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ABSTRACT

INVESTIGATION ON REGULATORS IN QUANTUM EIECTRODYNAMICS
by RAYMOND FELIX STORA.,

Submitted to the Department of Physics on July 5, 1958,
in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

Sevéral attempts have been made in order to
connect an eventual suppression of the divergences in-
herent to the present formlation of Quantum Elsctro-
dynamics, with the high energy behaviour of some known
processes,

Whereas the theoretical situation 1s found
to be fairly unclear, some cruclal experiments are re-
quired in order to shed some light as to which of the
three somewhat contradictory models we have constructed
is closer to reslity.

Thus, the following phenomena should be
investigated:

- large angle palr creztlon.
- large angle bremstrahlung.

- lsrse angle Moller scattering.

Thesis Supervisor —
Title: Professor of Physics,




ABSTRACT

We present in this work three mcdels which are
able to suppress the divergences of approximate versions
of Quantum Electrodynemics,It 1s indeed argued that, in
view of the smallness of the fine structure constant, not
only the first temms of & perturbation expansion, or of an
expansion according tc the number of particles involved
in Intermedlate stztes, glves a falr approximation,but
furthermore, that it l1s in these terms that a breakdown
of electrodynamics should be sought,

Our goal is to connect the high energy behavicur
of relevant physlceal processes with the suppression‘of the
divergences,

The first model assumes the existence of a photen
cut off, whose observable consequences are clearly stated,
and of a fermion cut off which, although unable to give
a satlisfactory description of phenomens Involving virtual
fermions, points to the conclusim that these have no obvicus
connection with the creation of virtual pairs in vacuo,

The second model is based on formal analytic relation-
ships exhibited by the lowest order perturbation theory
and connects the divergences with the high behaviour of
the phenomens which, while they are well described here
were left out by the first model.

The third model, aiming at & better understanding
of the preceding one,contradicis its theoretical basis
without necessarily invalldating the observable conse-

quences that were drawn from it,



ACRKNOWILEDGEMEN'T,

The zuthor 1s greatly indebted to Professor
V.F., WEISSKOPF for proposing the topic of thls investigation,
and for helpful advice throughout the course of this work;
also, for his assistance on many occasions.

He has also been helped by a sequence of
semlnars given by Professor F,E, LOW and by Profeassor
W. THIRRING, without which this work would not have been
possible, 23 well as by 1lluminating discussions on some
specific points, ( in particular, on the existence and the
use of the generclized Ward identities,).

Profesgor S, DRkLL, has been the source of
8 grezt stimuletion by communicating his work about large
angle palr crestion, during an exchange of correspondence
and during the course of privete conversations in Stanford
and 1n Geneva,

Many thanks are also due %o G, SANDRI, with
whom it was a pleasure to work every day during the years
1956=-1957, and exchange correspondence after that periocd.

The author enjoyed during three years, from
1955 to 1957 the warm hospitality of the M.I.T. Cosmic Ray
Group. He was during part of this time a member of the
Computation Group, and subsequently, of the Theoretical
Group.lo all the members of these groups, his gratitude
1s expressed, The list of the M,I.'T, Staff members and

students who contributed tc creazte the gcientific atmos-—



phere in which part of this work has been done 1s
~fortunately or unfortunately- too long tc be written here,
The author wishes to keep close contacts with them all,

The author has slso enjoyed the hospitelity
of the Saclay theoreticazl group during the year 195&, He
would like to thank the members of this group for their
help, and especizlly Dr. A. MESSIAH and Dr. R, OMNES
for 1lluminating discussions,

‘This work has been made possible by the
deep understanding shown by the french "Corps des Ponts
et Chaussees", and by their encouragements,

it is also a pleasure to thank Professcor
L, IEPRINCE=-RINGUET and Professor L. MICHEL who were
deeply involved in the sclentific orientation of the

guthor,

- Let my parents, Plerre and Alix DEGUISE,
Bdgar and Renée HARCUURT, and Héléne HAMBUKGER find here

the expression of my deep affection. -



INTRODUCTION

TABLE OF CONTENTS

CHAPTER I: Formuletion of & regulator theory

K, Fermion self energy and

lectrodynamic vertex

B, Vacuum polarization

CHAPTER IIs FPho
A.

C.

D,

E.

CHAPTER III: Fe

A

B.

CHAPTER IV: The
L.

ton cut off corrections

Fhysical interpretation of the
photon cut off

Order of magnltude of the photon
cut off

Photon cut off correction %o

the Schwinger magnetic moment
Moiler scattering

Bound state problems

raion cut off corrections
Gauge invarisnce problems
related to the Compton process

Self energy and vertex

Compton cut off

Connection between the Compton

amplitude and the divergent dlagrems

The Compton cut off

Physical consequences

14
15

17

17

20

23
24
25

26
28
31

34

37
39



D. Concluding remarks

CHAPTER V: Remarks on the structure of the S-matrix

A,

B,

E,
F.

The S-matrlix constructed from

the Iagrangian formallsm

Unitarity and causality of a local
S-matrix

Definition of coupled field operators
Specification of the dynamics and

of an approximation scheme

The extended electron model

gonclusion

APPENDIX A: Moller scattering

APPENDIX B: Generslized Ward identities

41

43

43

44

51
56

57

59



INTRODU CTION

Although Quentum Electrodynamies, at the present
stage of its development, hes bBeen able to give & very
accurete deseription of the expenimpntél situation, It is
generally belleved that the theory is yet Incomplete.

The present: scheme, fornilated through a Tagrengian forma-—
Ifsm, involves two phenomenologlcel econstents, the so—cellel
bere mess m end bere charge e of the charged particle, in
terms of which one should be able to caleoulate a2ll physi-
ecel guantities.In particular, one should be able to com—
pute in terms of these paremeters, the observed mass muq?SI.
and the observed charge ebzzrk of the cecharged particle,
Conversely, 2ll physical gquantltles should be expressible

in terms of e, and m,.

Unfortunately, it is well known that, If one tries
to compute myand e,in terms of m and e 4 in the framework
of perturbation theory, one gets infinite anawers., A third
"infinite” quantity occurs in perturbation theory, namely
the probability z,for-a,“bard* fermion to be in a physical
fermion state.The occurrence of these Infinities is gene—
rally attributed to the sharp locelizability of fields
in loeasl interaction, which allow states of arbltrarily

high moment2 to be reached in virtual processes.

Unless otherwlise specified, we shall consider the sys—
tem of a charged fermlion field interacting with the Maxwell
field.



Wheresms: perturbation theory ylelds infinite results for
the renormalization constants Za, Zgy by m, the use of renor-
melized equations of mbtion s Independently of a pertur-
bation expansion, shows that, under the assumption that
no abnormal feature appears in the theory, (such as the
occurrence of states with negative normelizations or
energles), etther Z, or Zz 1s equal to zero (1). This not
physically sﬁrprising result can be interpreted by saying
that, owlng to the possible occurrence of an infinite num-
ber of states, the probability for esch one of them to be
@eallzed in a bare particle state vanlshes,

Since the perturbation method does not seem to be
responsible fo@ the difficultids encountered, and, as one
feels that the smallness of the phigsical charge (e:/anﬁcsé-)
tesponsible for the coupling should justify using a serles
expansion in powers of the fine structure constant, it 1s
legitimate to try and modify the present scheme as appro-
ximated by its lowest order terms in this expenslon.

When using the perturbation expansion, one has to
pecognize infinlte Integrals as being tgrms contributing
to the implicitely defined renormalization constants. This
problem has been solved by means of so-called regulariza-
tion methods, (2), (3), (4), which essentislly consist of
an slteration of the theory at short space-~time intervals
(or, what 1g the ssme, for large virtual four-momenta),

preserving the Invariance built in the theory.



Such procedure allow for the unambiguous recognition and
separation of standard fntegrals which become infinite
when the theery 1s restated into its initial form, and are
identified with terms of the perturbation expansion of
the renormalization constants,The remaining expressions,
which involve rather low virtual four-momenta,have finlte
limits, which are présumably independent of the cut off
procedure,

One may argue that it is not meaningful to formi~-
late the theory in terms of bare parameters, because the
bare mass snd charge may not be actually measurable,
However, one should at least require the mathematical for-
malism to be free from inconsistencles; if furthermore one
coan show that it should be possible, at least in principle,
to meesure the renormalizstion constants, then one must
require that they come out finite from the theory.

Reside these questions of principle, one would
like to be able to compute such quantities a2s mass 4if-
ferences between neutral and charged, otherwise similar
particles (e:g. neutrons snd protons, charged and neutral
pions, hyperons, ete.). 7

Tt has been suggested by a number of suthors, (5),
(6),tHat such mass effects may be described in terms of
a modification of electrodynamics at high energles of the
type previously mentioned; to be more specific, & simple
alteration of the high energy behavior of the Maemwell
field has been found to give a satisfactory account of

the experimentel data.



More recently, (7), (8), a possible alteration of
electrodynamics a2t high energies was lnvoked in trying
to explaln the somewhat puzzling state of affairs con-
cerning the difference 5etween the charge dlstribution
raedii of the neutron and the proton.

Whereas it may be hoped that these pnenomena rglll
be understood , provided eléctrodynamica is not consi-
dered as a closed theory, cut offs may still be used
to give a phenomenological description of electrodynamic
prbcesses in an energy range where either varlous couv=—
rlings come into play, or the concept of local filelds
becomes dubious:

As most of the work done along these lines has
been concerned with the study of observable effects due
to an alteration of the Maxwell laws,l1t seems useful %o
investigate also those phenomena which would be affected
by a modification of the Dirac 1aﬁ.

The alm of this investigstion 1s to review in a
simple minded way the known electrodynamlc processes
in so far as they can exhibit high energy deviatlions
from their description in terms of the conventional theory.
Many simple features can be understood in the light of
the usual covariant perturbatién theory, as, for instance,
the classification of electrodynamlic processes into two
clesses: those involving virtual photons, and those
involving virtual fermlons,

Whereas it is quite natural to take perturbation

theory as a starting point, since it is the only version
of electrodynamics usable for practicel calculations,



the global method has the advantage that 1t fully exploits
the fundsmental properties implied by the usual form of
the interaction (1). As we intend to describe phenomeno=—
logically physical effects which fall outside the scope

- of a theory whose language we shall keep using, we shall
be forced to introduce some formal fnconsistencles which,
we believe, 1s a way to hide our ignorance of the "true" |
theory. We shall therefore try, &s much a&s possible, to
give physlezl arguments in order to justify such a situ-~
ation.Since meny extrapolations of a given theory can be
found, which mainly depend upon the form of the theory
one starts from, and the properties one decide to keep,
1t is insructive to vary both of these determining fac-
tors;

We shall propose in the body of this work three
models, and compare thelr predictions; it is encouraging
to see that, 1n spite of large differences, they have
in common a substantial number of features,

The first two models »re hagsed on properties exhi-
bited by the covariant perturbation theory, The philosophy
we =dopt 1s the following: since most of the radiative
corrections become usually sizable at energles where
electrodynznics may get mixed ﬁp with the dynamics due
to other couplings,it 1s reasonable to look for a break-
down of pure electrodynamics in the effects predicted by
the lowest order perturbation theorj.Whereas the diver—
gent processes depend on the very high energy tail of
the theory, we should require that the contribution



they-get from "pure" electrodynamics (as described by
the lowest order terms of the perturbation expansion)
should be finite.

We shall now proceed to give a brief descrip-—
tion of our three models, each of them being improved
or explained by the next one.

Model I is studied in the first three chapters:
- In Chapter I, we digcuss what 1s thought to be a
minimal regularization in the framework of the covariant
perturbation theory, that is to say, a high energy |
modification which suppresses divergences in this order.
In spite of the well known conceptual Inconslstencies
which arise in this model,it is argued that it may give
a moré accurate description of phenomena than the usual
theory does, ab least in a suitable energy rangé;
= In Chapter II, we shall study those‘electrodynamin
processes which are affected by a modification of the
Maxwell laws, and emphasize the similarities and
differences between such & breakdown and the existence
of particle spreads as may be produced by interactlons,
This will be more or less & review of previous works,

- In Chapter III, we shall show that the model proposed
in Chapter I 1s not adequate to desecribehigh energy
modifications of processes involving virtual fepmions,
as a consequence of the requirement of local gauge

invariance.If however drastically simplifying assump-



~tions are made,it 1s found that there 1ls no obvious con-
nection between the regularization of vacuum polarization
and high energy deviations of the Comptcn and related
effects from what they are thought to be according to
the conventional scheme,
One salient feature of this model is that the use of
a detailed local description of phenomena(implied in
particular in the requirement of local gauge invarismce)
forces us to argue extensively in terms of virtual par—
ticles, so that physical interpretations are made very
difficult.

Model II has been constructed in order to remedy
this defect , and 1s closer in spirlt to the philosophy
we have previously definedlIt i3 based on the observation
that the occurrence of divergences in the lowest order
of perturbation theory can be blamed on the too slow
decrease of the forward Compton amplitude,It makes
fairly definite predicitlons about the behaviour of
processes invdlving virtual fermions, which can easily
be tested experimentally,(Chapter 1IV).

In Chapter V, we study general properties of the
S=matrix in electrodynamics, in order to see whether
the formal connectlon between the dlvergent processes
and the Compton process, on which Model IT 1is based,
is a2 consequence of the”"jEA’"ccoupling, or of more

fundamental properties.The first alternative geems



to be the correct one.Whereas the approximation method
used here is not a perturbation expansion,which makes
it hard to establish a connectlion with Models I and II,
and requires a slight change in our phllosophy,1lt seems
morse correct to connect the regularization of vacuum
polarization in the "lowest" approximation with a finilte
extension of the.fermion current, a2 damping of the
Compton amplitude only being requirsed in higher orders.
Whichever model is closer to reality,there emerges
from this investigation the necessity of performing
a number of experiments in order to test electrodynamiocs:
- Moller scattering of weakly coupled particles at high
energies, Although this 1s not experimentally possible
at present in view of magnitude of the energles required,
this would ascertain the existence of particle radil or
of a photon cut off,.if any.
- Pair creation and Bremstrahlung at large angles and
high energles.
= A more accurate measurement of magnetic moments,
- Also, a better experimental and theoretical kmnowledge
of the strong interactlions will allow to separate out
electrodynamic effects in phenomena in which thb role
played by these interactions is understood, but not

quantitavely known at present,



CHAPTER I, FORMIIATION OF A REGULATOR THEORY,

For our pfesent purpose, we may conslder Quantum
Electrodynamles as an S-matrix theory, the S-matrix
being expandable in powers of the coupling constant, and
a2 functional of local free fleld operators(in-fislds).
We recall the main characteristics:
~Invariance under the full Lorentz group.

—Invariance under charge conjugation as implied by the
T.C.P. theorem,

~3auge invariance.

~Unltarity of the S—matrix;

~Existence of a complete set of in-states, with positive
energlies and normalizations.,

~Causallty.

The S-mabtrix one conventionally starts from 1s well known

to be: ,
(1,1) S= 142 (.';:'.?n fdx|... dxp PUP_'(X‘)-«-);"(‘XJ}EE&‘(XJ

Whereas 1t has formally all the properties we have listed,
these have to be used 2t each sten, when one states the
mathematlical prescriptions which allow to extract meaning--—
ful answers from zn otherwlse 1ll-defined formallsm., Thus,

the stabillty properties which one would llke the S-matrix

- e

From now on, we shall follow the notations of reference(9);

"'Aﬁf*ﬂ
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to have, (namely, it should leave Invariaent the vacuum and
one—particle states), are introduced through the infinlte
invariant mass, charge, and wave function renormalizations,

The usual regularization procedures, (2),(3),(4), which

realize this program, are based‘ on the observétﬁcn that,

when the S-matrix is rewritten in normel ordered form,

1t involves the following basic expressions:

~the bare vertex operators M 5()( $)5(%-%) ;

~the bare photon prOpagator': -'-Dp.v(f §') T<°'A L‘f) A,(i )‘O)
-the bare fermion propagator: TR (x X) T<Ol ¥ (x)w-cx .)‘O)
It 1s well known that, if one limits oneself to the lowest

non vanishing order of the nerturbatiion expansion, it 1is

enough to regularize the photon propagator and the fermlon

loop.

Ags we shall 1limit ourselves to a study of these
lowesat order terms, and since we want bto correlate the
effects of such regularizations on various phenomena,
we shall propose a realization of these regulators which
allows such connections.

We assume that the photon and fermion fields inter—
act with abnormal fields, in such a way that the bare pro-
pagators and vertex are modified in a relativistic and
gauge invariant way., In other words, we assume that they
are replaced by the corresponding renormalized quantitiles

emerzging from these intermctions., We therefore write,



in momentum space:

, g - 2 da2
o B0 — D) [ Tegeds

5 cp‘)-:fr (a)da F=2

(1,3) S (p) — v R P
-

These forms cen be deduced from very general principles,
(10),(11),(12), 2nd it can be shown that, if such propa-
gators emerge from interactions between local fields,
they cannot give rise to & regularization,(1.e.f>(a.)>on(o.)x9
unless abnormal features appear, such as the occurrencs
of states with negative probabllities. The situation in
which interacting vector fields are Involved is somewhat
pecullar; however, the non-positiveness of thq welght
functions does not seem to save the situation in this
case elther,
ks we shall see presently, regularization requirements
Imply not only the non-positivenes of the weight functions
ttg(o.‘): PR.('Q) » but 2lso a physically inacceptable renor—
malization condition on the interactions introduced. Thms,
1f one does not allow the regulator fields to be vector
fields, so that the weight functlons ought to be positive
definlite;, one has to admit thet the theory involves nega-
tively normelized states. It seems therefore little attrac—-
tive to replace the present 1nconsi§tencies of electro-
dynamiecs by those of a:wider scheme which may have no
good physiéal‘interpretation. One may however take the



viewpoint that, if thege new inconsistencles which are
supposedtto replace the o0ld ones occur at high enough
energies, this model may be more accurate than the old
scheme, in the medium energy range where the cut off
effects are only size‘dependent, whereas 1t completely
breaks down at higher ensrgies where the inconsistencles
appear, and where ‘these effects start to depend on the

shape of the cut off functions. More specifically, let

(1,4) o, (:Q.") = S(Qz) "‘X((f'); X(af)fafor at> Mi;h.

(1,5) fﬂ(_o.) = §(a-m,) +0@); Tljoror o> Me

where X|d}) and O(a) are non positive definite functions.
This model should cover the energy range ( O’Mph) or
( OyMg), whichever the narrower, One point to be cleared
1s whether these energles are absolute ,or whether they
are measured in units of the charged fermion rest mass;
we shéll have to come back to this on several occaslons,
although, 1f these cut offs are connected at all with
the 1dea that there exists a fundamental natural length,
one should think that the first viewpoint is the correct
one,

Our model has to be completed by an appropriate

alteraticpn of the vertex operator, in order to preserve

local gauge invariance:

12



I3

(1,6) Y — Te (Pip)

whero ‘;Q(P:P)must fulfill 'the generalized Ward identity
(13), (14), (see Appendix B):

. - -1
(1,7) i.('P'P'— Pt") T;R(P:P)" Scp.(p') - Scn (P)

Let us remark that, without violating gauge invariance,

one may multiply f;‘(p"p}by a form factor F(r:]ﬁ}which_ goes to
unity for zero momentum transfer, and describes a spread
of the particle current, Since each vertex 1s accompanled
either by an external photon line (k‘-O, Flo)sl), or by a
photon propagator, such a form factor will have effects
similar to those produced by an alteration of the type
indicated in Eq.I,3; however, these two kinds of modifica-
tions can, in principle, be distingulshed, as we shall see
later. Removing ﬁhe form factor into the photon propagator,

one can write Eq.I,7 under the following form: o
(7203 S pir 1P P
(1,8) }**(P P)= cR (P)‘(P(a)da 'ﬂ.a. .16 X;" P‘-r‘l‘-l* ( 4 »

where
) .

ot t‘} r%pp)=0
(1,9) L(P P s ( .
About the first term in EQ.I,8, one should remark that
1t does not contribute to anything else than the ordinary
current, when it is evaluated for free particles. In
particular, all the magnetic moment effects are contalinedd

Q) -
in 'l;"(p,p). With the help of these modified propagators and



vertex, one m8y now inveatligate under what conditions the

dlvergences are suppressed in the lowest order of pertur—

bation theory.

A-~ Foermlon self energy and electrodynamic vertex.
We shall only study here the modification of
the self energy due to the regularization of the photon

line: k)
B (

YOI .
™ / T

4 | | O
Pl S ¥ P /2 PRy

In the case of ordinary electrodynamics, the initial
linear divergence reduces to a logarithmic one., so that

the minimal regularization condition is:
0o

(1,10) it (a?jdat =0

~o
which means from the polint of view of the abnormal inter

actions introduced that i;:ﬁfg this 1s of course completely
inconsistent with the interpretation of igas a probability.

The use of a stronger regularization:
oo :

(1,11) N (a¥) da’ =

(-] (-]
in the phenomenological calculation of the neutron-proton

qflqg(;uz}ataf=ro

mass difference should not be retained 23 2 fundemental

condition in electrodynamics, since the sﬁread of the



t5

nucleon current produced by mesonic effects makes it
superfluous.We shall pﬁt the study of the fermlon cut
off effects aside ; this will be done in Chapter III.
Of course all that we sald about the self energy stays

valild for the vertex.

B~ Vacuum polarization.'

S5:(P)
4

\—.—/'/
! SCR Lp-k)

We first remark that the vacuum polarization

diagram contalns one vertex and one regularized vertex

since é particle-antiparticle pair has to be created

with the usual interaction before thg abnormal couplings

come intd play. Tﬁns, one must write: ,

(1,12) T (k)= & Tr fd"P I S (P-R) To (P, P)ch(f’/w
@'9 if-a 4T, (k)

- @f%; Trjd"p jﬁ,(a)aa Y éé'?f‘lﬁ‘f' Prat

S.Fa(a)dd. ﬂ',w(k,d) + Ty (k l
where 1T (k)is the part of Wy(k)containing ‘;(p kp)and the
éign oy was written because one should not actually inter-
change the order of the ~k and -a 1ntegrat10ns;]§1¥“hs
the conventional expresslon for the second order vacuum
polarization due to a fermion of mass a. As is well known,
this expression, as it stands, 13 not gauge lnvarlant and

exhibits a quadratically divergent photon mass., If one



le

tekes the view that thls divergence is accidental and due
to unallowed manipulations of & theory which was Initially

gauge invariant, then a weak regularization condition

(I,13) ffn(a)daz 0o

suffices to suppress the logarithmic dlvergence of the
charge renormalization constant, provided that!ﬁﬁﬂ?is
sufficlently damped 2t high momenta., '

Thus, we have achieved both the Feynman photon
cut off asnd the geuge invariant Pauli-Villars fermion
loop remlarization, at the price of well known inconsis—
tencles, (15), (16), but in such a way that we may hope to
express the high energy modifications of other processes
in terms of the cut off parameters.

To summarizs, the minlmum regularization conditions
required 1ln order to suppress the serious divergences of
the conventlonal elactrodynamics in the lowest order of

perturbation theory,are:
2 =0, a)da=0
(1,14) (“ (a )da' '(P( ) ‘ 1 I, gy 00

In the followlng chapters, we shall be concermed
with a2 study of some observable consequences of this simple
minded model. However, it will be seen in Chapter IIT
that not enough has been said about gauge invariance,
and, in particular, that one cannot describe processes

involving virtual fermions without making extra assumptions.



CHAPTER II, PHOTON CUT OFF CORRECTIONS,

We shall investigate here those processes which
are affected by an alteratlon of the Maxwell laws, namely,
those which involve the exchange of virtual photons,

We may expect that the deviations will be all the more
important that these photona are more virtual-that is to
say further off thelr msss shell-, which occurs when

theilr source suffers a2 large momentum transfer,

A= Physical interpretation of the photon cut off,
In all processes involving an external current, one

finds 2s a portion of the relevant diagram the following

element: E
: % J}?‘(q) |
| R
E Dca(Q):’ ﬁé%g
T;;R(P'.'q' P)
p+q P

2
) ; <
The cut off function R(Q‘)= C"ﬂ,f“z) 3 vanishes in view
q!‘.q}.fﬂ

of the regularization condition I,14, when qt.oo .
Furthermore, from Eq.I,4, one deduces that R(Q)«l.

The effect of the photon cut off l1ls to produce an
apparent spread of the external current, when the result

is interpreted in terms of conventional electrodynamics.

17
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In other words, if one says that one sees an external
current J;u(bq) creating a field according to Maxwell's
laws, one may as well say that the true current distri-
butlon is ;:?;) » but that electrodynamics is modified
according to Eqs;I,2;I,14:

a nk W o,
(11,1) JFP?:) = J,(9) R(q%)

For instance, a static charge distribution P L‘?} charac—

terized by the mean square radius ,
+rue { true, 3 - 311:
(11,2) (I = J rtp (P aT jf(.r‘)d |

looks like
app, fmc )
(11,3) P ()= R(-Vz)

with a mean square radius

trep - ' Y droe Jhrve ¢
ore h . | i Ip=¢r> + 6R(0)
(IIy 4) <r,1> = T'a ...._F_..__(r) d r= (;{[;‘) Y‘z/ f(f‘)d r

R(VY ‘
( R being 2 dimensionless function,ﬂ'(_o)is a squared length
which we now call‘l/ M‘rh.):_

This argument also applies to magnetization dlstributions.
Of course, higher momenta of & current distribution will
depend on higher derivatives of the cut off function, which
is to say, will be more sensitive %o its shape. As was
previously pointed out, the introduction of a form factor
in the vertex plays & simllar role and produces an apparent

cherge spread slmilar to that produced by the photon cut off,



However, if the model 1s to be‘taken seriously, one should
admit that each particle is characterized by a vertex
form factor which describes its intfﬁnsic charge distri—
bution, whereas the photon acts with the same cut off

on all particles; we must nevertheless keep in mind that
the cut off mass may be a universal functlon of the messes
of the particles between which the photon 1ls exchanged.

As such & behaviour would imply a strong acausality, we
shall work wlth the first hypothesis,

Thus, one should in principle be 2=ble tc determine

the photon cut off and the charge dlstribution of each type

of particle: if one studies Moller for two kinds of par-
ticles, & and B, (A-#,B-B,A-B), at low enough energles
that one does not investigate the structure, but only the
size of these particles, one can measure the three
combiina tions LI+ ﬁ%u'%; <> + ﬁ%{ R Pyt "%‘: But,

as we ghall see In the next section, this 1s a matter of
principle for the time belng, owlng té6 the magnitude of
energies which can be produced ét present in laboratories,
Let us finally remark that virtual photons are necessary
in order to measure a current distribution, slnce for
real photons R‘ao s 80 that only the total charge 1s seen,
( In perticuler, Compton scattering is not suitable and
rather measures the deformsbility or polarlizability of
the distributlon).

Of course, what we said about charged particle

19
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scattering also epplies to the bound state problem, 2lthough
it is clear that the energles involved are usually very

low; however, In view of the great accuracy of the experi-
mental methods applied in this field, 1t may prove worth-
while to lnvestligate cut off corrscitions to energy levels

of bound systems.

B~ Order of magnitude of the photon cut off,
BI. The proton radius,
From the proton mean square charge radius

measured at Stanford, (7),one deduces: ' 2

Stanford  , min L a3
- 2y o - .8+.05 |0 '
CHN SR (# )
ph
Inke
where(ﬁs.is the intrinsic measn square spresd of the proton
which is produced by mesonlic effects, rather than by ean
Wi,
electrodynamic breskdown, and(ff> the mean square radius

of the electron, 1f any. Thus,
(r1,6) My, <64 My ( Mp = proton mass)

Cne may speculate about the eventual possibility of a
more accuréte determinationt whereas calculations of the
neutron and proton charge radii in the fixed source theory
(17), 2re consistent with the value measured at Stanford
for the proton, and therefore come out much too large in
the neutron case, relativistic corrections seem to sub-
syantially reduce this value, (18), Calculations of the

magnetic moment distribution alsc seem to follow & similar
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trend, (18). It 1s not impossible that, when the treatment
of mesonlc effects is improved, one shall be able to under-—
stand the neubrality of the neutron as due to @ cancellation
of the mesonle cloud by the neutron core, spread over a
region with a radius of the order of the nucleon Compton
wavelength, (8). Then, elthough there are effects whickh

may yleld a mesonlc cloud larger for the proton than for

the neutron,(e.g. strange particle effects, (20), ineqality
of the pionic coupling constants,(21) ),it seems hard to

get a proton raedius larger than (t;)yé.sm(obtained from
Tanaka's result with «)—:.09). If one tekes this tentative
value for the proton radius, oné may interpret the Stanford
experiment elther with(f, ) 0, M e 7"2’ or withﬂloa ,(Y‘$~.63 la ?nn

or some intermediate values,
BII. The neutron proton mass difference,

The cut off parameter obtalned from the proton
redius can be compared to that resulting from the fitting
of the neutron proton mass difference,(5),(6), If one
computes this mass dlifference, assuming that the nucleons
are punctual Dirac particles with anomalous magnetic
moments, one finds that the experimentasl value can bhe
fitted with an effective photon cut off Agg Mp. One mey
have doubts about the valldity of this calculation if the
photon cut off 1s high enough to allow for photons that
are hard enough to investigate detells of the nucleon



structure, in which cose 1t would be & bad approximation
to consider the nucleons as rigid punctual current distri-
tutions, ( see K, Huang's argument in (6).).The situation
is however not so bad 2s 1t seems at first sight; indeed,
if one treats the nucleons as extended distributions, one

sees that the effectlive photon cut off 1s given by:

k. Shownjord 2 int.

; 6 =L . 2l = alryy -6 . 2LVeY
(11,7) = M, Wi

provided that the intrinsic electric and magnetic slzes

are the same. If one assumes M :», one deduces !‘cr-‘(lo}ga.

If, on the contrary, one assumes(ﬂ’s:o s One gets “';.-\'.SME.
Thus, under eilther hypothesls, one has an order of magni-
tude egreement with the previous estimate., If the electron
1s assumed to be punctual, the photon cut off 1s low enough
and the nucleonlc slzes smell enough, that photons of the
cut off energy can only see the nucleon size, but not 1ts

structure, If, on the other hand, the electron is not
punctual, and the photon cut off high enough, (1t may be

infinite), thess conclusions are not valid, and the approach

followed by Wick, (22), 1s more relisble, as it allows in
principle to tske into account the deformebility of the
nucleons; the experimental situation 1s however much too
poor to take advantage of this latter formulation.

At =ny rate, 1t 1s clear why the result found by Wick
has the wrong sign: slnce he used the Stanford radius,

hls calculation is roughly equlvelent to a calculation

22
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with such a small photon cut off, (A =J;§-; M,,).".-.(.SM, that
the contribution of palr states 1s negligible, and that
it is known to yileld = negative mass difference, (6).

To conclude this section, we should llke to remark that
the eveluation of the neutron proton mass difference,
which in some regpects may be thought of as replacing

a Moller scattering experiment, will be a very sensitive
test of the existence of a photon cut off, once the
nuiclear matrix elements are better known; this is so
because of the fast variation of this quantity as a

funetion of the cubt off value,

C. Photon cut off correction to the Schwinger magnetic

monment.

Selecting in the lowest
order radiative correction to the

electrodynamic vertex the teru pro-

portional toc;'wAp" yields:(23)

Tl d (12 e )

Whereas this cut off correction is very small for the elec-
tron, it is for the tl-meson of the same order of magnitude
as the fourth order radistive correction, ( {7';%; )y (24),
with the opposite sign, and, for the time being, two

orders of magnitude remote from the obtaineble accuracy,

(25).
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D. Moller scattering, ?t'
As was previously
mentioned, the cut off correc-—
tions become important when the
momentum transfer is of the or-

der of the cut off mass squared:

3 : P bk \ 2 P
AP = (Pl- Pu')zz 2636(([-/3'(3.(088‘)3 MP" , e 'ét'

that is to say, at high energles and large angles, when
the ordinary Moller scattering is small, One finds indeed,
in the center of mass frame of reference, (see the deriva-

tion in Appendix A)

A ~ 2) it 12y 10 y's -Gy ) (2)sm*d
A =2 Kol "‘(& m3 S‘ 8 (L_)‘awn“9-(23"ﬂ-'- |n'84‘2)'~f

(11,9)

Mo M

€
where X, e
Adl)’q =0 s 83 expected,
¢ |90

d“ :Y - - ‘.‘_E.l 9rl’- IAK.L. 6 ‘?_‘. _461
Ay ™ e s M

Tn order to observe a 10% correction, one needs a center
of mass energy EZ %)_;_,.100 Mev, which corresponds, in the
lzborstory frame, to sn inclident electron energy of the
order of 40 Bev,

In the case of l-e scattering', there 1s no
exchange scattering, end one finds, in the center of mass

frame:



2,
DA% o _4E%E g8

(11,10) A% Mo

which is maximum for beckward scattering. In order to ob-

serve & 10% deviation’, one must require a laboratory
-meson energy, (the electron being taken at rest),of the
order of 20 Bev.
These experiments are thus at present outside

the renge of experlimental possibilllities,
E} Bound state problems.

Tn the case of the hydrogen atom, the energy
shift due to the finite proton size is, (26):

2
(11,11) AE = .6'. <) Yo)e

where P(0) 15 the electron wave function evaluated at the
position of the proton. In the ground state,ilt amounts
to .11 Mcs, and, as was pointed out beforey does not
indicate anything more about the photon cut off than

the Stanford experiments do,

In conclusion, there does not seem to be
at the moment any practicable new experimént which might
decide for or against the existence of & photon cut off,
Whereas electron—-electron scattering requires too high
energles, our knowledge of nuclear phenomena does not
allow us to squeeze any more information out of the

velues of the nucleon radil or of their mass difference.
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CHAPTER ITII,., FERMION CUT OFF CORRECTIGNS,

We have seen thet, in spite of the linconsis-
tencles inherent to the model, the theoretical slituation
concerning the photon cut off is fzirly clear, that is to
say, onse can calculate photon cut off correctlons, and,
in principle, test the result experimentally. In the medlum
energy range where the model 1s assumed to be valid, ell
the results are expressible in terms of the slize of the
cut off, and are insensitive to the shape of the cut off
function.

In the case of the fermion cut off, the problem
1s much more undetermined, The first difficulty which
comes up 1is that, iIn view of the non-measurabilitj of the
fermion field, no obvious Iinterpretation proposes itself,
Secondly, we shall see that the requirement of local
gauge inveriance implies that the fermion cut off function
does not suffice to describe the high energy behaviour
of physically observable effects. Deviations from the
usual formulss will of course manifest themselves in
processes where virtual fermlons are involved far off thelr
mass shell, 1l.e; when the corresponding matrlix element
of the cocnventional theorry ls small, due to the occurrence
of a large retardation denominator . We have seen further-

mere that gauge invarisnce requires, together with an



alteration of the propagator, a modification of the vertex,
which is to s2y, essentlially, of the current. One easily
interpretable effect due to this alteration would be, for
free particles, to produce an additional magnetic moment.
However, since we are concerned here with alterations
connected with the regularization of vacuum polarization,
we shall not study such an effect, and thus , we shall
definitely have to deal with modifications which affect
virtual particles,
The elementary processes involving virtual

fermions are the following:
-Fermion self energy.
-Radiative corrections to the scattering in an external
field; (in psrticular, the Schwinger magnetic moment.).
~Processes of the type "Compton scattering",( Compton

scattering, pair creation, bremstrahlung, in an external

field).
In the usual perturbation theory, these
processes are clogely connicted: \»k' Ik
\ k

- Compton diagram:

NMX #
k™ E‘r/ /></

Q= p+ k ¥ + o
O" = r!tk' q
b’ | \P
-~ Self energy dlagram:

k
“~—

.
&

4 p-k ¥

(2 p
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- Vertex: Kk

Ak
fAM-P' f::"\ ’

+ o; P
P by

The self energy ls obtained from the Compton dlagrsm by

closing up the photon lines into 2 single virtual photon
line, ﬁhereas the vertex 1s obtzined by lnserting & photon
in 211 possible ways in the sglf energy disgram.Since the
Compton diagram plays a2 promlnent role, we shall first
make = few remarks concerning the gauge Invariance requi-

rements it 1s subjected to.
& . Gauge invariance problems related to the Compton process;.

It is shown in appendix B that the gauge lnvaw
risnce condition relating thie vertex operator to the fer-
mlon propagator is not sufficlent to insure the gauge
Invariance of the Compton mzstrix element. In other words,
the two "improper" dlagrems which only involve the modi-
fied vertex and propagator, do not combine into 2 gauge
inveriant contribution, the lack of gauge invarlance that
they exhibit belng compensated by that of the proper
Compton part.

Let us call C}“U‘:K; P k) the operator whose
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metrix element between free fermion statesi(P)u(p), ylelds
essentlially the amplitude for Compton scattering of a
photon of momentum k, polarization Y, from en initial fer-
mion of momentum p, Into a photon of momentum k', polari-
zation tl., and 2 fermfon of momentum p'.. Then we define

the proper amplitude ‘}'(J'“‘; pK) through:

Cpo(Piks ) = T (P PHEY) S (P) Tor (P'rRYP)
+ i (P Pk) Sea (PH) T (P-k.P)
v Do (PiK! pk)

there being understood that the four-momenta are linked

(1vy1)

by momentum conservation:
p+k'= prk |

The gauge invariance conditions are, (see Appendix B)s

» ! i % L C-l e~

Lk Cuv (Pix; pk)= =T (P97 Seed )Sce (P)+ 5, (P)%29) Tlg)
(1v,2) '

oy - e Ve ) ol I S \ -

Cpv (P bk) Chve T (r14) S0 () Sca ()= S (P) Ser (99 Tu(qlP
where q and q' are the intermediate fermion momente
occurring in the uncrossed and crossed dlagrams, respec—
tively'. The cor.responding conditions on the proper part
R (P k) 2 | |

e T (P15 1) = B(ap)- T (P9

(IV,3)

Cor (Pi's pik) Lhv= T (P9) =Tx(a%P)

( notice thet the matrix elements of the right hand sides



of Eq.IV,2, between free particle states vanish,which is
consistent with the geauge invariance condition usually
quoted).

If one makes the gauge invariant approximation

T'mLp p0s One cen write: ‘
C,w(l'a k' I'-“: '%(r)jfgl‘)aq r)i- g;%: J’ P"""" ‘i& (P)
LS (F)fualda B2, 7, ey, 22,55 ()

)
C yod &" ki; k )
| where C’fe (P.k' b k) U) v (P kY b k) Ky=0
Thus, whereas one would have expactod that the cut off

(1vy4)

corrections would have set in through the improper pert,
one sees that these corrections are cancelled by terms
of the proper part in such a way that gauge Invariance 1is
preserved, The matrix element of the first part of Cpgu:k';hk)
appearing in Eq.IV,4; (excepting C,:','w',u‘;p.u)), 1s exactly
jdentical to the usual expression, because the inverse
propagatorsS U')’ Ua) , select under the integral those
terms which have a pole for {wm=0, l.r‘.,.nlso i

We must take this result as a proof that,
under the assumption of local gauge invariance, the cut
off corrections to the Compton process, if they exlst,
are not determined by the cut off function responsible
for the regularization of vacuum polerization, We shall
rech a similar conclusion in & somewhat more transparent
analysis to be found in Chapter V, whereas the contradic-
tory point of view sssumed in the next Chapter will lead



to this new analysis in a naturel way, whereas the con-
sequences of the contradictory model will serve as a

basis for the description of the high energy behaviour
of the Compton process and related phenomena, and will

be justified in a different way.

B. Self energy and vertex,

The description of these two quantities 1is
just as ambiguous as that of processes of theCompton
type. We shall not investigate any more the self energy
since in the physically interesting case of the neutron
proton mass difference, the strong couplings play such
a prominent role,

If one wants to make & statement ebout the

cut off correction to the radiative magnetic moment,
one has first to hope that the proper diagram is small
compared to the others;(whereas this 1s impossible to
do in the case of Compton scattering where the proper
part is known to have a contribution of the ssme order
of magnitude as that of the improper part, as a consequence
of gauge invariance,one can do it here because the photon
is virtual), Such a simplification would be physically
acceptable if the vertices on whlch the photon 1s attached,
are more strongly damped towards high momenta in the proper
: pert than in the others, ‘Then one has the gauge Ilnvariant

epproximetion:

3
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(17,5) Au(rip) = éﬂ—‘f.,fd‘k'bc,(k-)[ﬁ(r‘. Y fL(r'-g‘P-*M. (P ka'a» K p)
+T3 [0 peic) (PLKY Gy (kSO p; -k
+ T (K-} p-ke)-8p) Se () T(p-1: F)

which fulfills the Ward identity: i(p™ PFJAL(PiE)= Z¥(P) 27
(The upper index I means thet the proper diagram has
been neglected both in the vertex and in the self energy)
Thus, for free particles, one can rewrite:
(me) by t""’”l(y;’t'..éf}f""“’ Dig(k[ T (FPHE)Sce(p-Cun 1 k!0 1)
ipe-m
4GPk} - KL -0p) Sce (1) T p)= TP 1R K (PHeIClPIp)S(PI i)
T (Pt Sequr- )Y T (PR Pk Seq (PRI T ‘»-ip)
- T(PP) Sca(P) Ty (b ) Sca ()T P-FLP)
= T3pyse) L5 @)S (P 1k
+ 1 [1- (0 (P] SR 2R »
+1¢; f 4%’ D (k) [ Y, Se btk S (pk?) Sk r;&: lﬁik?c{) v
o + Yo S3(p) o SR ST(PRYSTRRDY
TP )ik Tr (ke () T (P P
The first two terms correspond to charge renormalization
whereas the magnetic moment is contained in the integral,
In view of the unrelisbility of the result we would get,
we shall not pursue in this direction any further,

Our conclusion on all this is that the
description of processes involving virtual fermions mainly
depends on the structure of the Compton matrix element,

rather than on that of the charged particle propagator,
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This 1s specifically 8 consequence of local gauge invaeriance,
In the next chapter, we shall try tc somewhat change the

point of view we have taken here: recognizlng the Ilmportant
role played by the Compton process, we shall try to take
1t as the fundamentzl entity describing the physica of

virtual fermions, rether than the more abstract propagators,



CHAPTER IV, THE "COMPTON CUT OFF"

We have seen that an attempt to formmlate a gauge
invariant fermion cut off in terms of the elementary
operators which characterize the covarlant perturbation
theory, (propagators and vertex), has feiled to provide
an unambiguous description of the elementery electre—
dynamic processgses which involve virtual fermions, The
scheme we previously proposed had furthermore the un—
pleasant feature that 1t was difflcult to interpret
physically, because its formulation forced us to argue
in terms of virtual particles; this ls due to the very
detalled interpretation of the Feynman theory, one draw
back of which 1s the separation of transition amplitudes

into several parts, each of which has no meaning, except

in the framework of this interpretation. Thus, we imposed

gauge invariance 1n a much more artificiasl and detailed
way than 1f we had just required that the transition
amplitudes themselves should be gauge invarliant, as this
latter demand makes only restrictions on the dependence:
of physical phenomena upon the states of free incoming

particles.

We however gained the feelling that processes of

the same type as Compton scattering deserve a speclal

attention, because they camnot be fully expressed in

terms of the regularized operators of perturbation theory,

34

We should like here to reverse the situation, and, stressing
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the importent role played by the Compton amplitude in the
structure of the lowest order approximetion in perturbation
theory,teke it as a basis for an alternative cut off pro-
cedure, susceptible of a more direct physical interpreta-
tion. More precisely, instead of first trying to make
finite the fermion self energy and vecuum polarization,

we should like to modify the Compton amplitude at high
energy in such a way that the basic infinities are removed.,

A. Connection between the Compton amplitude and the

divergent diagrams,

We shall rewrite here the results of second
order perturbation theory in & more suggestive, (may be
misleading) way than has been done before, We recall

that the Compton matrix element is given by: |
. 2 =, g i .M LAA ) M
(xv,1) <p'ke’]C| p.ki€ =20 ie* w(ﬁ[ﬁé%;f—rﬁ : +m,ﬁ"]u.{p)

where p', k', (p,k), are the final,(initial), fermion and
photon momenta, €', ( €), representing the final, (initial)
photon polarization,( We have omitted the trivial normall-
zation factors @:“\" é-' d':i')! E«L?uﬁ ). The matrix elements for
pair creation and bremstrahlung are obtained from Edq. IV,l.
by the substitution law, (cf. (9), p.162), as a consequence
of the local character of the interaction,(i/e. the posi-

tive and negative frequency parts of the free fleld operators
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are symmetrically involved in the S-metrix), end of the
fact that the S-matrix is the same functional of the
external electromagnetic field as it is of the quantized
Meaxwell fileld, The self energy operator, on the other
hand,is glven by:
(v,2)  Z(P)= '84 d“k s '%‘—)7;—'} %‘

e (pir
whereas the vacuum polarization kernel is usually written

ass

(1v,3) [l (_k) = P“"“ Yy (r.k)‘ )/v (p-m)

which only fulfills the gauge 1lnvariance requirement
within a shift of origin in k—space,which, forbidden in
a quadratically divergent integral, (¢f. (9),r.457),
produces the well known spurious photon mass, unless a
strong regularization of the fermlon loop 1s imposed;
thus, it is just as correct to write it in the symmetrized
form:
u "

(TV54) Tl').,,(k)-@“’ ‘ﬂm*ii' [Y’ 9% m o S & Qakﬁw .k“"m)

We now want to express the two divergent
operators in terms of the forward Compton effect; the
forward Compton matrix is:

s CHpwie)= £ JETED # + 4 Erigim.#



or
(Iv,5t) Cﬁ,(r.k)s f» CP":;'::‘ XV + -u)‘-om»: f}-l-
Now, we can express the self energy in terms of the Compton
matrix:
(17,6) Z(P)= s fCﬁ’(P#) Far)
The electromagnetic mass itself is given by:
(1v,61) Om= T(P) Z(p)WP)= ";‘;‘.-, te Z(p) (Lp-m)
" .
= - {(‘!;,‘.,cf*" G (1) (Co-m) g?.'fh

it is a weighted integral of the Compton matrix element
over a virtual photon spectrum.

The form used in Eq.IV,4 to describe vacuum polari-
zation is however not very suitable because, although it
is formally gauge invariant, actual computation exhibits
the well known lack of gauge invariance which is in parti-
cular associated with the appearance of a quadratically
divergent photon mass. This formal trouble is associated
with the fact that expressions of the type T<o| j};(x),j‘vaﬂlo}
are not well defined, since [j',lx).f.(ﬁg.po forX:X"; as is
explained in Chapter V; on the contrary, Taou;,u), I,Ui)vcan
be assigned an unambiguous meaning, since[j}ujd;u') zofor X:X*
Thus, we shall express ’,(U in terms of the better

defined rs.."w.

Now, if one writes:

M (k)= CCk%) b kv +D(k) Guy
(IV,7) - (kl‘ k’ _ kag}‘”) C(kz)
m/(k) = - 3R3C(k?) = + 3D(KY

whereby we assume that
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one has to require:

(1v,8) TT,"(o) =0 , C(0) finite.
Thus, eliminating off hand the spurious photon mass, we

shall replace Eqg.IV,4 Dby:

oy . d¢
(IV79) Trrr(k) * é—f').. I{: [C;P(P'k) = Cf;rcp'o)]u‘m) P-;._t.;'-li

'
Thus, Clo)= -4 d 11 (k?)
) 3k aw ko
B) The Compton cut off.
In view of the formal connections we just esta-
blished, we may want to blame the occurrence of divergences
on the fact that hhe forward Compton matrix does not

decrease fast enough at high energies. We may put:
(17,10)  Cpy (P1K B = (b, K-k')Cpy (PIE: PiK)

where C:'(p:g:. r.k) is the ususl Compton matrix, and where
the cut off function 3(’.’»',&.kjexhibits charge conjugation
invariance and crossing symmetry. The g-function must
have the following properties:
2 )3(hp/kk')-»0 when py-veo or k-kees, in order to make the
wave function renormalization constants finite.
b)g(-!;;o)gd , in order to preserve the Thompson limit;
3(&‘-9).\ It pia Mic s K Mz
c) s(p.pﬂ k.k') does not have any singularities in the
first and third quadrant of the p.p' and k.k' complex planes
so that condition a) makes it to be a cut off function.
d) If this function were required to suppress the diver-

gent photon mass, one should impose the condition:
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but we do not believe that this condition is physically
meaningful.

With such prescriptions, the dependence of the
cut off function on p.p' provides the finiteness of vacuum
polarization, whereas its dependence on k.k' provides a
substitute for a photonncut off, which makes the self
energy finite.

In what follows, we shall study observable con-

sequences of these two cut offs.

C) Physical consequences.
-The neutron proton mass difference.,

The cut off factor to be used here is
which fixes the wvalue of ant-about one nucleon mass or
more, if one believes that an appreciable part of the
mass difference is provided by this Compton cut off.

- =Compton scattering.

As one always has k.k'¢ 0, p.p'¢ 0, one comes
to the conclusion that, although our cut off was initially
based on the formal connection between the Compton matrix
and the divergent processes, the cut off function is not
involved in these two classew of processes for the same
values of its arguments, If, however, the same analytic
form is used for positive and negative values of the argu-
ments, one sees that both cut off effects are important
for large angle scattering:

Ipblolk] ~ M om? ; kk'= ww' (1- @8) = @7 753" ag0)
the characteristic energy parameter 1sai?t, so that very
large energies would be required in order to exhibit
deviations from the usual behaviour; this is forbidding
in view of the smallness of the cross section at high

ENersy.



-Pair creation.

The two cut off effects are quite different in
2
w ?

that is to say, when both mehbers of the produced pair

this case: the first one can be observed if I‘-)l"p‘ ~H

come out with large energies and at large angle from
each other, whereas k.k's k;(p;+ p_) can be large if
either of the produced particle comes out with a large
energy, at large angle from the photon, even though the
other one tends to go forward ( k.p small).
-Bremstrahlung.

The first cut off can be observed when the in-
cident energetic particle suffers a large deflection as-
sociated with a small energy loss, whereas the second
cut off appears when k.k'ark'.( p=p'), that is to say,
when a hard photon is radiated at large angle from the
incident particle, (then, p!' is small),

D) Concluding remarks.

-Experimental.

As the second cut off needs not be invoked
in order to suppress the divergences, one would be tempted
to think that the crucial experiments to be performed
are the following:
—-energetic palr creation of two particles at large angle
from each other.
-observation of a Bremstrahlung process in which the ra-
diating patticle suffers a small energy loss, but a

large deviation.

On the other hand, the existence of the second Compton
cut off can be tested by studying:

- observation of one energetic member of a pair coming
out at a large angle from the producing photon.

-High energy, large angle Bremstrahlung.
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~-Theoretical.

With the photon cut off studied in Chapter III,
and the Compton cut offs which we have just investigated,
one can describe high energy deviations of the main electro-
dynamic processes from their behaviour as predicted by
the conventional lowest order perturbation theory.

Such deviations are consistent with the finiteness of
the renormalization constants. Both of these cut offs
have simple physical interpretations.

As their construction was essentially based on the ana-
lytic forms of the amplitudes predicted by second order
perturbation theory, we should like to study in the next
and last chapter what basic properties of the conventio-

nal scheme imply such analytic structures.
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CHAPTER V, REMARKS ON THE STRUCTURE OF THE S-MATRIX,
A, The S-matrix constructed from the Legranglan formalism.

Although we have already given & brlef sum-
mery of the properties of the conventlonal S-metrix at
the beginning of Chapter I, we should like to insist on
a few specific points. We have pointed out that the intro-
duction of renormalization constants was made necessary

by the stability requirement:

(Vy1) sjoy =loy ; ©l |parhcle = | | parhele)

We shall presently see, however, that even if these con-
ditions were fulfilled , the local and causal structure
implied by the presence of time ordered products would
leave some ambiguity. Indeed, 1t is well known that the
time ordered product of two operators —which has only a
meaning if they"commte' outside the light cone- is not
well defined when the two points it refers to colncide,
If these two operators commute at the same space-tlme
point, their time ordered product can be smoothly defined
when the two points coincide, but if they do not, it is
only defined within a quasi-local operator,(27). Thus,
whereas the S-matrix is, from this point of view, well

defined, its matrix elements, obtained by the applicatlon

of Wick!s theorem, are not; thus, besides the inconslstency

implied by the divergence of the conventional renormali-
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zation constants, there is still left the possibility to
introduce new constants., The sttitude one usually takes
is to use =8 few constents as possible, besides those w
which come out infinite, thet is to say, to define the

time ordering function, each time this is possible, as:

€(x)= +1 , X€fokure hght cone ; €)= -1, XE€ past hyhl @ne

€(0)=0
In the next section, we shall try to see how far one can

(v,2)

g0 in constructing a local electrodynamics, starting from
an S-matrix with reasénable properties, since the Lagran-—
glan formallism, which implies the "existence" of & conti-
mious set of evolution operators, and forces the coupled
field operators to satisfy canonical commutation rules,

bas proved difficult to modify.
B, Unitarity and causality of a "local" S-metrix.

We start from an S-metrix, a functional of
free in—-field operators which describe assemblles of
uncoupled physical particles, (27),(28),(29), The S-metrix

can be written in normal ordered form:

(v,3) Sz \4 E‘.n Jdn--dx.alx{..-dx:,. dy'...dy"™ Eﬁﬂ:;.%:ﬁﬁ};"“") .
% l:{l-)--ﬁ(g.) {(ﬁ.‘) --i;_t.r'..) Ah‘l"“' ApaPon):

As 1t is written, 1t only involves Fourier transforms of
the F-functions for moments on the mass shell; however,
it will soon prove necessary to extend their definition
for virtual momenta in order to specify the local proper-

tles of the theory.
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The stabllity conditions:
(Vy4) Sle>= 16y i Sliperhde) = |1 parhide

Imply the vanishing of some of these Fourier transforms
for particular values of their arguments, which will be
used in several connections,

The S-m&trix is assumed to be unitary:

(Vy5) SS", st_-,l

As to the condition of microscopic causslity, it has been
formilated by Bogoliubov and coworkerqhnder the followlng
forms (27), (28)

8 [-cst8S ).o XY
(Vy6) EA(*)( SBLS))

and proved under the assumption that there exist unltary
evolution operators— 1,e. in the fremework of & Lagrangian
formalisme; here,N)and B(Y)are any two functions or ope-
rators entering the functional definition of the S-matrix;

the functlonal differenciation is defined in the same way

as 1t is in the usual scheme, and requires well known

cares when the operators involved in the process anti-
commite A3 it will be seen that, in the conventional theorles,

the quantities

. Y
0)7) Jo00=-¢ 5 558

are the "sources" or "currents" of the coupled fields



‘which tend asymptotically to the in-fields B(x) » hermitian
by virtue of the unitarlity of the S—matrix if the B-flelds
are real,this condition has a simple physical meaning: 1t
states that the effect on a property of the system observed
at point (y) of a disturbance applied at point (x) can

only be felt if (x) 1s in the past light cone of (y).

More generally, it is reasonable to formulate local causa-—~
1ity in the following form:

(v,8) ) _o XzY

S Alx

where Jy) is a locally measurable quantity and SAX), a
disturbance, This condltion c¢an be taken as a postulate,
It implies the ambiguities that we pointed out in the pre-
ceding section, since 1t leaves undetermined the response
of the system to a disturbance at the point where this
disturbance is applied, This undeterminacy must be taken
as a proof of the incompleteness of a causal theory
formulated in terms of local flelds, since the high energy
behaviour of all the relevant matrix elements— which are
Fourler transforms of vacuum expectation values of time
ordered products of current operators, by virtue of the
causality and unitarity requirements- depends on unknown
renormalization polynomials of the relativistic invariants

which can be formed with the four-momenta involved,
C. Definition of coupled fleld operators.

In order to complete the specification of the

local aspects of the theory, one has to state prescriptions
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according the coupled field operators should be defined.
One will then have a scheme comparzble to the Lagranglan
formalism. Given an in-field O; (x), we shall define the

corresponding coupled fleld through:
J‘(Vrg) O“(I‘) = S* T(,Ol;lu)' S)

This reletionship holds in conventional theories. In order
that this definition might have = meaning, it 1s necessary
to rewrite the S-matrix in time ordered form, using the
converse of Wick's theorem, Using Eq.V,2., for the deflni-
tion of the time ordering function, together with the free
field equations of motion and commutation rules, one

readily obtains:

Auw ()= A o) +J D, (x-x) (-t' ng%‘))dx’

\ ' e + ‘;x
= Ap.r(x) +,[D°“"(x-x') (.c S'fé_;‘.'hf_u‘))dx Rchk SAL )S

(v,10) G (0 = i () +J’S.L-(x-x’) (.;'S"&%‘ dx’
i) + | Soay () (0L b

& »*&S - .'.
DA);Q[X)'-'-' Lo (ﬂ;ﬁ) =- JPH{X)

O dtm)uts) = - S )= T -

These equations are essentially those proposed 1n (29).

3y sty s

Those of the first group, (Yang-Feldman equations), have
been obtained by coﬁmuting the in-field operators in Eq.
V,9. either to the right or to the left, whereas those of
the second group meke use of the differenciation of a time

ordered product together with the commtetion rules.
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Whereas these equations assume familiar forms, they have
some unsatisfactory features, Indeed, in order to declde
whether these fields should be taken &s the renormalized
or unrenormalized operators, we should evaluate the matrix
elements {olﬁlﬁn{x)llpukdo, <ol Am&)llplkde). One 1is tempted

to write (O [qut)l) = AL <Ol 1= G| A Ds 1n view of
the stability property Ol 119={0| 3}.@)1:):0,(3% (27),
p.389)., However, in the conventional theory, the integrals
occuriring in the Yang-Feldman equations assume the undeter-
mined form 0/0,(ef. (1), p.342 and ff.), so that, after
all, this definition keeps being ambiguous., As however

the field operators have no direct physical meaning, we
shall leave this question open,

We should like, before closing up this section,
to point out that this scheme may be, so far, much broader
than the usual one, since no dynamics has been defined yet,
(for instance one does not have necessarily J}uﬁb‘)“ 51'1‘(‘.&14‘)#4:‘@%
£00= 5+T(l'e&, A}:a‘l‘)‘k-l“)ﬁ’ and since it has even not been
specified that there exists an interaction Hamiltonlan,

D. Specification of the dynamies and of an approximation

scheme,

The dynamics of the system ‘are contained
in the F=functions defined in Eq.V,3. which are restricted
by the usual covariance properties and the unitarity and

causality requirements. The simplest three functions are:



~the fermion self energy:

(V,11) Z (X. X) <ol 3%

+
sw)s—(x)s 1%

-the photon self energy:

\ .Sfo
(v12)  Thy (xx) = <°'EM)$A.,M o>

-the vertex operator:

6 3s oo
(15 Ty (e g) = <°|s¢ét)sa7cx‘)5&,.‘3)s ke
The stability conditions imply that the Fourier transforms
of the first two vanish for momenta on the mass shell,
They are the kernels involved in the definition of the

propagators:

(V,14) { SS(xx) = T<ol$0) oIS |0

(V,15) - ;D;: @,g‘) = T<olAuy A,(g)_Sja)

Some physically relevant matrix element of the current
operators are on-the-mass-shell Fourier transforms of the
vertex function; for instance, <P|’J\)“ P) describes the par-
ticle charge a2nd magnetization distributions, whereas
<°|j)‘“"P'> describes the production of pairs by an ex-—
ternal field.,These two quantities are therefore analytic
extensions of each other, (p'#-p'). Similar remarks cen

be formulated about matrix elements of the type <O)&|pkD>

4,‘“ K) covenns

49



50

As 2ll the matrix elements of products of
current operators can be expanded, using a complete set
of states, and since thls process will never stop, one
would like to set up an approximation scheme in which
one might cut off this infinite expansion. We first of all
decide that the terms of the expansion should not contain
other matrix elements than those of the vertex operator,
It seems then natural to base the approximation method
on some expansion of the vertex, Since the vertex 1is
ambiguous within a quasilocal operator which belongs to
its dispersive part, we conjecture that 1f one takes 1t

to be:

(Vy16) P»PU‘""- 3) = T <o) §(%), ;-O“). )‘/L (,) oY +i€, 8(x-¥) Sﬁ"y)a;‘

and combine the intermediate state expansion with & series
expansion in powers of €, ,and suitable renormalization
prescriptions for the various other matrix elements, one
should be able to reproduce the results of the conventional
theory. Since these finite quasilocal operators can be
suspected to produce divergences, and as we would like to
keep the relationships implied by unitarity and causality,
we shall introduce & breakdown of the theory in the fol-
lowing fashion:
-ggsume that the S-matrix we start from desciibes a wider
scheme than electrodynamlcs.
~-take as a first approximation to the vertex an expression

allowed by causality.



-in order to compute an effect, split the corresponding
amplitudes into invariant parts, and express their
coefficients in terms of matrlix elements of products of
current operators; then, evaluate these matrix elements
by combined use of the two above mentioned expansions,
(Only the states involving charged fermfons and photons

will be considered; we feel that thils is a convenient

way to violate uniterity and causslity.)
E. The extended electron model,

A physically reasonable deviation from the
electrodynamics of a point particle is obtained when one
agssumes that the particle 1s spread, Thus, we take for
the lowest approximation to the current, the following

causal expression:(see (1) p.355« ff.)

PNjpIP> = TP ea FTFI Yyt L v (P P& (TR Iulp)
FF)= 7, (6p)+ in€(Ap) Fo(4F) : G (BFY « Co(fp)+ 1% S(OP)Go(8FY)

where the barred functions are Hilbert transforms of the

(v,17)

unbarred ones. We shall presently see that if the form
factors are sufficlently damped for large momentum trans-—

fers, the usual divergences are suppressed,
&) The current induced in vacuum by an external fileld,

We shall write the S—-matrix in the presence

" A t
of en external field by replacingh&hdbyhﬁk&dgax The appro-

ximation to the current induced in vacuum, liInear in the

external field, 1is:
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N nd i u (x et ;
(Vy18) Lol Jplo>  ~ Jclx <ol %lo} A/ Y

= J{dx' k}ﬁ% (&) A: l'.a')

where, by virtue of the causality requirement:

(V,19) K ) = - (x-x) <0] [ §uln), Julx2]Io7

The covariance requirements on the polarization kernel
are the following:

-it 1is & symmetric tensor.

-1t is gauge invariant ( or rather has to be made gauge
invariant with the help of the proper quasilocal term).

Thus, it must assume the form:
® . 2 ; 0') nau-.;‘l‘)
(v,20) K)w (xxy = (D v~ (x

t
since there must not be any induced current if A;‘a):a‘m
which coérresponds to a gauge transformation, In terms of

the Fourler transforms, one has:
q R et
(v,21) @ - (R) Jp (P

As charge conservation implies that the induced charge must

vanish, we must require that
wnd
(0)=0

which is achleved by using another renormalization counter—

term, Thus finally, the total observed current must be:

obs, . ( R .| -1k
(Vy23) jr“(_p)_-.-[ |- IT P+ 3T (o)} dp (»)
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(see (1) p.282). Now, it is well known that causality im-—
plies the separation ole-‘(_p"Jinto an absorptive and a dis-
persive part:( ref.(l) p.344 & f£f.) "

R ITA i ) =l
(V,24) IR = TT(P)+ime@ITPY =- L, Ky (P)
T )= - 4, j dI(n) 8(p-Pn) <0 Jpln><nljuloy

and Jruﬁis the Hilbert transform of JI|PY; J? essentially
describes the production of real particles by the external

field., The production of pairs 1is contained in:

(vy25) T P9 - b, [ 8(p-pP2)deap” o) S(p4m) 8(6") Siprime)
<ol Jul 6P O<HP") Jule)
and is essentially given by the perturbation theowry result
provided one disregards the anomalous magnetic moment term,
Tt is then clear that, as the matrix element <o|j:,,)pp"‘) 1s
the analytic extension of the electromagnetic form factor,
1f the latter 1s sufficiently damped for large time-like
as well as space-like momenta, then the dispersive part is
finite as well as f(o). As now bothJRplend jr—tp‘)go to zero
when P" goes to infinity 1in the future light cone, the
finite renormalization l+'f|_o)describes the response of

vacuum to an external field at the very same point where

it is applied, and defines the bare charge:

(v,26) €. = L1+ Te) Cpi,

which one would see if one could perform an experiment

during an infinitely short time.



One point of Interest is whether assuming a form factor
would suffice to insure the finlteness of all the terms
contributing tc the polarization of vacuum. For instance,
the one palr, one photon term, should be evaluated in the
lcwest approximation, in conjunction with the use of the
second approximation to thes vertex in the one pair term,
This would take us too far and will be done in the near
future.In the event that the contribution of this process
is finite, one shall have to see whether it implies a
modification of the Compton amplitude of the type indicated
ir Chapter IV, and, if it 1s so,connect the S-function
with the fermion form fector; this, however takes us
beyond the philosophy we have adopted, Before giving up
this question, we should like to remark that, as there 1s
not yet any rigorous proof of dlspersion relations for
Compton scattering with non vanishing wmomentum transfer,
(30), there is no resson not to expect deviations of the
above mentioned or of anothier type.

We shall now go back to the lowest approximation,
b) The self energy.

The electromagnetic mass is naturally defined

in. the Hamiltonian formalism through:

v

(v,27) Sm~ <P J&x ir"‘} Rutxi|p

or, with the help of Eq.V,lC’.
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(v28)  Bm w<pl J £u0ASBIP — | Depteex) <Pl Jpte) Ju)ley

The first term is connected with the forward Compton
amplitude, whereas the second term can be expressed,
using the expansion in terms of intermediate states,
23 2 sum of squares of matrix elements for other pro-
cesses off the mass shell, So, essentially the same
observations as were made about vacuum polarization
hold here too,

However, this definition may not be consis~
tent, and we have too use the alternative definition in
terms of the S-matrix, that is to say, we have to interpret
the mass as a parameter involved in the definition of

the propagator, The stability requirement

(V,29) o] £ 1p> =0

implies that the self energy operator destroys one particle

states:

(V,30) 3(p) ulp)= J e.‘fx' I (x-xY) ulp)dxto, I(x-x‘)z-fqu-r)(olﬂﬂ?(!‘)lo}

The counter terms necessary in order to satisfy this
condition must then be interpreted as self energy terms:
(2ctually, we find here again the ambiguity stated about
the definition of the coupled field operators; this 1is
however irrelevant for the evaluation of the lowest appro=-
ximation,

(V,31y oM - 5 (p)
22 t'r{-m 20



Again, in view of the separation of the self energy
operator into absorptive and dispersive part, a cut
off on matrix elements of the type {|i|pk) supplies

the necessary convergence,

F. Coneclusion,

Although we have not made a complete study
of the "extended electron" model, it suppresses the
divergences in the first approximation, for reasons
which are physically sensible, It allows for an ex~
tension of our philosophy on cut offs, in a way which
does not exclude the conclusions of practical interest

we came to in the preceding chapter,
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APPENDIX A, MOLLER SCATTERING.

A, Electron=Electron scattering.

The matrix element is computed in terms of the

well known diagra.ms. h

M <

The eross section 1s found to be:(9) “
_ " m :
dq- m‘ A m B . — 2C
+ — ml Lp \*
(A,1) dﬂ- (P"p'f)‘f (Pz'_ Pqu LPI p‘)z(P‘ Pi.)
where A, By C, are sulteble traces of Dirac matrices and
pro jection operators on positive energy atatonh. The cut

off correction is given by

(hy2) 9_9_9'“ -2[@ m*A Vi Qb'h)lhh)*"

l) H:
an AT ) RV HA) ,

1
}
In the center of mess frame of reference, Ua - po?| (R PJ'*HN J

. 1...20
U’G'P')z’ arz‘smzf p=pym
(Ay3) ua,'-h) = pr 2

B 'W
i, LR R
d-n- (W PJ 3“21 i % I 7] 3
where@® and ) are the common velocity and energy of the
electron, end 0, the scattering angle. This expression is
valid provided that ()'ar(, <)y, which is the condition of

validity of the model. With
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.% 2y ')-l-a"'(u—b'l ), 2(;10*_2#:?(5“)@9]
g [@"'f +) 40 14p"0%0) - 2(1) - 26 (YH) @b |

(Ay4)

one finds:

(,5)

Hence

, ] 63 -153’45) -(3 ) (ri)s }
(A56) 3—2—."‘0- B l‘;g—‘—) 5™ [ (_._o st (g;tgié)an’w(zl".)

B, E,-neonq’-_' electron scattering.

In this case, there 1s only one diagram:

RO\ K
( L& )>_J\M “<(e)
P P

Thus, only the direct term survives; since in the relative

correction A cancels, one has:

(Ay7) e B0 rh 2
 provided that (J‘a"'dgz], where H is the f-meson mess.
'L
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APPENDIX B, GENERALIZED WARD IDENTITIES,

In order to investigate the requirements imposed
by local geauge inveriance, we shall study the propagation
of 2 fermion in an external electromagnetic fleld; let

(B,1)  TLP)Pu) = € § (x,x) = Glax)

be the fermion propagator; in the presence of an external

field which we assume to be wezk, we can perform an expén—

sion: )
G(xIX‘/' Atl")': Q(x'-x\)i- {A;.“El” S(Il X A) j‘é:-y
(B 2) o S\Ap 'J) A
?

L pthaasty SawsAL ] duy duy
+-2!‘jAP l} “) SAHM)GA " iﬂ&"t ’

In termms of diagrams, one has the following Nprosentationz

” N
-
=::=:n-.—-—-——-+"—&:"-+ P "';,

< o P - -
where e——o=t® T 4+ PP ¢ B wMM $ o=

is the complete photon propagator in which one free prope-
gation function has been omitted, We then define:
Yo . T . y
(8+3) aaf:.r) s te jG(x- ,.(S.V.i’)ta(_?'-xvds d§
84T
where ‘;tﬁ.mi)ia the "polarized vertex which differa from
the usual one by the multiplicative factor I+L.TT+ DM+
Similarly, let
s nl Fa . evei AAE ] ’
8a | _erlats) G (£9.507) Gsta)d§ ds

(By4) S&,l‘))SA (',)
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define the two fold polarized Compton operator. The vertex

operator can also be expanded 1in powers of the externzl
field:

: : ek 0
(By5) T (xy,xih)= T}[x.),x')-l-JA: 4Y STrig A |
{TAv(:]‘) Aso

and define the singly polarized proper Compton operator:

STh(xy.x) _ . to)

(B,6) ___L_:L-) =ve | X9, 4'x’

5Ly R (V) RETERY,

We now define the Fouriler transfoérmed quantities T'p.( p: p; k)
and c}“’l"‘-t\i p.k) throughs

g ‘.(‘Ps Pi"'kV) '
- et S(ppei) Tulpip) = €5 T.(57.%)

” ip'de Y AT
fanf (kLK (Piip)s [ €°CTV PR g

where the crossing symmetry is expressed by:
(8,8) Cyy (P1 K" bik)= Cop (Piek; prmk)

We further remark on the connection between the total and
proper Compton operators:

5%-1'1')'.& 56(&’5} T.(5,9.5)G(8.x)= -C‘if(:mi)g.v(fn';%(i,'xﬁ
(By9) = fe'ij'atx.s"j L s")a Gy TG )e(3.x)
+ 8T (53)Q015" Ty (720,57 G
" jGtx, § D (5797).5) G($x)]

Let us now perform & gauge trenaformation by putting

e""_ ¢ . Then we know that 4
By =Ml | e [AW-AYJ
G@f}ay.h) = € G ()
. " \ f
e [Aw)- AlxY] I g e)

(By10)

T',,?(K.a- x;-%N) = €
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Thus, we obtain from Eq.B,2.
(By11) f.. 3uA(n) ie G (x.3) 1}’(?.9-%'}6[5'.1‘): fc{m)-m‘)jw.x')

in terms of the Fourier transformed opereators, &nd in view
of the transversality of Bph s One has, owing to the gauge

invariance of the vacuum polarization:

(8,12) -5 G({p)(P"-Pen’ A(pLp) T,'.uo'.P)G(P)»@n)"A(P'-PJEGlP')- a(p)

which 1s essentially the first Ward identity:

(Baaze)  L(pYePH) TlEP) = G (P) - G7(P)
where (;(ﬁ[:jrh@da.ggggiz.

Similarly, from Eq.By5. one deduces:
r : of PR
(413) f Ak A () @8 [T (9.)- T (pia)] 3 (P K-p-b)=-dic Ak @n)"s

x 8 (p'sk-p-K) Thy (¢k Pk ky
where the polarization part has dropped out for the seame

reason a8 in Eq,Byll,, and where we have used the values

’
of the uncrossed and crossed momnta:(‘a'ik'zrfki qlpikg p-k .
Thua’

(B,14) T (P! pik) iky= 1;..(?.'1) - I;n (q'p) -

and, from the crossing symmetry,

@5y ik, Ty (P PK) = TOP) - Ty (k)

Furthermore, since

CralPiK; k)= TuROGWT0R+ (b)) GRY T (a.p)
+ f;, (pi'; P:K)

(By16)

we also have:
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iRy Cpo(pikl pk) == T (P19) 6 (a) G+ G P)GI9IR Y
G (PhiPK) Clov= ThlPia)G (@) 6™ GTLPIGLITISD)

(By17)
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APPENDIX C, FORMAL STRUCTURE OF THE VACUUM
POLARIZATION AND SELF ENERGY DIAGRAMS.

We wish to establish here the high energy devia-
tions of the vacuum polarization and fermion self energy
in a theory where the fermions interact with some neutral
regulator fields.

The equations of motion are:

DA, (x) = - L& [Pea, Yo Wx) ]

(GL) Ujua}‘ +m) Pl = - ie VPR )P0 4 £(x)

where {%0 is the operator which represents the effect of
the non electromagnetic couplings.

The photon propagator is defined by:

(c,2) =¢ Dyy (x, x) T<o|A a)A (x\)810>-... <0|T[A,,lx)SJla‘)
J"t(x') 33,
where the differenclatlon is taken with an external current.

Now,

(63) O 0= & Gy + T<olis [Fa), Yoy si0>
= T + te e )y Glox)

where G (x.x‘)= T<°Nﬁ‘)¢-l¥‘) s)oy is the fermion propggator.

Now, writing
' ‘ S ’ S(ﬁv d & ' .
r“xJ’J ___La)m SR [“)D"(’“‘)S&(x)

(x %) 2 Sbox)gpy + 17 efdx I SG(“(‘?)%?X"JO
A

one obtains:

(Cy4)
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in which BG( )
) R x)x'
(0’5) Tr}}‘(x," ) s Tre alr. ____M.)

From the definition of the vertex operator: - .
te T (%.y.x) = Eg;_'i’.‘.‘.’!) =-jdz"dx"G'(x.x'9§;G_(Ei) Gx"x')
4 . :*yqﬂ dﬂtp(g)

(c,6)

one deduces:

XTI =-t‘eIG (x:x") U‘ (x"x" x%) G (xIx')d x" dx¥
(cy7) S, ()

Thus,

o) T (6 x2)= 1€ T s T ) G )
dx" A8 A x®

which proves Eq.I,12 in the text, if G(xxY) and r}.ix.g,x‘) are

approximated by their zerpth orderapproximation in the

electromagnetic coupling.

The fermion propagator, on the other hand, can
be written: QUkg)s T<°|“‘)$“')-§.J°>’ where M, 'q'l-(x\) sare
the fermion fields coupled to the neutral reguiator fields,

Sew. being the electromagnetic S-matrix, in which the
current operator is expressed in terms of the same fields.,
Correctly to the second order in the electromagnetic

coupling, one has:

(c,9) Glux)z G'lxx)+ i€ f D, (9-9) T<ol po9 Fx)Jutg) uly)le>

[ 0 ﬂ.‘ll
= Q% (xx)+red fdgdyqﬁ (939 Teolps @ Db f,44) ;Lg),sp)
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The latter vacuum expectation valua, in which § is the
S-matrix produced by the abnormal couplings, is closely

connected with the Compton Green's funetion. More pre-

. . abn 3'q (x. %)
Teol %t ) 9 §oL8) S7Te>= = o8 S5y

= J GUx-§) Cuv(5,3.9'.5Y G?(fx)d§ds.

Hence, the self-energy is given by:

I(x,x)= Z ) +ied f Dav(4-4)Cpo(x g, 4! 1) dydy’
(€,11) wict [TT50 G516 Do (-39 Culd] o) w)d8 ds'dydy’
where Z?:.KQ is the self energy due to the abnormal
couplings, and where the electromagnetic part is expressed
in terms of the Compton matrix. This justifies the result
quoted p.27 of the text.( The techniques used here are
those to be found in : J. Schwinger. Proc. Natl. Acad.
Sei. 37, 452, 1951.)

cisely, one has:

(c,10)
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