY |X(y|x)

√
PX(x)f(x) dλ(x)

and from equation 5.29 that for any g ∈ L2 (Y, µ):

∀x ∈ X , B∗ (g) (x) =
1√
PX(x)

∫
Y
PX|Y (x|y)

√
PY (y)g(y) dµ(y).

So, B∗ is indeed the DTM of the reverse channel from Y to X as we noted earlier.

We first prove the forward direction. If the conditional expectation operators are closed over poly-
nomials and strictly degree preserving, then Theorem 5.2.7 guarantees that B∗B has orthonormal
eigenbasis

√
PXP :

∀k ∈ N, B∗B
(√

PXpk

)
= αk

√
PXpk

where the αk are real, ∀k ∈ N, 0 < αk ≤ 1, and α0 = 1. Note that the strict degree preservation
of the conditional expectation operators ensures that αk are strictly positive. This is because
D : L2 (X ,PX)→ L2 (X ,PX) becomes strictly degree preserving by equation 5.38, which means it
cannot map any polynomial to 0. As is typical in the matrix case, the orthonormal eigenbasis of
the Gramian is the right (input) singular vector basis of the original map. Hence, we input these
vectors into B and analyze the outputs. For any k ∈ N, we have:

∀y ∈ Y, B
(√

PXpk

)
(y) =

1√
PY (y)

∫
X
PY |X(y|x)PX(x)pk(x) dλ(x)

=
√
PY (y)

∫
X
PX|Y (x|y)pk(x) dλ(x)

=
√
PY (y)E [pk(X)|Y = y]

where the second equality follows from Bayes’ rule, and E [pk(X)|Y = y] must be a polynomial in
y with degree k. Moreover, for any j, k ∈ N, we have:〈
B
(√

PXpj

)
, B
(√

PXpk

)〉
Y

=
〈√

PXpj , B
∗B
(√

PXpk

)〉
Y

= αk

〈√
PXpj ,

√
PXpk

〉
Y

= αkδjk

where δjk is the Kronecker delta (which equals 1 if j = k and 0 otherwise), the first equality follows
from the definition of adjoints, and the second equality uses Theorem 5.2.7. This means that for
any j, k ∈ N:〈

B
(√

PXpj

)
, B
(√

PXpk

)〉
Y

=

∫
Y
E [pj(X)|Y = y]E [pk(X)|Y = y] dPY (y) = αkδjk.

Hence, ∀k ∈ N, E [pk(X)|Y = y] =
√
αkqk are orthogonal polynomials with respect to PY , where

qk ∈ Q is the orthonormal polynomial with degree k. (Note that the sign of each qk is chosen to
keep

√
αk > 0.) This is essentially the SVD of the conditional expectation operator. So, we must

have:
∀k ∈ N, B

(√
PXpk

)
=
√
αk
√
PY qk
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such that the right singular vector basis of B is
√
PXP and the left singular vector basis is

√
PYQ.

Now observe that the entire analysis of this chapter can be performed mutatis mutandis for the
reverse channel from Y to X which has DTM B∗, where B∗ is compact because B is compact (by
Schauder’s theorem). So, we must also have:

∀k ∈ N, B∗
(√

PY qk

)
=
√
αk
√
PXpk

such that the right singular vector basis of B∗ is
√
PYQ and the left singular vector basis is√

PXP . The form of the singular vectors of B∗ follows from arguments similar to those given
for B, while the equivalence of the singular values is well-known in linear algebra. Indeed, if
B
(√
PXpk

)
=
√
αk
√
PY qk and B∗

(√
PY qk

)
= β
√
PXpk with

√
αk 6= β ∈ R, then by the definition

of adjoints: 〈
B
(√

PXpk

)
,
√
PY qk

〉
Y

=
〈√

PXpk, B
∗
(√

PY qk

)〉
X

√
αk

〈√
PY qk,

√
PY qk

〉
Y

= β
〈√

PXpk,
√
PXpk

〉
X√

αk = β

and we get a contradiction. This justifies the equivalence of the singular values, and completes the
proof of the forward direction.

To prove the converse direction, we assume that:

∀k ∈ N, B
(√

PXpk

)
=
√
αk
√
PY qk

∀k ∈ N, B∗
(√

PY qk

)
=
√
αk
√
PXpk

where the singular values
√
αk satisfy ∀k ∈ N, 0 <

√
αk ≤ 1 and

√
α0 = 1. From our earlier

derivation, for any polynomial p with degree n, we have:

∀y ∈ Y, B
(√

PXp
)

(y) =
1√
PY (y)

∫
X
PY |X(y|x)PX(x)p(x) dλ(x)

=
√
PY (y)E [p(X)|Y = y]

which means E [p(X)|Y = y] must be a polynomial in y with degree n. Hence, E [·|Y ] is closed over
polynomials and strictly degree preserving. An analogous argument using B∗ conveys that E [·|X]
is also closed over polynomials and strictly degree preserving. This completes the proof.

The careful reader should observe that the spectral decomposition (eigendecomposition) results
only require degree preservation of conditional expectation operators, while the the singular value
decomposition results require strict degree preservation. We now briefly recapitulate our scheme
for proving the polynomial SVD of the DTM. It closely parallels the proof of the SVD in the matrix
case; this is particularly true in the proof of Theorem 5.2.8. We first define appropriate Hilbert
spaces and the bounded linear operator B (the DTM) on these spaces. Then, we find conditions
which ensure the spectral decomposition of B∗B has an orthonormal eigenbasis of polynomials
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(weighted by the square root of the marginal density). Finally, we use the spectral decomposition
results of B∗B to prove similar results about the SVD of B.

There are several noteworthy features of Theorem 5.2.8 which are worth commenting on. Firstly,
although Theorem 5.2.8 explicitly characterizes the singular vectors of B, it does not explicitly
calculate the singular values. The singular values can be computed on a case by case basis by
inputting a unit norm right singular vector into B and verifying how much the corresponding unit
norm left singular vector has been scaled. More generally, it can be justified by the spectral the-
orem for compact self-adjoint operators that αk → 0 as k → ∞, but we will not explicitly prove
this. Secondly, we can identify the space of valid normalized perturbations from the SVD of B;
this is why we pursued the SVD in the first place. Recall from equations 5.5 and 5.14 that valid
normalized input perturbations KX ∈ L2 (X , λ) satisfy:∫

X

√
PXKX dλ = 0

and valid normalized output perturbations KY ∈ L2 (Y, µ) satisfy:∫
Y

√
PYKY dµ = 0.

This means the orthonormal basis of valid normalized input perturbations is:{√
PXp1,

√
PXp2,

√
PXp3, . . .

}
⊆ L2 (X , λ) (5.39)

and the orthonormal basis of valid normalized output perturbations is:{√
PY q1,

√
PY q2,

√
PY q3, . . .

}
⊆ L2 (Y, µ) . (5.40)

Finally, we remark that the proof of Theorem 5.2.8 also computes the SVD of the conditional
expectation operators, E [·|Y ] : L2 (X ,PX) → L2 (Y,PY ) and E [·|X] : L2 (Y,PY ) → L2 (X ,PX).
Definition 5.1.2 states that the LTM C is precisely the conditional expectation operator E [·|Y ].
Hence, the SVD of C : L2 (X ,PX)→ L2 (Y,PY ) is:

∀k ∈ N, C (pk) =
√
αkqk. (5.41)

and the orthonormal polynomials P\ {p0} and Q\ {q0} are the bases for the input and output
log-likelihood perturbations, respectively. This might appear to be puzzling. In our previous
calculations, the Gramian operator of C (in Theorem 5.1.1) did not necessarily have a con-
stant eigenfunction. This discrepancy can be clarified by realizing that Theorem 5.1.1 computed
the Gramian operator of C : L2 (X , λ) → L2 (Y, µ), whereas we have now found the SVD of
C : L2 (X ,PX)→ L2 (Y,PY ). Indeed, P and Q are not orthonormal sets in L2 (X , λ) and L2 (Y, µ),
respectively; they may not even belong in these Hilbert spaces. Furthermore, it is straightfor-
ward to show that E [·|Y ] and E [·|X] are adjoints of each other, and therefore, the adjoint of
C : L2 (X ,PX) → L2 (Y,PY ) is E [·|X]. So, the Gramian operator of C : L2 (X ,PX) → L2 (Y,PY )
is precisely D : L2 (X ,PX) → L2 (X ,PX) from equation 5.38 (which is not the same as C∗C :
L2 (X , λ)→ L2 (X , λ) calculated in Theorem 5.1.1).
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Theorem 5.2.8 was proven for infinite alphabet channels. However, the result holds mutatis mutan-
dis when X or Y is discrete and finite. For the sake of completeness, we present the result for the
case where X is an infinite set as before, but |Y| = m <∞ for some m ∈ Z+ i.e. Y is a discrete and
finite random variable. The Hilbert spaces and operators we defined all remain the same. However,
we note that L2 (Y, µ) and L2 (Y,PY ) become finite dimensional with dimension m. Thus, the
unique orthonormal basis of polynomials for L2 (Y,PY ) becomes Q = {q0, . . . , qm−1} ⊆ L2 (Y,PY ),
because we are only specifying m points, which means we only require up to degree m − 1 poly-
nomials to complete the space L2 (Y,PY ). We also note that the DTM B : L2 (X , λ) → L2 (Y, µ)
is now a finite rank operator because its range is finite dimensional. Hence, B must be a compact
operator and we do not need to additionally assume compactness anymore. The next theorem
states the analogous SVD result to Theorem 5.2.8.

Theorem 5.2.9 (SVD of DTM in Discrete and Finite Case). Suppose we have that |Y| = m ∈ Z+

and Y is a discrete and finite random variable. Then, the conditional expectation operators, E [·|Y ] :
L2 (X ,PX) → L2 (Y,PY ) and E [·|X] : L2 (Y,PY ) → L2 (X ,PX), are closed over polynomials and
strictly degree preserving if and only if the DTM of the channel B : L2 (X , λ) → L2 (Y, µ) has
right singular vector basis

√
PXP =

{√
PXp0,

√
PXp1,

√
PXp2, . . .

}
⊆ L2 (X , λ) and left singular

vector basis
√
PYQ =

{√
PY q0, . . . ,

√
PY qm−1

}
⊆ L2 (Y, µ), and the DTM of the reverse channel

B∗ : L2 (Y, µ) → L2 (X , λ) has right singular vector basis
√
PYQ and left singular vector basis{√

PXp0, . . . ,
√
PXpm−1

}
:

∀k ∈ {0, . . . ,m− 1} , B
(√

PXpk

)
=
√
αk
√
PY qk

∀k ∈ N\ {0, . . . ,m− 1} , B
(√

PXpk

)
= 0

∀k ∈ {0, . . . ,m− 1} , B∗
(√

PY qk

)
=
√
αk
√
PXpk

where the singular values
√
αk satisfy ∀k ∈ {0, . . . ,m− 1} , 0 <

√
αk ≤ 1 and

√
α0 = 1, and αk

are the eigenvalues of B∗B : L2 (X , λ)→ L2 (X , λ).

Proof.
First note that the interpretation of strict degree preservation slightly changes as L2 (Y,PY ) is
finite dimensional. E [·|Y ] : L2 (X ,PX) → L2 (Y,PY ) and E [·|X] : L2 (Y,PY ) → L2 (X ,PX) are
closed over polynomials and strictly degree preserving if and only if for every n ∈ {0, . . . ,m− 1},
E [Xn|Y = y] is a polynomial in y with degree n and E [Y n|X = x] is a polynomial in x with degree
n, and for every n ∈ N\ {0, . . . ,m− 1}, E [Xn|Y = y] is a polynomial in y with degree at most n
and E [Y n|X = x] is a polynomial in x with degree at most n.

We now prove the forward direction. Theorem 5.2.7 turns out to hold without any changes (as
it only requires degree preservation). Hence, if the conditional expectation operators are closed
over polynomials and strictly degree preserving, then Theorem 5.2.7 guarantees that B∗B has
orthonormal eigenbasis

√
PXP :

∀k ∈ N, B∗B
(√

PXpk

)
= αk

√
PXpk

where the αk are real, ∀k ∈ N, 0 ≤ αk ≤ 1, and α0 = 1. Following the proof of Theorem 5.2.8, for
any k ∈ N, we have:

∀y ∈ Y, B
(√

PXpk

)
(y) =

√
PY (y)E [pk(X)|Y = y]
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where E [pk(X)|Y = y] is a polynomial in y with degree k if k < m, or a polynomial in y with
degree at most k if k ≥ m. Moreover, for any j, k ∈ N, we get:

〈
B
(√

PXpj

)
, B
(√

PXpk

)〉
Y

=

∫
Y
E [pj(X)|Y = y]E [pk(X)|Y = y] dPY (y) = αkδjk.

Hence, ∀k ∈ {0, . . . ,m− 1} , E [pk(X)|Y = y] =
√
αkqk are orthogonal polynomials with respect

to PY , where ∀k ∈ {0, . . . ,m− 1} , αk > 0. For any k ≥ m, E [pk(X)|Y = y] is orthogonal to every
qj ∈ Q (where j < m), which implies that E [pk(X)|Y = y] = 0 as Q is an orthonormal basis of
L2 (Y,PY ). This also implies that αk = 0 for k ≥ m. So, we must have:

∀k ∈ {0, . . . ,m− 1} , B
(√

PXpk

)
=
√
αk
√
PY qk

∀k ∈ N\ {0, . . . ,m− 1} , B
(√

PXpk

)
= 0

such that the right singular vector basis of B is
√
PXP and the left singular vector basis is

√
PYQ.

In a similar manner, we can prove that:

∀k ∈ {0, . . . ,m− 1} , B∗
(√

PY qk

)
=
√
αk
√
PXpk

such that the right singular vector basis of B∗ is
√
PYQ and the left singular vector basis is{√

PXp0, . . . ,
√
PXpm−1

}
. This completes the proof of the forward direction. The converse direction

can be proven using exactly the same approach as in Theorem 5.2.8.

In prior work such as in [8] and [23], polynomial SVDs of DTMs are calculated on a case by
case basis through a myriad of clever mathematical techniques. To circumvent this cumbersome
process, Theorems 5.2.8 and 5.2.9 offer elementary conditions on the conditional moments which
can be checked to deduce whether or not an SVD with orthogonal polynomial singular vectors
exists. Furthermore, when such an SVD exists, the orthogonal polynomials which form the singular
vectors can be readily identified. It is typically much simpler to determine if the conditional moment
conditions are satisfied (through a survey of the literature or some manageable calculations) rather
than directly computing the SVD of a DTM.

5.3 Exponential Families, Conjugate Priors, and their Orthogonal
Polynomial SVDs

In this section, we illustrate the applications of Theorems 5.2.8 and 5.2.9 by deriving elegant orthog-
onal polynomial SVDs for DTMs of channels. The setup of exponential families and their conjugate
priors turns out to be a convenient method of generating such examples. So, we introduce expo-
nential families and conjugate priors in subsection 5.3.1. We then define the pertinent orthogonal
polynomial families in subsection 5.3.2. The remaining subsections are devoted to computing SVDs
for different channels.
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5.3.1 Exponential Families and their Conjugate Priors

We first define the notion of (one-parameter) exponential families more generally than in Definition
3.4.3 in chapter 3. Since any exponential family can be transformed into canonical form, we
only present the canonical exponential family below [25]. The ensuing definition can be further
generalized to include families with any finite number of parameters, but we will not require this
level of generality in our analysis.

Definition 5.3.1 (Canonical Exponential Family). Given a measurable space (Y,F) with Y ⊆ R,
and a σ-finite measure µ on this space, the parametrized family of distributions, {PY (·;x) : x ∈ X},
with respect to µ is called a regular canonical exponential family when the support of the distri-
butions do not depend on x, and each distribution in the family has the form:

∀y ∈ Y, PY (y;x) = exp [xt(y)− α(x) + β(y)]

where the measurable function t : (Y,F)→ (R,B) is the sufficient statistic of the distribution, the
non-negative function PY (y; 0) = exp [β(y)] is a valid distribution with respect to µ known as the
base distribution, and:

∀x ∈ X , exp [α(x)] =

∫
Y

exp [xt(y) + β(y)] dµ(y)

is the partition function with α(0) = 0 without loss of generality. The parameter x is called the
natural parameter, and it takes values from the natural parameter space X ⊆ R, defined as:

X , {x ∈ R : α(x) <∞}

which ensures that PY (·;x) is a valid distribution when x ∈ X .

In Definition 5.3.1, B denotes the Borel σ-algebra and F is the appropriate σ-algebra correspond-
ing to Y. So, if Y = R then F = B, and if Y is countable then F = 2Y . Likewise, the measure
µ is typically the Lebesgue measure when Y = R and a counting measure when Y is countable.
Definition 5.3.1 generalizes Definition 3.4.3 by incorporating larger classes of distributions like dis-
crete pmfs into the exponential family framework. We now consider a specific class of canonical
exponential families known as natural exponential families with quadratic variance functions (NE-
FQVF). This class of exponential families is studied in [32] where the author asserts that the wide
applicability and utility of certain distributions like Gaussian, Poisson, and binomial stems from
their characterization as NEFQVFs. The next definition formally presents the NEFQVF [32].

Definition 5.3.2 (Natural Exponential Family with Quadratic Variance Function). Given a mea-
surable space (Y,F) with Y ⊆ R, and a σ-finite measure µ on this space, a canonical exponential
family, {PY (·;x) : x ∈ X}, with respect to µ is called a natural exponential family (NEF) if the
sufficient statistic t : Y → R is the identity function t(y) = y:

∀x ∈ X ,∀y ∈ Y, PY (y;x) = exp [xy − α(x) + β(y)] .

For such a natural exponential family, the expected value is given by:

∀x ∈ X , E [Y ;x] =

∫
Y
yPY (y;x) dµ(y) , γ
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where γ is a function of x. Let M be the set of values γ can take. Then, the variance function,
V :M→ R+, is defined as:

V (γ) , VAR (Y ;x) =

∫
Y

(y − γ)2 PY (y;x) dµ(y)

where x ∈ X corresponding to γ is used in the definition. A natural exponential family is said to
have a quadratic variance function (QVF) if V is a quadratic function of γ.

At first glance, the definition of the variance function seems questionable. It is not obvious that
V can be reproduced only as a function of γ. However, it turns out that γ is an injective function
of x [32], and this ensures that the variance function V is well-defined. The channel conditional
distributions of every example we will consider in this section will be NEFQVFs. Although we will
not explicitly use the NEFQVF form in our calculations, a discussion of these concepts permits the
reader to develop deeper insights into how our examples were constructed. Before we present the
pertinent examples, we introduce the notion of conjugate priors. Conjugate priors are attractive
in Bayesian inference because they lead to computationally tractable algorithms. In Bayesian
inference, the goal is to estimate some random variable X from some observation Y , which is
related to X through likelihoods (conditional distributions) PY |X . The key insight is to associate
a prior to X such that the posterior distribution of X given Y is in the same distribution family
as the prior distribution. This can allow more efficient computation of the posterior distribution
every time new information is observed. Such distribution families are known as conjugate priors.
It is well-known in statistics that (well-behaved) exponential families have conjugate priors that
are themselves exponential families. The next definition presents such conjugate priors for natural
exponential families.

Definition 5.3.3 (Conjugate Prior for NEF). Suppose we are given a measurable space (Y,F) with
Y ⊆ R, a σ-finite measure µ on this space, and a natural exponential family, {PY (·;x) : x ∈ X},
with respect to µ:

∀x ∈ X ,∀y ∈ Y, PY (y;x) = exp [xy − α(x) + β(y)] .

Suppose further that X ⊆ R is a non-empty open interval and (X ,G) be a measurable space with
σ-finite measure λ. Then, the conjugate prior family of distributions, {PX(·; y′, n)}, with respect
to λ which are parametrized by the hyper-parameters y′ ∈ R and n ∈ R is given by:

∀x ∈ X , PX(x; y′, n) = exp
[
y′x− nα(x) + τ(y′, n)

]
where exp [−τ(y′, n)] is the partition function:

exp
[
−τ(y′, n)

]
=

∫
X

exp
[
y′x− nα(x)

]
dλ(x)

and we only consider conjugate prior distributions where the partition function is finite.

In Definition 5.3.3, we defined conjugate priors for natural exponential families assuming X is a
non-empty open interval. This means G is the Borel σ-algebra on this interval, and λ will typically
be the Lebesgue measure. Conjugate priors can be defined more generally as well, but Definition
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5.3.3 suffices for our purposes. The alluring property of conjugate priors is the following. Suppose
we have a channel where the input X is distributed according to the conjugate prior of an NEF
which defines the conditional distributions:

∀x ∈ X , PX(x) = exp
[
y′x− nα(x) + τ(y′, n)

]
= PX(x; y′, n), (5.42)

∀x ∈ X ,∀y ∈ Y, PY |X(y|x) = exp [xy − α(x) + β(y)] = PY (y;x). (5.43)

Then, the posterior distribution of X given Y is:

∀y ∈ Y, ∀x ∈ X , PX|Y (x|y) = exp
[
(y′ + y)x− (n+ 1)α(x) + τ(y′ + y, n+ 1)

]
= PX(x; y′ + y, n+ 1). (5.44)

This property of conjugate priors will be at the heart of our analysis. We will consider channels
with input X and output Y whose conditional distributions (likelihoods), PY |X(·|x), x ∈ X , are
NEFQVFs and input distributions (priors) of X belong to the corresponding conjugate prior fam-
ilies. This will mean that the posterior distributions, PX|Y (·|y), y ∈ Y, will also belong to the
conjugate prior families as shown in equation 5.44. Observe that for any m ∈ N:

E [Y m|X = x] =

∫
Y
ymPY (y;x) dµ(y)

using equation 5.43, and:

E [Xm|Y = y] =

∫
X
xmPX(x; y′ + y, n+ 1) dλ(x)

using equation 5.44. Hence, to verify that the conditional moments are strictly degree preserving
polynomials (the condition of Theorems 5.2.8 and 5.2.9), we simply need to check that the moments
of the NEFQVF and its conjugate prior are strictly degree preserving polynomials of the param-
eters of the families. This straightforward verification procedure in terms of the parameters (or
stochastic primitives) of classes of distributions is what makes the exponential family and conjugate
prior structure conducive for generating illustrations of Theorems 5.2.8 and 5.2.9.

We now present the channels which will be explored in subsections 5.3.3, 5.3.4, and 5.3.5. The
agenda of these subsections will largely be to establish that the NEFQVF and conjugate prior fam-
ilies have moments that are degree preserving polynomials of their parameters. A comprehensive
list of NEFQVFs can be found in [32], and a list of several corresponding conjugate priors can be
found in [33]. Many of our definitions have been derived from these sources.

Gaussian Likelihood and Gaussian Conjugate Prior

Let X = R and Y = R, so that G = B and F = B are the Borel σ-algebra, and λ and µ are the
Lebesgue measure. The channel conditional pdfs (likelihoods) are Gaussian distirbutions:

∀x, y ∈ R, PY |X(y|x) =
1√
2πν

exp

(
−(y − x)2

2ν

)
= PY (y;x) (5.45)
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where x is the expectation parameter of the Gaussian NEFQVF and ν > 0 is some fixed variance.
The conjugate prior of this NEFQVF is also Gaussian:

∀x ∈ R, PX(x) =
1√
2πp

exp

(
−(x− r)2

2p

)
= PX(x; r, p) (5.46)

where the hyper-parameters r ∈ R and p ∈ (0,∞) represent the mean and variance of X, respec-
tively. The posterior distribution PX|Y and the output marginal distribution PY are also Gaussian.
If we let r = 0 to begin with, then equations 5.45 and 5.46 resemble an AWGN channel (Defini-
tion 3.4.1) with capacity achieving input distribution. Subsection 5.3.3 will prove the conditional
moment conditions for the AWGN channel to re-derive the SVD results of [23]. Note that the
conjugate prior in equation 5.46 is not in the form of Definition 5.3.3. It is easy to write the prior
in this form, but we will not require this because subsection 5.3.3 will prove the conditional moment
conditions using the alternative notion of translation invariant kernels.

Poisson Likelihood and Gamma Conjugate Prior

Let X = (0,∞) and Y = N = {0, 1, 2, . . . }, so that G = B is the Borel σ-algebra and F = 2Y , and λ
is the Lebesgue measure and µ is the counting measure. The channel conditional pdfs (likelihoods)
are Poisson distributions:

∀x > 0, ∀y ∈ N, PY |X(y|x) =
xye−x

y!
= PY (y;x) (5.47)

where x is the rate parameter of the Poisson NEFQVF. The conjugate prior of this NEFQVF is
the gamma distribution:

∀x > 0, PX(x) =
βαxα−1e−βx

Γ(α)
= PX(x;α, β) (5.48)

where the hyper-parameters α ∈ (0,∞) and β ∈ (0,∞) represent the shape and rate of the distri-
bution respectively, and the gamma function, Γ : {z ∈ C : <(z) > 0} → C, which is a well-known
generalization of the factorial function, is defined as:

Γ(z) ,
∫ ∞

0
xz−1e−x dx. (5.49)

Moreover, for any m ∈ Z+, Γ(m) = (m − 1)!. The posterior distribution of X given Y is also
gamma:

∀y ∈ N,∀x > 0, PX|Y (x|y) = PX(x;α+ y, β + 1). (5.50)

When α is a positive integer, the gamma distribution becomes the Erlang distribution. Hence,
the gamma distribution generalizes the Erlang distribution (and also the exponential distribution)
to non-integer α values. We next introduce the negative binomial distribution with parameters
p ∈ (0, 1) and s ∈ (0,∞) representing the success probability and number of failures, respectively:

∀y ∈ N, P (y) =
Γ(s+ y)

Γ(s)y!
py(1− p)s. (5.51)

When s is a positive integer, the negative binomial distribution is essentially the sum of s geometric
distributions. It models the probability distribution of the number of successes in a Bernoulli process
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with s failures. In fact, when s ∈ Z+, the coefficient with gamma functions in equation 5.51 can be
written as a binomial coefficient:

Γ(s+ y)

Γ(s)y!
=

(
s+ y − 1

y

)
.

The marginal distribution of Y for a Poisson channel with gamma input is negative binomial with
parameters p = 1

β+1 and s = α:

∀y ∈ N, PY (y) =
Γ(α+ y)

Γ(α)y!

(
1

β + 1

)y ( β

β + 1

)α
. (5.52)

Subsection 5.3.4 proves that the conditional moments of the Poisson and gamma distributions are
polynomials in the their parameters in order to derive the SVD of the DTM of the Poisson channel.

Binomial Likelihood and Beta Conjugate Prior

Let X = (0, 1) and Y = {0, . . . , n} for some fixed n ∈ Z+, so that G = B is the Borel σ-algebra and
F = 2Y , and λ is the Lebesgue measure and µ is the counting measure. The channel conditional
pdfs (likelihoods) are binomial distributions:

∀x ∈ (0, 1), ∀y ∈ {0, . . . , n} , PY |X(y|x) =

(
n

y

)
xy(1− x)n−y = PY (y;x) (5.53)

where x is the success probability parameter of the binomial NEFQVF. The conjugate prior of this
NEFQVF is the beta distribution:

∀x ∈ (0, 1), PX(x) =
xα−1(1− x)β−1

B(α, β)
= PX(x;α, β) (5.54)

where the hyper-parameters α ∈ (0,∞) and β ∈ (0,∞) are shape parameters, and the beta function,
B :
{

(z1, z2) ∈ C2 : <(z1) > 0,<(z2) > 0
}
→ C, is defined as:

B(z1, z2) ,
∫ 1

0
xz1−1(1− x)z2−1 dx =

Γ(z1)Γ(z2)

Γ(z1 + z2)
. (5.55)

We note that when α = β = 1, the beta distribution becomes the uniform distribution. The
posterior distribution of X given Y is also beta:

∀y ∈ {0, . . . , n} , ∀x ∈ (0, 1), PX|Y (x|y) = PX(x;α+ y, β + n− y). (5.56)

The marginal distribution of Y is called the beta-binomial distribution:

∀y ∈ {0, . . . , n} , PY (y) =

(
n

y

)
B(α+ y, β + n− y)

B(α, β)
(5.57)

with parameters n ∈ Z+ (which is fixed in this case), α ∈ (0,∞) and β ∈ (0,∞). Note that the
update of the conjugate prior in equation 5.56 differs from that in equation 5.44. However, the
updated parameters in equation 5.56 are both linear in y. Hence, it suffices to prove that the con-
ditional moments of the binomial and beta distributions are polynomials in the their parameters in
order to derive the SVD of the DTM of the binomial channel. This is carried out in subsection 5.3.5.

We note that all the examples presented here use the Lebesgue and counting measures, and deal
with well-behaved functions. Therefore, in the remainder of this chapter, we will omit the measure
theoretic technicalities and simply use summations and Riemann integrals without any loss of rigor.
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5.3.2 Orthogonal Polynomials

In this subsection, we introduce the orthogonal polynomials that are pertinent to the three exam-
ples we are considering. Much of the theory on orthogonal polynomials we will present (with some
modifications) can be found in [34], which offers a concise introduction to the subject, and [35],
which offers a more comprehensive coverage. We will use these sources in the ensuing discussion
without tediously referring back to them in every definition. The overarching idea of orthogonal
polynomials is fairly simple. Suppose we are given a Hilbert space of functions over a common
support equipped with an inner product such that polynomials are valid vectors in this Hilbert
space. Typically, the monomials

{
1, x, x2, . . .

}
are linearly independent in this space. So, the

Gram-Schmidt algorithm can be applied to them to produce orthogonal polynomials. These or-
thogonal polynomials are unique up to scaling. This uniqueness is potentially surprising, because
one may conceive of initiating the Gram-Schmidt algorithm with a different linearly independent set
of polynomials. However, a set of orthogonal polynomials is formally defined as a set of polynomials
{p0, p1, p2, . . . } such that each pk has degree k, and every polynomial in the set is orthogonal to
every other polynomial in the set. This definition ensures the uniqueness property. If we vary the
support of the functions and the weight function of the inner product, we can derive several classes
of orthogonal polynomials. Such classes of polynomials have been studied extensively, because they
appear in various areas of applied mathematics like perturbation theory, quantum mechanics, and
stochastic processes.

For each channel we stated earlier, we will require two sets of orthogonal polynomials. The first
set includes the polynomials which are orthogonal with respect to the input distribution, and the
second set includes the polynomials which are orthogonal with respect to the output distribution.
Since the Gaussian channel has Gaussian input and output, we only need to define one class of
orthogonal polynomials for it. So, five classes of polynomials are presented next.

Hermite Polynomials

The Hermite polynomials form a family of polynomials on the real line that are orthogonal with
respect to the standard Gaussian pdf. In particular, the Hermite polynomial with degree k ∈ N,
denoted Hk : R→ R, is defined as:

∀x ∈ R, Hk(x) , (−1)ke
x2

2
dk

dxk

(
e−

x2

2

)
. (5.58)

Such a formula to generate orthogonal polynomials using repeated derivatives (or repeated finite
differences in the discrete case) is called a Rodrigues formula. The orthogonality relation for
Hermite polynomials is:

∀j, k ∈ N,
∫ ∞
−∞

Hj(x)Hk(x)
1√
2π
e−

x2

2 dx = k!δjk. (5.59)

Since we will require polynomials that are orthonormal with respect to Gaussian pdfs with arbitrary
variances, we define the normalized Hermite polynomials for any variance p > 0 as:

∀k ∈ N, ∀x ∈ R, H(p)
k (x) ,

1√
k!
Hk

(
x
√
p

)
. (5.60)
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It can be checked that these polynomials are orthonormal with respect to the Gaussian pdf for any
variance p > 0:

∀j, k ∈ N,
∫ ∞
−∞

H
(p)
j (x)H

(p)
k (x)

1√
2πp

e
−x

2

2p dx = δjk.

The normalized Hermite polynomials will be used in subsection 5.3.3.

Generalized Laguerre Polynomials

The generalized Laguerre polynomials form a family of polynomials on the positive real line that
are orthogonal with respect to the gamma pdf. In particular, the generalized Laguerre polynomial

with degree k ∈ N, denoted L
(a)
k : (0,∞)→ R, is defined by the Rodrigues formula:

∀x > 0, L
(a)
k (x) ,

x−aex

k!

dk

dxk

(
xk+ae−x

)
(5.61)

where the parameter a ∈ (−1,∞). The orthogonality relation for generalized Laguerre polynomials
is:

∀j, k ∈ N,
∫ ∞

0
L

(a)
j (x)L

(a)
k (x)xae−x dx =

Γ(k + a+ 1)

k!
δjk. (5.62)

The special case when a = 0 begets the Laguerre polynomials, which are orthogonal with respect
to the exponential pdf. Since we will require polynomials that are orthonormal with respect to
gamma pdfs with arbitrary parameters α > 0 and β > 0, we define the normalized generalized
Laguerre polynomials with parameters α ∈ (0,∞) and β ∈ (0,∞) as:

∀k ∈ N, ∀x > 0, L
(α,β)
k (x) ,

√
k!Γ(α)

Γ(k + α)
L

(α−1)
k (βx) . (5.63)

It can be checked that these polynomials are orthonormal with respect to the gamma pdf for any
α > 0 and β > 0:

∀j, k ∈ N,
∫ ∞

0
L

(α,β)
j (x)L

(α,β)
k (x)

βαxα−1e−βx

Γ(α)
dx = δjk.

The normalized generalized Laguerre polynomials will be used in subsection 5.3.4.

Jacobi Polynomials

The Jacobi polynomials form a family of polynomials on (−1, 1) that are orthogonal with respect
to the beta pdf on (−1, 1). Together, the Hermite, generalized Laguerre, and Jacobi polynomials
are often called the classical orthogonal polynomials because they share many common properties.
For example, within a linear change of variables, they are the only orthogonal polynomials whose
derivatives are also orthogonal polynomials [34]. The Jacobi polynomial with degree k ∈ N, denoted

J̄
(a,b)
k : (−1, 1)→ R, is defined by the Rodrigues formula:

∀x ∈ (−1, 1), J̄
(a,b)
k (x) , (1− x)−a(1 + x)−b

(−1)k

2kk!

dk

dxk

(
(1− x)k+a(1 + x)k+b

)
(5.64)
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where the parameters a, b ∈ (−1,∞). The orthogonality relation for Jacobi polynomials is:

∀j, k ∈ N,
∫ 1

−1
J̄

(a,b)
j (x)J̄

(a,b)
k (x)(1− x)a(1 + x)b dx =

2a+b+1Γ(k + a+ 1)Γ(k + b+ 1)

(2k + a+ b+ 1)Γ(k + a+ b+ 1)k!
δjk.

(5.65)
The Jacobi polynomials generalize several other orthogonal polynomial families like the Legendre
and Chebyshev polynomials. In particular, letting a = b = 0 produces the Legendre polynomials
which are orthogonal with respect to the uniform pdf. Since we will require polynomials that are
orthonormal with respect to beta pdfs on (0, 1) with arbitrary parameters α > 0 and β > 0, we
define the normalized (shifted) Jacobi polynomials with parameters α ∈ (0,∞) and β ∈ (0,∞) as:

∀k ∈ N, ∀x ∈ (0, 1), J
(α,β)
k (x) ,

√
(2k + α+ β − 1)B(α, β)Γ(k + α+ β − 1)k!

Γ(k + α)Γ(k + β)
J̄

(β−1,α−1)
k (2x− 1) .

(5.66)
It can be checked that these polynomials are orthonormal with respect to the beta pdf for any
α > 0 and β > 0:

∀j, k ∈ N,
∫ 1

0
J

(α,β)
j (x)J

(α,β)
k (x)

xα−1(1− x)β−1

B(α, β)
dx = δjk.

The normalized Jacobi polynomials will be used in subsection 5.3.5.

Meixner Polynomials

The Meixner polynomials form a family of polynomials on the natural numbers N = {0, 1, 2, . . . }
that are orthogonal with respect to the negative binomial pmf. This is the first class of polynomials
we have encountered that has discrete (countable) support. Such orthogonal polynomials are often
conveniently defined using hypergeometric series. For any p, q ∈ Z+, the hypergeometric series is
defined as:

pFq

(
a1, . . . , ap
b1, . . . , bq

; t

)
,
∞∑
k=0

(a1)k . . . (ap)kt
k

(b1)k . . . (bq)kk!
(5.67)

where the argument t ∈ C and the parameters a1, . . . , ap, b1, . . . , bq ∈ C are such that the series
is well-defined. Moreover, for any k ∈ N and any z ∈ C, (z)k is the (non-standard) Pochhammer
symbol for the rising factorial, which is defined for k ≥ 1 as:

(z)k , z(z + 1)(z + 2) . . . (z + k − 1) =
Γ(z + k)

Γ(z)
(5.68)

and for k = 0 as (z)0 = 1. The Meixner polynomial with degree k ∈ N, denoted M̄
(s,p)
k : N → R,

can be defined using the hypergeometric series as:

∀y ∈ N, M̄ (s,p)
k (y) , 2F1

(
−k,−y

s
; 1− 1

p

)
(5.69)

where the parameters s ∈ (0,∞) and p ∈ (0, 1). The orthogonality relation for Meixner polynomials
is:

∀j, k ∈ N,
∞∑
y=0

M̄
(s,p)
j (y)M̄

(s,p)
k (y)

Γ(s+ y)

Γ(s)y!
py(1− p)s =

p−kk!

(s)k
δjk. (5.70)
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These polynomials are already orthogonal with respect to negative binomial pmfs with arbitrary
parameters s > 0 and p ∈ (0, 1). So, we define the normalized Meixner polynomials with parameters
s ∈ (0,∞) and p ∈ (0, 1) as:

∀k ∈ N, ∀y ∈ N, M (s,p)
k (y) ,

√
(s)k
p−kk!

M̄
(s,p)
k (y) . (5.71)

Obviously, these polynomials are orthonormal with respect to the negative binomial pmf for any
s > 0 and p ∈ (0, 1):

∀j, k ∈ N,
∞∑
y=0

M
(s,p)
j (y)M

(s,p)
k (y)

Γ(s+ y)

Γ(s)y!
py(1− p)s = δjk.

The normalized Meixner polynomials will be used in subsection 5.3.4.

Hahn Polynomials

Finally, the Hahn polynomials form a family of polynomials on the discrete and finite set {0, . . . , n}
that are orthogonal with respect to the beta-binomial pmf. In particular, the Hahn polynomial with

degree k ∈ {0, . . . , n}, denoted Q̄
(a,b)
k : {0, . . . , n} → R, can be defined using the hypergeometric

series as:

∀y ∈ {0, . . . , n} , Q̄(a,b)
k (y) , 3F2

(
−k, k + a+ b+ 1,−y

a+ 1,−n ; 1

)
(5.72)

where the parameters a, b ∈ (−1,∞). The orthogonality relation for Hahn polynomials is:

∀j, k ∈ {0, . . . , n} ,
n∑
y=0

Q̄
(a,b)
j (y)Q̄

(a,b)
k (y)

(a+ 1)y(b+ 1)n−y
y!(n− y)!

=
(k + a+ b+ 1)n+1(b+ 1)k(
n
k

)
(2k + a+ b+ 1)(a+ 1)kn!

δjk.

(5.73)
The Hahn polynomials generalize several other families of orthogonal polynomials in the limit,
including the Jacobi and Meixner polynomials defined earlier, and the Krawtchouk and Charlier
polynomials which are orthogonal with respect to the binomial and Poisson pmfs, respectively [34].
Since we will require polynomials that are orthonormal with respect to beta-binomial pmfs with
arbitrary parameters α > 0 and β > 0, we define the normalized Hahn polynomials with parameters
α ∈ (0,∞) and β ∈ (0,∞) as:

∀k, y ∈ {0, . . . , n} , Q(α,β)
k (y) ,

√(
n

k

)
(2k + α+ β − 1)(α)kΓ(n+ α+ β)

(k + α+ β − 1)n+1(β)kΓ(α+ β)
Q̄

(α−1,β−1)
k (y) . (5.74)

It can be checked that these polynomials are orthonormal with respect to the beta-binomial pmf
for any α > 0 and β > 0:

∀j, k ∈ {0, . . . , n} ,
n∑
y=0

Q
(α,β)
j (y)Q

(α,β)
k (y)

(
n

y

)
B(α+ y, β + n− y)

B(α, β)
= δjk.

The normalized Hahn polynomials will be used in subsection 5.3.5. This completes our introduction
to the relevant orthogonal polynomial families.
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5.3.3 Gaussian Input, Gaussian Channel, and Hermite Polynomials

The SVD of the DTM of the additive white Gaussian noise (AWGN) channel was computed in [23]
in the context of attacking network information theory problems which use additive Gaussian noise
models. This subsection is devoted to providing an alternative derivation of this SVD. We will
find the singular vectors of the DTM of the AWGN channel by directly employing Theorem 5.2.8.
To this end, recall Definition 3.4.1 of the (single letter) AWGN channel. The AWGN channel has
jointly distributed input random variable X and output random variable Y , where X and Y are
related by the equation:

Y = X +W, X ⊥⊥W ∼ N (0, ν) (5.75)

such that X is independent of the Gaussian noise W ∼ N (0, ν) with variance ν > 0, and X satisfies
the average power constraint, E

[
X2
]
≤ p, for some given power p > 0. We assume that we use the

capacity achieving input distribution X ∼ N (0, p). Then, the marginal pdf of X is:

∀x ∈ R, PX(x) =
1√
2πp

exp

(
−x

2

2p

)
which coincides with equation 5.46 in subsection 5.3.1 when r = 0, and the conditional pdfs of Y
given X are:

∀x, y ∈ R, PY |X(y|x) =
1√
2πν

exp

(
−(y − x)2

2ν

)
which coincide with equation 5.45 in subsection 5.3.1. Moreover, the marginal pdf of Y is:

∀y ∈ R, PY (y) =
1√

2π(p+ ν)
exp

(
− y2

2(p+ ν)

)
(5.76)

because Y ∼ N (0, p+ ν). We next define the notion of translation invariant kernels, which will
play a considerable role in computing the SVD of the DTM of the AWGN channel.

Definition 5.3.4 (Translation Invariant Kernel). Suppose we are given an integral operator T ,
which is defined for an input function f : R→ R as:

∀x ∈ R, T (f)(x) =

∫ ∞
−∞

K(x, t)f(t) dt

where K : R× R→ R is the kernel of the integral operator. The kernel K : R× R→ R is called a
translation invariant kernel if there exists a function φ : R→ R such that:

∀x, t ∈ R, K(x, t) = φ(x+ vt)

for some constant v ∈ R\ {0}.

We remark that the term “translation invariant” is often reserved for kernels where v = −1 in the
above definition. Such kernels with v = −1 are also known as difference kernels and correspond to
the convolution operation. Indeed, the convolution of φ : R→ R and f : R→ R is given by:

∀x ∈ R, (φ ? f) (x) =

∫ ∞
−∞

φ(x− t)f(t) dt (5.77)
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where ? denotes the convolution operation. This operation plays a vital role in the theory of
linear time-invariant (LTI) systems. In Definition 5.3.4, we refer to the kernel K(x, t) = φ(x+ vt)
as translation invariant because it can be physically interpreted as describing a wave traveling at
constant phase velocity v with a fixed profile. Functions of the form φ(x+vt) are often encountered
while solving partial differential equations involving the d’Alembert operator (which appears in the
study of wave phenomena). The next lemma presents a crucial observation regarding translation
invariant kernels.

Lemma 5.3.1 (Closure and Degree Preservation of Translation Invariant Kernels). An integral
operator T with a translation invariant kernel K : R × R → R, such that ∀x, t ∈ R, K(x, t) =
φ(x + vt) for some v ∈ R\ {0}, is closed over polynomials and degree preserving. Furthermore, T
is strictly degree preserving if and only if:

0 <

∣∣∣∣∫ ∞
−∞

φ(z) dz

∣∣∣∣ <∞.
Proof.
Suppose T is an integral operator with translation invariant kernel K : R × R → R such that
∀x, t ∈ R, K(x, t) = φ(x + vt) for some v ∈ R\ {0}. Consider any polynomial p : R → R with
degree n ∈ N defined by p(t) = a0 + a1t+ a2t

2 + · · ·+ ant
n, which means an 6= 0. Applying T to p,

we have:

∀x ∈ R, T (p)(x) =

∫ ∞
−∞

K(x, t)p(t) dt =

∫ ∞
−∞

φ(x+ vt)
(
a0 + a1t+ a2t

2 + · · ·+ ant
n
)
dt.

We seek to show that T (p) is a polynomial with degree at most n. Observe that:

∀x ∈ R, T (p)(x) =

∫ ∞
−∞

φ(x+ vt)
(
a0 + a1t+ a2t

2 + · · ·+ ant
n
)
dt

=

n∑
i=0

ai

∫ ∞
−∞

tiφ(x+ vt) dt

= sign(v)

n∑
i=0

ai
vi+1

∫ ∞
−∞

(z − x)i φ(z) dz

= sign(v)

n∑
i=0

ai
vi+1

∫ ∞
−∞

 i∑
j=0

(−1)j
(
i

j

)
zi−jxj

φ(z) dz

= sign(v)
n∑
i=0

ai
vi+1

i∑
j=0

(−1)j
(
i

j

)
xj
∫ ∞
−∞

zi−jφ(z) dz

= sign(v)
n∑
j=0

xj

(−1)j
n∑
i=j

(
i

j

)
ai
vi+1

∫ ∞
−∞

zi−jφ(z) dz


where the third equality follows from a change of variables z = x+ vt, the fourth equality follows
from the binomial theorem, and the final equality follows from swapping the order of summations
(which is valid as the summations are finite). Clearly, T (p) is a polynomial with degree at most n.

152



CHAPTER 5. SPECTRAL DECOMPOSITION OF INFINITE ALPHABET CHANNELS

Hence, T is closed over polynomials and degree preserving. Now notice that the coefficient of xn

in the expression for T (p)(x) is:

sign(v)(−1)n
n∑
i=n

(
i

n

)
ai
vi+1

∫ ∞
−∞

zi−nφ(z) dz = sign(v)
(−1)nan
vn+1

∫ ∞
−∞

φ(z) dz

where
(−1)nan
vn+1

is some finite non-zero constant. Therefore, T (p) has degree n if and only if:

0 <

∣∣∣∣∫ ∞
−∞

φ(z) dz

∣∣∣∣ <∞,
which means T is strictly degree preserving if and only if the above condition holds. This completes
the proof.

The SVD of the DTM of the AWGN channel is presented in the next theorem. Its proof employs
the closure over polynomials and degree preservation properties of translation invariant kernels.

Theorem 5.3.2 (AWGN Channel SVD). Given the AWGN channel:

Y = X +W, X ⊥⊥W ∼ N (0, ν)

with input random variable X ∼ N (0, p) that is Gaussian distributed with variance p > 0, the SVD
of the DTM, B : L2 (R, λ)→ L2 (R, µ), is given by:

∀k ∈ N, B
(√

PXH
(p)
k

)
=

(
p

p+ ν

) k
2 √

PYH
(p+ν)
k

where the singular vectors are normalized Hermite polynomials weighted by the square root of the
corresponding Gaussian pdfs.

Proof.
It suffices to demonstrate that the conditional expectation operators are strictly degree preserving.
Theorem 5.2.8 will then ensure that the singular vectors have the form given in the theorem state-
ment, and the singular values are strictly positive and bounded by 1, with the first singular value
being exactly equal to 1. The explicit form of the singular values is proven in [23], and we do not
prove it here.

We first show that the conditional expectation operator E [·|X] is closed over polynomials and
strictly degree preserving. For any real (Borel measurable) function f : R→ R, we have:

E [f(Y )|X = x] =

∫
R
f(y)PY |X(y|x) dµ(y) =

∫
R
f(y)

1√
2πν

exp

(
−(y − x)2

2ν

)
dµ(y)

where µ is the Lebesgue measure and the integrals are Lebesgue integrals. So, E [·|X] is an integral
operator with translation invariant kernel (with v = −1). Moreover, we have:∫ ∞

−∞

1√
2πν

exp

(
− z

2

2ν

)
dz = 1
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and hence, E [·|X] is closed over polynomials and strictly degree preserving using Lemma 5.3.1.

We next prove that the conditional expectation operator E [·|Y ] is closed over polynomials and
strictly degree preserving. For zero mean jointly Gaussian random variables (X,Y ), the condi-
tional expectation of X given Y = y ∈ R is:

E [X|Y = y] =
E [XY ]

E [Y 2]
y =

E
[
X2
]

+ E [X]E [W ]

E [Y 2]
y =

p

p+ ν
y (5.78)

as Y = X + W and X ⊥⊥ W . This is also the minimum mean-square error (MMSE) estimator of
X given Y . The conditional variance of X given Y = y ∈ R is:

VAR (X|Y = y) = E
[
X2
]
− E [XY ]2

E [Y 2]
= E

[
X2
]
−
(
E
[
X2
]

+ E [X]E [W ]
)2

E [Y 2]
=

pν

p+ ν
. (5.79)

Hence, the conditional pdfs of X given Y are:

∀y, x ∈ R, PX|Y (x|y) =
1√

2π
(
pν
p+ν

) exp

−
(
x− p

p+ν y
)2

2
(
pν
p+ν

)
 (5.80)

where the conditional distributions must be Gaussian because (X,Y ) are jointly Gaussian. This
means for any real (Borel measurable) function f : R→ R, we have:

E [f(X)|Y = y] =

∫
R
f(x)PX|Y (x|y) dλ(x) =

∫
R
f(x)

1√
2π
(
pν
p+ν

) exp

−
(
x− p

p+ν y
)2

2
(
pν
p+ν

)
 dλ(x)

where λ is the Lebesgue measure and the integrals are Lebesgue integrals. So, E [·|Y ] is also an
integral operator with translation invariant kernel (with v = − p

p+ν ). Moreover, we again have:

∫ ∞
−∞

1√
2π
(
pν
p+ν

) exp

− z2

2
(
pν
p+ν

)
 dz = 1

which implies that E [·|Y ] is closed over polynomials and strictly degree preserving using Lemma
5.3.1. This completes the proof.

As mentioned earlier, Theorem 5.3.2 concurs with the SVD result in [23]. The right and left
singular vectors derived in the theorem form complete orthonormal bases of L2 (R, λ) and L2 (R, µ),
respectively. Moreover, the normalized Hermite polynomials with parameter p form a complete
orthonormal basis of L2 (R,PX), and the normalized Hermite polynomials with parameter p + ν
form a complete orthonormal basis of L2 (R,PY ). Theorem 5.3.2 illustrates how Theorem 5.2.8
may be used to swiftly and efficiently derive SVDs of DTMs of channels. This is possible because
Theorem 5.2.8 essentially transfers the technical intricacies of computing the SVD in a functional
space into blindly verifying some conditions on the conditional moments.
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5.3.4 Gamma Input, Poisson Channel, and Laguerre and Meixner Polynomials

In this subsection, we find the SVD of the DTM of the Poisson channel introduced in subsection
5.3.1. Recall that the Poisson channel has input random variable X with range X = (0,∞), and
output random variable Y with range Y = N. The channel conditional distributions of Y given X
are Poisson distributions:

∀x > 0,∀y ∈ N, PY |X(y|x) =
xye−x

y!
.

We assume that X is gamma distributed with parameters α ∈ (0,∞) and β ∈ (0,∞):

∀x > 0, PX(x) =
βαxα−1e−βx

Γ(α)
,

and Y is therefore negative binomial distributed with parameters p = 1
β+1 and s = α:

∀y ∈ N, PY (y) =
Γ(α+ y)

Γ(α)y!

(
1

β + 1

)y ( β

β + 1

)α
.

The next theorem derives the SVD of the DTM of this channel using Theorem 5.2.8.

Theorem 5.3.3 (Poisson Channel SVD). Given the Poisson channel with input random variable
X that is gamma distributed with parameters α ∈ (0,∞) and β ∈ (0,∞), the SVD of the DTM,
B : L2 ((0,∞), λ)→ L2 (N, µ), is given by:

∀k ∈ N, B
(√

PXL
(α,β)
k

)
= σk

√
PYM

(
α, 1
β+1

)
k

for some singular values σk such that ∀k ∈ N, 0 < σk ≤ 1 and σ0 = 1, where the right singular
vectors are normalized generalized Laguerre polynomials weighted by the square root of the gamma
pdf, and the left singular vectors are normalized Meixner polynomials weighted by the square root
of the negative binomial pmf.

Proof.
From the discussion in subsection 5.3.1, it suffices to show that the moments of the Poisson distri-
bution are strictly degree preserving polynomials of the rate parameter, and the moments of the
gamma distribution are strictly degree preserving polynomials of the parameter α (see equation
5.50). This will imply that the conditional expectation operators are closed over polynomials and
strictly degree preserving, and then Theorem 5.2.8 will beget the SVD presented in the theorem
statement.

We first prove that the moments of the Poisson random variable Z with rate parameter x > 0
are strictly degree preserving polynomials of x. The pmf of Z is precisely the conditional pmf of Y
given X = x ∈ (0,∞):

∀z ∈ N, PZ(z) =
xze−x

z!
= PY |X(z|x),

and ∀n ∈ N, E [Zn] = E [Y n|X = x]. The moment generating function (MGF) of Z is:

∀s ∈ R, MZ(s) , E
[
esZ
]

= ex(es−1) (5.81)
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and as the MGF is finite on an open interval around s = 0, the moments of Z are given by:

∀n ∈ N, E [Zn] =
dn

dsn
MZ(s)

∣∣∣∣
s=0

=
dn

dsn

(
ex(es−1)

)∣∣∣∣
s=0

. (5.82)

To show these moments are polynomials of x, we prove by induction that:

∀n ∈ N,
dn

dsn

(
ex(es−1)

)
= ex(es−1)

(
n∑
k=0

ank(s)xk

)
(5.83)

for some infinitely differentiable functions {ank : R→ R | n ∈ N, 0 ≤ k ≤ n}. For the base case of
n = 0:

ex(es−1) =
dn

dsn

(
ex(es−1)

)
= ex(es−1)

(
a0

0(s)x0
)
,

where we take a0
0(s) , 1, which is infinitely differentiable. We then assume that for some fixed

n ∈ N:
dn

dsn

(
ex(es−1)

)
= ex(es−1)

(
n∑
k=0

ank(s)xk

)
for some infinitely differentiable functions ank , 0 ≤ k ≤ n. This is the inductive hypothesis. The
inductive step then requires us to prove that:

dn+1

dsn+1

(
ex(es−1)

)
= ex(es−1)

(
n+1∑
k=0

an+1
k (s)xk

)

for some infinitely differentiable functions an+1
k , 0 ≤ k ≤ n + 1. By the inductive hypothesis, we

have:

dn+1

dsn+1

(
ex(es−1)

)
=

d

ds

(
ex(es−1)

(
n∑
k=0

ank(s)xk

))

= ex(es−1)

(
n∑
k=0

xk
d

ds
ank(s)

)
+ xesex(es−1)

(
n∑
k=0

ank(s)xk

)

= ex(es−1)

(
d

ds
an0 (s) +

n∑
k=1

xk
(
d

ds
ank(s) + ank−1(s)es

)
+ ann(s)esxn+1

)

where we define an+1
0 (s) , an0 (s), an+1

k (s) , d
dsa

n
k(s) + ank−1(s)es for 1 ≤ k ≤ n, and an+1

n+1(s) ,
ann(s)es. The functions an+1

k , 0 ≤ k ≤ n + 1, are infinitely differentiable because es and the
functions ank , 0 ≤ k ≤ n, are infinitely differentiable. Hence, we have:

dn+1

dsn+1

(
ex(es−1)

)
= ex(es−1)

(
n+1∑
k=0

an+1
k (s)xk

)

as required. By induction, we get:

∀n ∈ N,
dn

dsn

(
ex(es−1)

)
= ex(es−1)

(
n∑
k=0

ank(s)xk

)
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for some infinitely differentiable functions {ank : R→ R | n ∈ N, 0 ≤ k ≤ n}. This implies that:

∀n ∈ N, E [Zn] =
dn

dsn

(
ex(es−1)

)∣∣∣∣
s=0

=

n∑
k=0

ank(0)xk (5.84)

from equation 5.82. Note that from our recursive definition, an+1
n+1(s) = ann(s)es and a0

0(s) = 1, we
can conclude that ∀n ∈ N, ann(0) = a0

0(0) = 1. Therefore, ∀n ∈ N, E [Zn] = E [Y n|X = x] is a
polynomial in x with degree n.

Next, we prove that the moments of a gamma distribution are strictly degree preserving poly-
nomials of α. Let X be a gamma distributed random variable with parameters α ∈ (0,∞) and
β ∈ (0,∞):

∀x > 0, PX(x) =
βαxα−1e−βx

Γ(α)
.

The MGF of X is:

MX(s) , E
[
esX
]

=

{ (
β
β−s

)α
, s < β

∞ , s ≥ β
(5.85)

and as β > 0, the MGF is finite on an open interval around s = 0. This means the moments of X
are given by:

∀n ∈ N, E [Xn] =
dn

dsn
MX(s)

∣∣∣∣
s=0

=
dn

dsn

(
β

β − s

)α∣∣∣∣
s=0

=

(
β

β − s

)α (α)n
(β − s)n

∣∣∣∣
s=0

where we have used the Pochhammer symbol defined in equation 5.68. This simplifies to:

∀n ∈ N, E [Xn] =
(α)n
βn

(5.86)

from which it is evident that for every n ∈ N, E [Xn] is a polynomial in α with degree n. This
completes the proof.

Firstly, we note that the SVD of the DTM of the Poisson channel with exponential input distribution
and geometric output distribution was derived in [8]. This result is a special case of Theorem
5.3.3. Indeed, letting α = 1 causes X to have exponential distribution and Y to have geometric
distribution. Moreover, the generalized Laguerre polynomials become Laguerre polynomials, which
are orthogonal with respect to the exponential distribution. This is precisely the SVD result
in [8]. Furthermore, [8] provides an explicit formula for the singular values in the α = 1 case as
well. Secondly, we remark that there are more insightful avenues to derive that the moments of
a Poisson pmf are strictly degree preserving polynomials of the rate parameter. However, such
methods require a study of combinatorial tools like Bell polynomials and Stirling numbers, and
we avoid developing these concepts for the sake of brevity. Finally, we note that in Theorem
5.3.3, the right and left singular vectors form complete orthonormal bases of L2 ((0,∞), λ) and
L2 (N, µ), respectively. Moreover, the normalized generalized Laguerre polynomials form a complete
orthonormal basis of L2 ((0,∞),PX), and the normalized Meixner polynomials form a complete
orthonormal basis of L2 (N,PY ). Like the SVD of the DTM of the AWGN channel derived earlier,
the result in Theorem 5.3.3 also illustrates the utility of Theorem 5.2.8 in deriving SVDs of DTMs
of infinite alphabet channels.
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5.3.5 Beta Input, Binomial Channel, and Jacobi and Hahn Polynomials

In the final subsection of this chapter, we derive the SVD of the DTM of the binomial channel.
Recall from subsection 5.3.1 that the binomial channel has input random variable X with range
X = (0, 1), and output random variable Y with range Y = {0, . . . , n} for some fixed n ∈ Z+. The
channel conditional distributions of Y given X are binomial distributions:

∀x ∈ (0, 1),∀y ∈ {0, . . . , n} , PY |X(y|x) =

(
n

y

)
xy(1− x)n−y.

We assume that X is beta distributed with parameters α ∈ (0,∞) and β ∈ (0,∞):

∀x ∈ (0, 1), PX(x) =
xα−1(1− x)β−1

B(α, β)
.

This implies that Y is beta-binomial distributed with the same parameters α and β:

∀y ∈ {0, . . . , n} , PY (y) =

(
n

y

)
B(α+ y, β + n− y)

B(α, β)
.

The next theorem presents the SVD of the DTM of the binomial channel using Theorem 5.2.9.

Theorem 5.3.4 (Binomial Channel SVD). Given the binomial channel with input random variable
X that is beta distributed with parameters α ∈ (0,∞) and β ∈ (0,∞), the SVD of the DTM,
B : L2 ((0, 1), λ)→ L2 ({0, . . . , n} , µ), is given by:

∀k ∈ {0, . . . , n} , B
(√

PXJ
(α,β)
k

)
= σk

√
PYQ

(α,β)
k

∀k ∈ N\ {0, . . . , n} , B
(√

PXJ
(α,β)
k

)
= 0

for some singular values σk such that ∀k ∈ {0, . . . , n} , 0 < σk ≤ 1 and σ0 = 1, where the right
singular vectors are normalized Jacobi polynomials weighted by the square root of the beta pdf,
and the left singular vectors are normalized Hahn polynomials weighted by the square root of the
beta-binomial pmf.

Proof.
It suffices to show that the conditional expectation operators are closed over polynomials and
strictly degree preserving (in the sense given in the proof of Theorem 5.2.9). Using Theorem 5.2.9,
this will imply the SVD presented in the theorem statement.

We first prove that the conditional moments of Y given X are strictly degree preserving polynomi-
als. From the discussion in subsection 5.3.1, it suffices to show that the zeroth to nth moments of
the binomial distribution are strictly degree preserving polynomials of the success probability pa-
rameter, and the remaining moments are only degree preserving polynomials. Let Z be a binomial
random variable on {0, . . . , n} with success probability parameter x ∈ (0, 1). The the pmf of Z is
precisely the conditional pmf of Y given X = x ∈ (0, 1):

∀z ∈ N, PZ(z) =

(
n

z

)
xz(1− x)n−z = PY |X(z|x),
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and ∀m ∈ N, E [Zm] = E [Y m|X = x]. It is well-known that a binomial random variable is a sum
of i.i.d. Bernoulli random variables. So, let Z1, . . . , Zn be i.i.d. Bernoulli random variables with
success probability x ∈ (0, 1) i.e. P(Zi = 1) = x and P(Zi = 0) = 1− x. Then, we have:

Z =
n∑
i=1

Zi

and the moments of Z are given by:

∀m ∈ N, E [Zm] = E

[(
n∑
i=1

Zi

)m]
=

∑
1≤i1,...,im≤n

E [Zi1 · · ·Zim ]

=
∑

0≤k1,...,kn≤m
k1+···+kn=m

(
m

k1, . . . , kn

)
E
[
Zk11 · · ·Z

kn
n

]

=
∑

0≤k1,...,kn≤m
k1+···+kn=m

(
m

k1, . . . , kn

) n∏
i=1

E
[
Zkii

]
(5.87)

where the second equality follows from the linearity of expectation, the third equality follows from
the multinomial theorem, and the fourth equality follows from the independence of Z1, . . . , Zn.
Note that the multinomial coefficient is defined for any m ∈ N and k1, . . . , kn ∈ N, such that
k1 + · · ·+ kn = m, as: (

m

k1, . . . , kn

)
,

m!

k1! . . . kn!
.

Since the moments of the Bernoulli random variables are E
[
Z0
i

]
= 1 and ∀m ∈ N,m ≥ 1, E [Zmi ] =

x, each term in equation 5.87 is given by:

n∏
i=1

E
[
Zkii

]
= xN(k1,...,kn)

where N(k1, . . . , kn) represents the number of ki that are strictly greater than 0. Evidently,
N(k1, . . . , kn) ≤ min(m,n) and N(k1, . . . , kn) = min(m,n) for at least one of the terms. Hence, for
every m ≤ n, E [Zm] = E [Y m|X = x] is a polynomial in x with degree m, and for every m > n,
E [Zm] = E [Y m|X = x] is a polynomial in x with degree n.

We now prove that the conditional moments of X given Y are strictly degree preserving poly-
nomials. To this end, we compute the moments of X, which is beta distributed with parameters
α ∈ (0,∞) and β ∈ (0,∞):

∀x ∈ (0, 1), PX(x) =
xα−1(1− x)β−1

B(α, β)
,
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in order to infer how the moments of a beta distribution depend on α and β.

∀m ∈ N, E [Xm] =

∫ 1

0
xm

xα−1(1− x)β−1

B(α, β)
dx

=
B(α+m,β)

B(α, β)

=
Γ(α+m)Γ(α+ β)

Γ(α+m+ β)Γ(α)

=
(α)m

(α+ β)m
(5.88)

where the second and third equalities follow from the definition of the beta function in equation
5.55, and the fourth equality follows from the definition of the Pochhammer symbol in equation
5.68. Recall from equation 5.56 in subsection 5.3.1 that:

∀y ∈ {0, . . . , n} , ∀x ∈ (0, 1), PX|Y (x|y) =
xα+y−1(1− x)β+n−y−1

B(α+ y, β + n− y)

from which we have for any y ∈ {0, . . . , n} that:

∀m ∈ N, E [Xm|Y = y] =
(α+ y)m

(α+ y + β + n− y)m
=

(α+ y)m
(α+ β + n)m

. (5.89)

Notice how y fortuitously cancels in the denominator. Hence, for every m ∈ N, E [Xm|Y = y] is a
polynomial in y with degree m. This completes the proof.

In Theorem 5.3.4, the right and left singular vectors form complete orthonormal bases of L2 ((0, 1), λ)
and L2 ({0, . . . , n} , µ), respectively. Furthermore, the normalized Jacobi polynomials form a com-
plete orthonormal basis of L2 ((0, 1),PX), and the normalized Hahn polynomials form a complete
orthonormal basis of L2 ({0, . . . , n} ,PY ). Since Jacobi and Hahn polynomials generalize various
other orthogonal polynomials, we can specialize Theorem 5.3.4 to obtain SVDs with other orthogo-
nal polynomial singular vectors. For example, when α = β = 1, the normalized Jacobi polynomials
are reduced to normalized Legendre polynomials. In this case, the input beta distribution becomes
a uniform distribution, and the Legendre polynomials are orthogonal with respect to this uniform
distribution. The binomial channel SVD in Theorem 5.3.4 illustrates the applicability of Theorem
5.2.9 in deriving SVDs of DTMs of channels which have finite alphabet size for the input or output.
This concludes the final example of this chapter.

In closing, we briefly recapitulate the principal result of this chapter. We have determined a set
of intuitively sound equivalent conditions on the conditional moments that ensure that the SVD of
the DTM of a channel contains weighted orthogonal polynomials as singular vectors. Although our
primary focus was on infinite alphabet channels, the result generalizes to channels with discrete
and finite alphabets as well. We portrayed some pertinent examples of applying the conditional
moment conditions by computing SVDs of DTMs of AWGN, Poisson, and binomial channels, and
more generally indicated how such examples may be generated from natural exponential families
with quadratic variance functions (NEFQVF) and their conjugate priors. We note that similar
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work in deriving spectral decompositions of Markov chains was carried out in [36], where the au-
thors were interested in bounding the convergence rate of Gibbs sampling. In fact, [36] presents
a comprehensive list of bivariate distributions which admit polynomial spectral decompositions.
However, we emphasize that our investigation was conducted independently of this work. The
spirit of our investigation was in alleviating the latent technicalities of computing explicit SVDs of
certain channels. We hope that this will engender linear information coupling type of analysis for
such channels.
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Chapter 6

Conclusion

We have explored several topics in this thesis under the common umbrella of local approximations
in information theory. To bring our discourse to an end, the next section summarizes our main
contributions in the preceding chapters. We then propose a few promising directions for future
research in section 6.2.

6.1 Main Contributions

In chapter 1, we introduced the local approximation of KL divergence using Taylor expansions,
defined the local perturbation vector spaces, and delineated the linear information coupling style of
analysis developed in [4] which transforms information theory problems into linear algebra problems.
We then considered two notable classes of statistical divergences in chapter 2: the f -divergences
and the Bregman divergences, both of which generalize the KL divergence. In Theorems 2.1.1
and 2.2.2, we used Taylor expansions to locally approximate the f -divergence and the Bregman
divergence, respectively. The local f -divergence was identical to the local KL divergence up to
a scale factor. However, the local Bregman divergence had a different form which only reduced
to that of the local KL divergence when the original Bregman divergence was itself a KL divergence.

In chapter 3, we identified that the locally optimal performance of data processing algorithms
employing the linear information coupling approach is given by the Rényi correlation, and the
globally optimal performance is given by the hypercontractive constant. In the discrete and finite
setting of section 3.3, we provided an alternative proof that the Rényi correlation lower bounds the
hypercontractive constant in Theorem 3.3.1, and determined upper bounds on the hypercontrac-
tive constant in terms of Rényi correlation in Theorems 3.3.7 and 3.3.8. These results were used to
derive the overall performance bound in Theorem 3.3.9. In section 3.4, we considered the AWGN
channel setting. We proved that the Rényi correlation actually equals the hypercontractive con-
stant (with power constraint) for AWGN channels in Corollary 3.4.2, Theorem 3.4.6, and Theorem
3.4.8. Hence, we validated the intuitive belief that for the Gaussian case, locally optimal perfor-
mance using a linear information coupling approach is globally optimal in the sense of preserving
information down a Markov chain.

Chapter 4 admitted a more communications oriented perspective of local approximations and con-
sidered the scenario of sending codewords (usually drawn i.i.d. from a source distribution) down
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a discrete memoryless channel. We first interpreted the results of [4] as characterizing the most
probable source perturbation under local approximations in a large deviations sense, when the
output empirical distribution is given and the channel is fixed. We then established two com-
plementary counterparts of this result. In Theorems 4.2.1 and 4.2.2, we characterized the most
probable source and channel perturbations in a large deviations sense when the output empirical
distribution is given. Furthermore, in Theorems 4.3.1 and 4.3.4, we characterized the most prob-
able channel perturbations in a large deviations sense when the output empirical distribution is
given and the source composition is fixed. We finally used Theorem 4.3.4 to prove Theorem 4.4.1,
which specifies an additive Gaussian noise MIMO channel model for normalized perturbations un-
der local and exponential approximations. In particular, Theorem 4.4.1 stated that the normalized
output perturbation is a sum of the normalized input perturbation multiplied by the DTM and
some independent additive Gaussian noise, where the noise represented the normalized channel
perturbations. Hence, Theorem 4.4.1 concretely expressed a source-channel decomposition of the
output perturbation under local and exponential approximations.

Finally, chapter 5 considered the problem of computing SVDs of general channels like infinite
alphabet channels (which are not discrete and finite), because this would enable us to perform
linear information coupling style of analysis for such channels in the future. Theorem 5.2.1 pre-
sented necessary and sufficient conditions for a compact self-adjoint linear operator on a separable
Hilbert space to have a complete eigenbasis of orthonormal polynomials. This result was used to
derive Theorem 5.2.7, which specified sufficient conditions on the conditional expectation operators
(associated with the input and output random variables of a channel) to ensure that the Gramian
operator of the DTM of a channel has a complete eigenbasis of orthonormal polynomials. Theorem
5.2.7 was then used to prove the pivotal results of the chapter: Theorems 5.2.8 and 5.2.9. For
infinite alphabet channels, Theorem 5.2.8 gave necessary and sufficient conditions on the condi-
tional expectation operators so that the singular vectors of the SVDs of a DTM and its adjoint
form complete orthonormal bases of weighted orthonormal polynomials. Theorem 5.2.9 presented
the analogous result for channels which have finite alphabets to emphasize the generality of the
result. Theorems 5.3.2, 5.3.3, and 5.3.4 utilized Theorems 5.2.8 and 5.2.9 to compute weighted
orthonormal polynomial SVDs of the DTMs of the AWGN, Poisson, and binomial channels. In a
nutshell, we established that the right and left singular vectors of the AWGN channel with Gaussian
input are normalized Hermite polynomials, the right and left singular vectors of the Poisson channel
with gamma input are normalized generalized Laguerre and normalized Meixner polynomials, and
the right and left singular vectors of the binomial channel with beta input are normalized Jacobi
and normalized Hahn polynomials. These SVD examples were all generated from our discussion
in subsection 5.3.1. Subsection 5.3.1 presented the framework of natural exponential families with
quadratic variance functions and their conjugate priors as a means of constructing channels with
orthonormal polynomial SVDs. This framework unveiled the beautiful relationship between certain
natural exponential families, their conjugate priors, and the corresponding orthogonal polynomials.

We hope that the richness and elegance of many of our results will encourage further research
on the general topic of local approximations in information theory. On this note, the next section
proposes some specific areas for future research that we consider to be interesting and potentially
fruitful.
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6.2 Future Directions

We suggest future directions in a chapter by chapter basis starting with chapter 3. In section 3.3
of chapter 3, we derived (performance) bounds on the hypercontractive constant in Theorem 3.3.9.
In particular, for discrete and finite random variables X and Y with joint pmf PX,Y , we showed
that:

ρ2(X;Y ) ≤ s∗(X;Y ) ≤

 2

min
x∈X

PX(x)

 ρ2(X;Y ).

Since both the hypercontractive constant and the Rényi correlation tensorize, the upper bound
becomes loose if we consider Xn

1 and Y n
1 , where i.i.d. Xn

1 are sent through a discrete memoryless
channel to get Y n

1 . While Corollary 3.3.10 partially remedied this tensorization issue, we ideally
seek a tighter upper bound on the hypercontractive constant using Rényi correlation, such that the
constant in the bound (which is currently a scaled reciprocal of the minimum probability mass of
PX) naturally tensorizes. Proving such a tighter bound is a meaningful future endeavor. Further-
more, in section 3.4 of chapter 3, we showed in Theorem 3.4.8 that the Rényi correlation is equal to
the hypercontractive constant (with power constraint) for an AWGN channel. Hence, using weak
convergence (or convergence in distribution) arguments like the CLT, we may be able to prove that
the local linear information coupling approach is asymptotically globally optimal for any channel
in some appropriate sense. Exploring this is another topic of future research.

The results of chapter 4 may be extended further as well. In chapter 4, we primarily analyzed the
large deviations behavior of i.i.d. sources and discrete memoryless channels under the local lens.
A natural extension is to add memory to the source or the channel. [26] presents several theorems
related to large deviations theory of Markov chains. Hence, as a starting point, we may consider
analyzing a discrete memoryless channel with a Markov chain input (which is a hidden Markov
model). It is nontrivial to compute the large deviations exponent for such hidden Markov models
using techniques in traditional large deviations theory [26]. However, under local approximations,
we can derive such exponents; indeed, local approximations were introduced to make analytically
intractable information theoretic problems tractable. Investigating the large deviations behavior of
hidden Markov models could be a fulfilling future endeavor. We note that [8] already approaches
this problem using basic tensor algebra. However, it would be intriguing to compare this tensor
based approach with the locally approximated large deviations approach.

Since this thesis presents an entirely theoretical set of ideas, we now discuss some potential applica-
tions of our work (which were hinted at throughout the thesis, starting from section 1.4 in chapter
1). From a channel coding perspective, [8] explicates the communication by varying distributions
coding strategy for channels which randomly permute codewords passing through them. In such
channels, we can only send information by varying the empirical distributions of codewords. How-
ever, we cannot vary the empirical distributions too much because only a small set of distributions
will reliably transmit information at high rates (due to the channel noise). We derived an additive
Gaussian noise MIMO channel model for normalized perturbations pertinent to this scenario in
chapter 4. There are ample opportunities to construct and analyze concrete coding strategies for
such channels. Moreover, [8] also presents a message passing algorithm for computing informative
score functions for inference on Ising models (or hidden Markov models) based on linear information
coupling style of SVD analysis. Thus, there are also opportunities for developing such inference
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algorithms and analyzing their performance through bounds like those in chapter 3.

From a data processing standpoint, the elegant MMSE characterization of Rényi correlation in
Theorem 3.2.6 insinuates an alternating projections algorithm for finding the optimizing functions
of Rényi correlation. Moreover, maximizing Rényi correlation is essentially equivalent to solving a
regularized least squares problem to find the “best” linear model between two random variables by
applying arbitrary measurable functions to them. Using such intuition, the authors of [31] derive
the alternating conditional expectations (ACE) algorithm to perform regression (or equivalently,
maximize Rényi correlation) and unearth such models from bivariate (or more general) data. Our
local approximation perspective can be used to understand and further develop this algorithm.
Since the Rényi correlation is the second largest singular value of the DTM when we view the
bivariate data as realizations of the input and output of a channel, its optimizing functions are
weighted versions of the corresponding left and right singular vectors. The proof of Theorem 3.2.4
illustrates this for the discrete and finite case. Moreover, the singular vectors of the DTM associ-
ated to larger singular values carry more information about data (that is generated i.i.d. from a
bivariate distribution). Devising algorithms with strong convergence guarantees that estimate the
informative singular vectors of the DTM empirically from data is a practical direction of future
research. We can perceive such algorithms as performing lossy source coding, because they effec-
tively find compact models for data which is tantamount to data compression. Therefore, the local
approximation method can be employed in both source and channel coding applications.

In light of our discussion on source and channel coding algorithms which estimate or compute
singular vectors of the DTM, we recall that Theorems 5.2.8 and 5.2.9 in chapter 5 characterize the
channels whose DTMs have SVDs with orthogonal polynomial singular vectors. For such channels,
calculating singular vectors is computationally efficient (for inference algorithms like that in [8])
because we are computing values of polynomials. Furthermore, estimating singular vectors for
regression or data processing purposes becomes a much simpler task if the singular vectors are
polynomials. Research can be done to develop alternative algorithms which estimate polynomial
singular vectors from data derived from the channels characterized in chapter 5.

On a related note, even when the DTM of a channel does not admit weighted orthogonal polyno-
mial singular vectors, we may still want to approximate the singular vectors using representative
polynomials. It is usually rather difficult to explicitly compute spectral decompositions or SVDs of
such DTMs because they are bounded linear operators on infinite-dimensional Hilbert spaces. This
leads us to the topic of polynomial approximations of eigenfunctions of the Gramian operators of
DTMs (which is the first step in computing SVDs of DTMs). A promising starting point in the
literature of polynomial approximations of functions is the Weierstrass approximation theorem,
which is presented next. A version of this theorem and its generalization, the Stone-Weierstrass
theorem, can be found in the classic real analysis text [30].

Theorem 6.2.1 (Weierstrass Approximation Theorem). Given a continuous function f : [a, b]→ R
on a compact interval, there exists a sequence of polynomial functions pn : [a, b]→ R, n ∈ N, that
converge uniformly to f on the interval [a, b]. Formally, we have:

lim
n→∞

sup
x∈[a,b]

|pn(x)− f(x)| = 0.
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There are several proofs of the Weierstrass approximation theorem in the literature, and fortu-
nately, some of these proofs are constructive. For instance, Bernstein polynomials can be used to
uniformly approximate continuous functions on a compact (closed and bounded) interval in R. This
means that although the Weierstrass approximation theorem is an existence theorem, we can easily
find polynomials to approximate continuous functions. However, our problem is more difficult than
this because we do not have the explicit form of the eigenfunctions we wish to approximate. They
are defined implicitly using the Gramian operator of the DTM. To make matters worse, we do not
even know the Gramian operator, because we do not know any theoretical distribution. We simply
have a large volume of data from which we must estimate the eigenfunctions of the Gramian oper-
ator. For simplicity, we consider the problem of estimating the eigenfunctions when the Gramian
operator is known. So, we are essentially given the kernel of a (possibly compact) self-adjoint linear
integral operator, and we seek to approximate the eigenfunctions of the operator with polynomials.
Appealing to the theory of integral equations [37], we see that we must approximate solutions to a
homogeneous Fredholm equation of the second kind. [37] states that computing eigenfunctions of
integral operators is straightforward when we have degenerate kernels. A kernel, Λ : R × R → R,
of an integral operator is called degenerate if it has the form:

∀x, t ∈ R, Λ(x, t) =
n∑
i=1

φi(x)ψi(t)

for some n ∈ Z+, where without loss of generality, φi : R → R are linearly independent and
ψi : R → R are linearly independent. For a degenerate kernel, [37] proves that the eigenfunctions
are linear combinations of φi, where the coefficients of the linear combinations can be found by
solving systems of n linear equations (which is easily done using matrix methods). Moreover, it
can be shown that the Weierstrass approximation theorem can be used to approximate any kernel
using degenerate kernels where φi and ψi are polynomials. Chapter 11 of [38] provides a broad
introduction to approximating the eigenfunctions of integral operators with arbitrary kernels by
approximating these kernels with degenerate kernels. Exploring such polynomial approximations
of eigenfunctions of the Gramian operators of DTMs is another viable direction of future research.

Until now, our discussion has entirely been about furthering the work in different chapters of
this thesis. A much broader goal of future research is attempting to expand the horizons of local
information theory. We hope that this can be achieved by relating it to quantum information the-
ory. Quantum information theory studies communication channels which have inherently quantum
attributes. For example, in a classical-quantum channel, the decoder is a positive operator valued
measurement (POVM) which is a generalization of the von Neumann measurement in quantum
mechanics. [39] provides a comprehensive introduction to quantum information theory and [40]
provides a terse summary of its results and open problems.

Recent advances in our understanding of classical bounds on zero error capacity have come from
quantum information theory. When Shannon introduced the zero error capacity problem in [41],
it became apparent to information theorists that the problem had a highly combinatorial flavor.
The best known general upper bound for zero error capacity is the Lovász theta function. Un-
surprisingly, its proof is combinatorial. [42] correctly observes that there has been a divergence of
techniques in information theory where traditional capacity problems are solved probabilistically
while zero error information theory is attacked using combinatorics. The work in [42] suggests a
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resolution to this divergence by using quantum probability. It provides a long-awaited interpreta-
tion of Lovász’s bound and proceeds to prove the quantum sphere packing bound.

Curiously, quantum probability derives its strength from representing and interpreting probability
distributions as unit norm complex vectors. So, while classical probability preserves the `1-norm,
quantum probability preserves the `2-norm and effectively takes us to the domain of linear algebra.
Fortunately, linear algebra is very well understood by the applied mathematics community. [42]
portrays how this approach helps unify many aspects of information theory. On a seemingly dif-
ferent front, we are performing local approximations to solve information theory problems. Recall
that one reason for performing these approximations is to simplify information theoretic problems
meaningfully so that they are solvable using linear algebra techniques. Thus, at a high level, the
quantum probability approach parallels the local approach. Exploring some concrete relations
between the quantum and local information theory frameworks might be a truly fulfilling future
endeavor.
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Appendix A

Proof of MMSE Characterization of
Rényi Correlation

In this section of the appendix, we provide a proof of Theorem 3.2.6. This theorem provides an
MMSE characterization of Rényi correlation. We also restate the theorem below for convenience.

Theorem A.0.2 (MMSE Characterization of Rényi Correlation). Suppose we are given a probabil-
ity space (Ω,F ,P), and random variables X : Ω→ X and Y : Ω→ Y with joint distribution PX,Y
on this space, and Rényi correlation ρ(X;Y ). If the optimizing functions of the Rényi correlation
are f∗ : X → R and g∗ : Y → R, then f∗ and g∗ satisfy:

ρ(X;Y )f∗(X) = E [g∗(Y )|X] a.s.

ρ(X;Y )g∗(Y ) = E [f∗(X)|Y ] a.s.

where the equalities hold almost surely (with probability 1), and ρ2(X;Y ) = E
[
E [f∗(X)|Y ]2

]
=

E
[
E [g∗(Y )|X]2

]
.

Proof.
We use variational calculus assuming all appropriate regularity conditions. We also assume that
pmfs or pdfs exist. A more general proof can be found in [19]. The Lagrangian which represents
the optimization in Definition 3.2.1 of ρ(X;Y ) is given by:

L(f(x), g(y), λ1, λ2, λ3, λ4) = E [f(X)g(Y )] +λ1E [f(X)] +λ2E [g(Y )] +λ3E
[
f2(X)

]
+λ4E

[
g2(Y )

]
where λ1, λ2, λ3, λ4 ∈ R are the Lagrange multipliers. We differentiate L(f(x), g(y)) with respect
to f(a) and g(b) for any a ∈ X and b ∈ Y:

∂L

∂f(a)
= EPX,Y (a,·) [g(Y )] + λ1PX(a) + 2λ3f(a)PX(a)

∂L

∂g(b)
= EPX,Y (·,b) [f(X)] + λ2PY (b) + 2λ4g(b)PY (b)

where EPX,Y (a,·) [g(Y )] =
∫
Y PX,Y (a, y)g(y)dλ(y) in the continuous case (λ denotes the Lebesgue

measure and the integral is the Lebesgue integral), and EPX,Y (a,·) [g(Y )] =
∑

y∈Y PX,Y (a, y)g(y) in
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the discrete case. Replacing a and b with x and y, respectively, and setting these partial derivatives
equal to 0 to find stationary points, we get:

E [g(Y )|X = x] + λ1 + 2λ3f(x) = 0,

E [f(X)|Y = y] + λ2 + 2λ4g(y) = 0.

Since the Lagrange multipliers are real constants, we rearrange these equations and re-label con-
stants to get:

f(x) = a1 + a2E[g(Y )|X = x]

g(y) = b1 + b2E[f(X)|Y = y]

where the re-labeled Lagrange multipliers a1, a2, b1, b2 ∈ R have values which satisfy the expectation
and variance constraints in Definition 1. Imposing the constraints E[f(X)] = E[g(Y )] = 0, we have:

E[f(X)] = a1 + a2E[E[g(Y )|X]] = a1 + a2E[g(Y )] = a1 = 0

E[g(Y )] = b1 + b2E[E[f(X)|Y ]] = b1 + b2E[f(X)] = b1 = 0

which gives:
f(x) = a2E[g(Y )|X = x],

g(y) = b2E[f(X)|Y = y].

Furthermore, imposing the constraints E
[
f2(X)

]
= E

[
g2(Y )

]
= 1 gives:

E
[
f2(X)

]
= a2

2E
[
E[g(Y )|X]2

]
= 1

E
[
g2(Y )

]
= b22E

[
E[f(X)|Y ]2

]
= 1

which implies:

a2 =
1√

E [E[g(Y )|X]2]
,

b2 =
1√

E [E[f(X)|Y ]2]
.

Plugging in the values of a2 and b2 into the expressions for f(x) and g(y), and re-labeling the
optimizing functions as f∗ and g∗, respectively, gives the equations:

∀x ∈ X ,
√
E [E[g∗(Y )|X]2]f∗(x) = E[g∗(Y )|X = x],

∀y ∈ Y,
√
E [E[f∗(X)|Y ]2]g∗(y) = E[f∗(X)|Y = y].

Since the uniqueness of the conditional expectation holds when equality between random variables
is defined as equality with probability 1, the above equalities rigorously hold with probability 1.

All that remains is to show that ρ2(X;Y ) = E
[
E [f∗(X)|Y ]2

]
= E

[
E [g∗(Y )|X]2

]
. To this end,

consider:

ρ2(X;Y ) = E [f∗(X)g∗(Y )]2 = E [E [f∗(X)g∗(Y )|Y ]]2 = E [g∗(Y )E [f∗(X)|Y ]]2

which, using
√
E [E[f∗(X)|Y ]2]g∗(y) = E[f∗(X)|Y = y], becomes:

ρ2(X;Y ) = E
[
g∗(Y )2

√
E [E[f∗(X)|Y ]2]

]2
= E

[
E[f∗(X)|Y ]2

]
E
[
g∗(Y )2

]2
= E

[
E[f∗(X)|Y ]2

]
where the last equality holds because E

[
g∗(Y )2

]
= 1. Likewise, ρ2(X;Y ) = E

[
E [g∗(Y )|X]2

]
. This

completes the proof.
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hirschfeld-gebelein-rényi maximal correlation and the hypercontractivity ribbon,” in Proceed-
ings of the 50th Annual Allerton Conference on Communication, Control and Computing,
(Allerton House, UIUC, Illinois, USA), pp. 1057–1064, October 1-5 2012.

[18] G. R. Kumar and T. A. Courtade, “Which boolean functions are most informative?,” in
IEEE International Symposium on Information Theory Proceedings (ISIT), (Istanbul, Turkey),
pp. 226–230, July 7-12 2013.
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