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ABSTR&CT

INVESTIGATION ON REGUlATORS IN QUANTUM EIECTRODYNAMICS

by RAYMOND FELIX STORK.

Submitted to the Department of Physics on July 5, 1958,

in partial fulfillment of the requirements for the degree

of Doctor of Philosophy.

Several attempts have been made in order to

connect an eventual suppression of the divergences in-

herent to the present formulation of Quantum Electro-

dynamics, with the high energy behaviour of some known

processes.

Whereas the theoretical situation is found

to be fairly unclear, some crucial experiments are re-

quired in order to shed some light as to which of the

three somewhat contradictory models we have constructed

is closer to reality.

Thus, the following phenomena should be

investigated:

- large angle pair creation.

- large angle brems trahlung.

- large angle Moller scattering.

Thesis Supervisor

Title: Professor of Physics.



ABSTRACT

We present in this work three models which are

able to suppress the divergences of approximate versions

of Quantum Electrodynamics.It is indeed argued that, in

view of the smallness of the fine structure constant, not

only the first terms of a perturbation expansion, or of an

expansion according to the number of particles involved

in intermediate states, gives a fair approximattonbut

furthermore, that it is in these terms that a breakdown

of electrodynamics should be sought.

Our goal is to connect the high energy behaviour

of relevant physical processes with the suppression of the

divergences.

The first model assumes the existence of a photon

cut off, whose observable consequences are clearly stated,

and of a fermion out off which, although unable to give

a satisfactory description of phenomena involving virtual

fermions, points to the conclusicn that these have no obvious

connection with the creat~ion of virtual pairs in vacuo.

The second model is based on formal analytic relation-

ships exhibited by the lowest order perturbation theory

and connects the divergences with the high behaviour of

the phenomena which, while they are well described here

were left out by the first model.

The third model, aiming at a better understanding

of the preceding onecontradicts its theoretical basis

without necessarily invalidating the observable conse-

quences that were drawn from it.
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INTROIUCTION

Although Quantum leetrodynamies, at the present

stag* of its developwntp has been able to give a very

aevurast derwipltion of the axperimental situation, it is

generally believed that the theory is ,et ineomplete&

The present seheme, formulated through a TAgrangAn formi-

Lt.mi involveas tn phenowamologictl ecnutants, the so-esfled

bwem mass m and. bare ehavge e of the charged partiele, in

toebm of which oze should be able to eelculate all physi-

oal quantities.In particular, one should be able to oem-

puts in terms of these parameters, the observed masswa+$K

and the observed eharge e% Z ,) of the abarged particle.

Cnveraely, all phy~ecal quantities should be expressible

in tezms of a% and a*.

Unfrtunately, it is well known that if one tries

to aompute mand %~in terms of a and e , in the frmau rk

of perturbation theory, one gets infinite answers. A third

"infinite" quantity occurs in perturbation theory, namely

the probability 2V for a "bar&"' fermion to be in a physical

fthrmion state.The occurrence of these Infinities is gene-

rally attributed to the sharp localizability of fields

in local interaetion, which allow states of arbitrarily

high momenta to be resehed in virtual processes.

Unless otherwise specified, we shall consider the sys-

tem of a charged farmion field. Interaeting with the Maxwell

field.

VI
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Whereas- perturbatfon theory yields infinite results for

the renormalizwtion constants Za, Z3, Sm, the use of renor-

malized equations of motion , independently of a pertur-

bation expansion, shows that, under the assumption that

no abnormal feature appears in the theory, (such as the

occurrence of states with negative normalizations or

energies), either Z, or Z3 is equal to zero (1). This not

physically surprising result can be interpreted by saying

that, owing to the possible occurrence of an infinite num-

ber of vtates, the probability for each one of them to be

dealized in a bare particle state vanishes.

Since the perturbation method does not seem to be

responsible fod the difficultids encountered, and, as one

feels that the smallness of the phWsical charge(e/4nC;-

tesponsible for the coupling should justify using a series

expansion in powers of the fine structure constant, it is

legitimate to try and modify the present scheme as appro-

ximated by its lowest order terms in this expansion.

When using the perturbation expansion, one has to

recognize infinite integrals as being terms contributing

to the implicitely defined renormalization constants. This

problem has been solved by means of so-called regulariza-

tion methods, (2), (3), (4), which essentially consist of

an alteration of the theory at short space-time intervals

(or, what is the same, for large virtual four-momenta),

preserving the Invariance built in the theory.



Such procedure allow for the unambiguous- recognition and

separation of standard Integrals which become infinite

when the the#y is restated into its initial form, and are

identified with terms of the perturbation expansion of

the renormalization constants.The remaining expressions,

which involve rather low virtual four-momentahave finite

limits, which are presumably independent of the cut off

procedure.

One may argue that it is not meaningful to formu-

late the theory in terms of bare parameters, because the

bare mass and charge may not be actually measurable.

However, one should at least require the mathematical for-

malism to be free from inconsistencies; if furthermore one

can show that it should be possible, at least in principle,

to measure the renormalization constants, then one must

require that they come out finite from the theory.

Beside these questions of principle, one would

like to be able to compute such quantities as mass dif-

ferences between neutral and charged, otherwise similar

particles (e.g. neutrons and protons, charged and neutral

pions, hyperons, etc.).

It has been suggested by a number of authors, (5),

(6),Ulat such mass effects may be described in terms of

a modification of electrodynamies at high energies of the

type previously mentioned; to be more specific, a simple

alteration of the high energy behavior of the Maxwell

field has been found to give a satisfactory account of

the experimental data.



More recently, (7), (8), a possible alteration of

electrodynamics at high energies was invoked in trying

to explain the somewhat puzzling state of affairs con-

cerning the difference between the charge distribution

radii of the neutron and the proton.

Whereas it may be hoped that these pnenomena kill

be understood , provided electrodynamics is not consi-

dered as a closed theory, cut offs may still be used

to give a phenomenological description of electrodynamic

prOcesses in an energy range where either various cou-

plings come into play, or the concept of local fields

becomes dubious.

As most of the work done along these lines has

been concerned with the study of observable effects due

to an alteration of the Maxwell lawsit seems useful to

investigate also those phenomena which would be affected

by a modification of the Dirac law.

The aim of this investigation is to review in a

simple minded way the known electrodynamic processes

in so far as they can exhibit high energy deviations

from their description in terms of the conventional theory.

Many simple features can be understood in the light of

the usual covariant perturbatin theory, as, for instance,

the classification of electrodynamic processes into two

classes: those involving virtual photons, and those

involving virtual fermions.

Whereas it is quite natural to take perturbation

theory as a starting point, since it is the only version

of electrodynamics usable for practical calculations,
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the global method has the advantage that it fully exploits

the fundamental properties implied by the usual form of

the interaction (1). As we intend to describe phenomeno-

logically physical effects which fall outside the scope

of a theory whose language we shall keep using, we shall

be forced to introduce some formal inconsistencies which,

we believe, is a way to hide our ignorance of the "true"

theory. We shall therefore try, as much as possible, to

give physical arguments in order to justify such a situ-

ation.Since many extrapolations of a given theory can be

found, which mainly depend upon the form of the theory

one starts from, and the properties one decide to keep,

it is insructive to vary both of these determining fac-

tors.

We shall propose in the body of this work three

models, and compare their predictions; it is encouraging

to see that, in spite of large differences, they have

in common a substantial number of features.

The first two models are based on properties exhi-

bited by the covariant perturbation theory. The philosophy

we Pdopt is the following: since most of the radiative

corrections )become usually sizable at energies where

electrodynaics may get mixed up with the dynamics due

to other couplingsit is reasonable to look for a break-

down of pure electrodynamics in the effects predicted by

the lowest order perturbation theory.Whereas the diver-

gent processes depend on the very high energy tail of

the- theory, we should require that the contribution
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they-get from "pure" electrodynamics (as described by

the lowest order terms of the perturbation expansion)

should be finite.

We shall now proceed to give a brief descrip-

tion of our three models, each of them being improved

or explained by the next one.

Model I is studied in the first three chapters:

- In Chapter I, we discuss what is thought to be a

minimal regularization in the framework of the covariant

perturbation theory, that is to say, a high energy

modification which suppresses divergences in this order.

In spite of the well known conceptual inconsistencias

which arise In this modelit is argued that it may give

a more accurate description of phenomena than the usual

theory does, at least in a suitable energy range.

- In Chapter II, we shall study those electrodynamic

processes which are affected by a modification of the

Maxwell laws, and emphasize the similarities and

differences between such a breakdown and the existence

of particle spreads as may be produced by interactions.

This will be more or less a review of previous works.

- In Chapter III, we shall show that the model proposed

in Chapter I is not adequate to describehigh energy

modifications of processes involving virtual femions,

as a consequence of the requirement of local gauge

invariance.If however drastically simplifying assump-



-tions are madeit is found that there is no obvious con-

nection between the regularization of vacuum polarization

and high energy deviations of the Compton and related

effects from what they are thought to be according to

the conventional scheme.

One salient feature of this model is that the use of

a detailed local description of phenomena(implied in

particular in the requirement of local gauge invariance)

forces us to argue extensively Tn terms of virtual par-

ticles, so that physical interpretations are made very

difficult.

Model II has been constructed in order to remedy

this defect , and is closer in spirit to the philosophy

we have previously defined, It is based on the observation

that the occurrence of divergences in the lowest order

of pertbirbtion theory can be blamed on the too slow

decrease of the forward Compton amplitude.It makes

fairly definite predictions about the behaviour of

processes invblving virtual fermions, which can easily

be tested experimentally. (Chapter iV).

In Chapter V, we stud$ general properties of the

S-matrix in electrodynamics, in order to see whether

the formal connection between the divergent processes

and the Compton process, on which Model II is basea,

is a consequence of the"'Ij A "ccoupling, or of more

fundamental properties.The first alternative seems
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to be the correct one.Whereas the approximation method

used here is not a perturbation expansionwhich makes,

it hard to establish a connection with Models I and II,

and requires a slight change in our philosophyit seems

more correct to connect the regularization of vacuum

polarization in the "lowest" approximation with a finite

extension of thefermion current, a damping of the

Compton amplitude only being required in higher orders.

Whichever model is closer to realitythere emerges

from this investigation the necessity of performing

a number of experiments in order to test electrodynamies:

- Moller scattering of weakly coupled particles at high

energies. Although this is not experimentally possible

at present in view of magnitude of the energies required,

this would ascertain the existence of particle radii or

of a photon cut off, if any.

- Pair creation and Bremstrahlung at large angles and

high energies.

- A more accurate measurement of magnetic moments.

- Also, a better experimental and theoretical knowledge

of the strong interactions will allow to separate out

electrodynaiiic+ effects in phenomena in which the role

played by these interactions is understood, but not

quantitavely known at present.
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CHAPTER 1. FORMIIATION OF A REGUIATOR THEORY.

For our present purpose, we may consider Quantum

Electrodynamics as an S-matrix theory, the S-matrix

being expandable in powers of the coupling constant, and

a functional of local free field operators(in-fields).

We recall the main characteristics:

-Invariance under the full Lorentz group.

-Invariance under charge conjugation as implied by the

T.C.P. theorem.

-Gauge invariance.

-Unitarity of the S-matrix.

-Existence of a complete set of in-states, with positive

energies and normalizations.

-Causality.

The S-matrix one conventionally starts from is well known

to be:

(i1,) 5 0I. + Cx.. P

Whereas it has formally all the properties we have listed,

these have to be used at each step, when one states the

mathematical preiscriptions which allow to extract meaning-

ful answers from an otherwise ill-defined formalism. Thus,

the stability properties which one would like the S-matrix

From now on, we shall follow the notations of reference (9).
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to have, (namely, it should leave Invariant the vacuum and

one-particle states), are introduced through the infinite

invariant mass, charge, and wave function renormalizations.

The usual regularization procedures, (2), (3), (4), which

realize this program, are based on the observation that,

when the S-matrix is rewritten in normal ordered form,

it involves the following basic expressions:

-the bare vertex operator: 4S x-)-(.) .

-the bare photon propagator: L V(&-9

-the bare fermion propagator: T S -X') ( Tx
It is well known that, if one limits oneself to the lowest

non vanishing order of the perturbatlon expansion, it is

enough to regularize the photon propagator and the fermion

loop.

As we shall limit ourselves to a study of these

lowest order terms, and since we want to correlate the

effects of such regularizations on various phenomena,

we shall propose a realization of these regulators which

allows such connections.

We assume that the photon and fermion fields inter-

act with abnormal fields, in such a way that the bare pro-

pagators and vertex are modified in a relativistic and

gauge invariant way. In other words, we assume that they

are replaced by the corresponding renormalized quantities

emerging from these interactions. We therefore write,
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in momentum space:

(I,2) D(kC) - T'c dQC

(1,3) C

These forms can be deduced from very general principles,

(10), (11), (12), and it can be shown that, if such propa-

gators emerge from interactions between local fields,

they cannot give rise to a regularization, (i.e. (4)>Ot()>$
A

unless abnormal features appear, such as the occurrence

of states with negative probabilities. The situation in

which interacting vector fields are Involved is somewhat

peculiar; however, the non-positiveness of the weight

functions does not seem to save th-e situation in this

case either.

As we shall see presently, regularization requirements

imply not only the non-positivenes of the weight functions

(p4), j(G.) , but also a physically inacceptable renor-

malization condition on the interactions introduced. Thus,

if one does not allow the regulator fields to be vector

fields, so that the weight functions ought to be positive

definit&, one has to admit that the theory involves nega--

tively normalized states. It seems therefore little attrac-

tiLve to replace the present inconsistencies of electro-

dynamics by those of a wider scheme which may have no

good physical ,interpre tation. One may however take the
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viewpoint that, if these new inconsistencies which are

supposed to replace the old ones occur at high enough

energies, this model may be more accurate than the old

scheme, in the medium energy range where the cut off

effects are only size dependent, whereas it completely

breaks down at higher energies where the inconsistencies

appe ar, and where these effects start to depend on the

shape of the cut off functions. More specifically, let

(I,4) A(>) = &(u2 WX(; XOor I>

where)4) and TO() are non positive definite functions.

This model should cover the energy range ( Om) or

( 0,0), whichever the narrower. One point to be cleared

is whether these energies are absolute ,or whether they

are measured in units of the charged fermion rest mass;

we shall have to come back to this on several occasions,

although, if these cut offs are connected at all with

the idea that there exists a fundamental natural length,

one should think that the first viewpoint is the correct

one.

Our model has to be completed by an appropriate

alteraticA of the vertex operator, in order to preserve

local gauge invariance:



(I,6) -s P SP)

where f)ULp)must fulfill the generalized Ward identity

(13), (14), (see Appendix B):

Let us remark that, without violating gauge invariance,

one may multiply p,'Nby a form factor F(--PI)which goes to

unity for zero momentum transfer, and describes a spread

of the particle current. Since each vertex is accompanied

either by an external photon line (kmsOFjo)x), or by a

photon propagator, such a form factor will have effects

similar to those produced by an alteration of the type

indicated in Eq.I,1; however, these two kinds of modifica-

tions can, in principle, be distinguished, as we shall see

later. Removing the form factor into the photon propagator,

one can write Eq.I,7 under the following form:

(I,8) Eg R (z9Sc(

where.

(I9)
L(P~1,L) po(p)= 0

About the firat term In Eq.I,8, one should remark that

it does not contribute to anything else than the ordinary

current, when it is evaluated for free particles. In

particullar, all the magnetic moment effects are contained(

inr(p,p). With the help of these modified propagators and

13
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vertex, one may now investigate under what conditions the

divergences are suppressed in the lowest order of pertur-

bation theory.

A- Fermion self energy and electrodynamic vertex.

We shall only study here the modification of

the self energy due to the regularization of the photon

line: (k)

In the case of ordinary electrodynamics, the initial

linear divergence reduces to a logarithmic one'. , so that

the minimal regularization conditton is:
00

(1,10) (0 (a) =
0

which means from the point of view of the abnormal inter-

actions introduced that Z zo; this is of course completely
Umhn.

inconsistent with the interpretation of (as a probability.

The use of a stronger regularization:

0
(I 11) =~ f

00
in the phenomenological calculation of the neutron-proton

mass difference should not be retained Ps a fundamental

condition in electrodynamics, since the spread of the
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nucleon current produced by mesonic effects makes it

superfluous.We shall put the study of the fermion cut

off effects aside ; this will be done in Chapter III.

Of course all that we said about the self energy stays

valid for the vertex.

B- Vacuum polarization.

(P)

We first remark that the vacuum polarization

diagram contains one vertex and one regularized vertex

since a particle-antiparticle pair has to be created

with the usual interaction before the abnormal couplings

come into play. Thus, one must write:

(1,12) TIearrf p /'Pr c'P

Tf~v~fr ~m Jk)

Tt~~k ~(a 9 a t,~(Dh + rT (k

where I (k)is the part of Ipfcontaining 4. and the

sign $Z was written because one should not actually inter-

change the order of the -k and -a integrations;Ij(4)is

the conventional expression for the second order vacuum

polarization due to a fermion of mass a. As is well known,

this expression, as it stands, is not gauge invariant and

exhibits a quadratically divergent photon mass. If one
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takes the view that this divergence is accidental and due

to unallowed manipulations of a theory which was Initially

gauge invariant, then a weak regularization condition

(I,13) (a) = o

suffices to suppress the logarithmic divergence of the

charge renormalization' constant, provided thatIpOis

sufficiently damped at high momenta.

Thus, we have achieved both the Feynman photon

out off and the gauge invariant Pauli-Villars fermion

loop reulniarization, at the price of well known inconsis-

tencies,(15),(16), but in such a way that we may hope to

express the high energy modifications of other processes

in terms of the cut off parameters.

To summarize, the minimum regularization conditions

required in order to suppress the serious divergences of

the conventional electrodynamics in the lowest order of

peaturbation theory, are:

(I,14) f (: )a 04 I Poo

In the following chapters, we shall be concerned

with a study of some observable consequences of this simple

minded model. However, it will be seen in Chapter III

that not enough has been said about gauge Invariance,

and, in particular, that one cannot describe processes

involving virtual fermions without making extra assumptions.
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CHAPTER II. PHOTON CUT OFF CORRECTIONS.

We shall investigate here those processes which

are affected by an alteration of the Maxwell laws, namely,

those which involve the exchange of virtual photons.

We may expect that the deviations will be all the more

important that these photons are more virtual-that is to

say further off their mass shell-, which occurs when

their source suffers a large momentum transfer.

A- Physical interpretation of the photon cut off.

In all processes involving an external current, one

finds as a portion of the relevant diagram the following

element: CAt

The cut off function ishes in view

of the regularization condition I,14, when .woo

Furthermore, from Eq.I,4, one deduces that ()x5.

The effect of the photon cut off is to produce an

apparent s-pread of the external current, when the result

is interpreted in tenms of conventional electrodynamics.
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In other words, if one says that one sees an external
VA.

current (q) creating a field according to Maxwell's

laws, one may as well say that the true current distri-
hrue

bution is4L (C) , but that electrodynamics is modified

according to Eqs;I,2;I,14:
true

(II,91) J7() q .

For instance, a static charge distribution Q? ,charac-

terized by the mean square radins

(1I,2) 1 J rr

looks like

(IIP,3) e
hve

R(,-73 )
with a mean square radius

(11,4) IE

( R being a dimensionless function,R(pis a squared length

which we now callyMt)

This argument also applies to megnetization distributions.

Of course, higher momenta of a current distribution will

depend on higher derivatives of the cut off function, which

is to say, will be more sensilive to its shape. As was

previously pointed out, the introduction of a form factor

in the vertex plays a similar role and produces an apparent

ch'rge spread similar to that produced by the photon cut off.



However, if the model is to be taken seriously, one should

admit that each particle is characterized by a vertex

form factor which describes its intrTnsic charge distri-

bution, whereas the photon acts with the same cut off

on all particles; we must nevertheless keep in mind that

the cut off mass may be a universal function of the masses

of the particles between which the photon is exchanged.

As such a behaviour would imply a strong acausality, we

shall work with the first hypothesis.

Thus, one should in principle be able to determine

the photon cut off and the charge distribution of each type

of particle: if one studies Moller for two kinds of par-

ticles, A and B,(A-AB-BA-D), at low enough energies

that one does not investigate the structure, but only the

size of these particles, one can measure the three

combInations( V,+< 6.+ ,4jr> .<> + >+ . But,

as we shall see in the next section, this is a matter of

principle for the time being, owing t6 the magnitude of

energies which can be produced at present in laboratories.

Let us finally remark that virtual photons are necessary

in order to measure a current distribution, since for

real photons Kxo , so that only the total charge is seen.

( In particular, Compton scattering is not suitable and

rather measures the deformability or polarizability of

the distribution).

Of course, what we said about charged particle
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scattering also applies to the bound state problem, although

it is clear that the energies involved are usually very

low; however, In view of the great accuracy of the experi-

mental methods applied in this field., it may prove worth-

while to investigate cut off corrections to energy levels

of bound systems.

B- Order of magnitude of the photon cut off.

BI. The proton radius.

From the pro ton mean square charge radius

measured at Stanford,(7),one deduces: 2
aw. < a (. .. \5

(11,5) 6M

where(> is the intrinsic mean square spread of the proton

which is produced by mesonic effects, rather than by an

electrodynamic breakdown, andr > the mean square radius

of the electron, if any. Thus,

Mrh<. 64 ti? ( M? = proton mass)

One may speculate about the eventual possibility of a

more accurate determination: whereas calculations of the

neutron and proton charge radii in the fixed source theory

(17), are consistent with the value measured at Stanford

for the proton, and therefore come out much too large in

the neutron case, relativistic corrections seem to sub-

syantially reduce this value, (18). Calculations of the

magnetic moment distribution also seem to follow a similar

(II,6)
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trend, (18). It is not impossible that, when the treatment

of mesonic effects is improved, one shall be able to under-

atand the neutrality of the neutron as due to a cancellation

of the mesonie cloud by the neutron core., spread over a

region with a radius of the order of the nucleon Compton

wavelength, (8). Then, although there are effects which

may yield a mesonic cloud larger for the proton than for

the neutron,(e.g. strange particle effects,(20), inequality

of the pionic coupling constants,(21) ),it seems hard to

get a proton radius larger than<r a.5o(obtained from

Tanaka's result with j-:.09). If one takes this tentative

value for the proton radius, one may interpret the Stanford

experiment either with ):O, M .7 or with H ,(.PP

or some intermediate values.

BII. The neutron proton mass difference.

The cut off parameter obtained from the proton

radius can be compared to that resulting from the fitting,

of the neutron proton mass difference,(5),(6), If one

computes this mass difference, assuming that the nucleons

are punctual Dirac particles with anomalous magnetic

moments, one finds that the experimental value can be

fitted with an effective photon cut off .A One may

have doubts about the validity of this calculation if the

photon cut off is high enough to allow for photons that

are hard enough to investigate details of the nucleon
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structure, in which case it would be a bad approximation

to consider the nucleons as rigid punctual current distri-

butions,( see K. Huang's argument in (6).).The situation

is however not so bad as it seems at first sight; indeed,

if one treats the nucleons as extended distributions, one

sees that the effective photon cut off is given by:

ist. Saw.M It.

(II,7) + rp ; P

provided that the intrinsic electric and magnetic sizes

are the same. If one assumes M:a, one deduces re. i0c..

If, on the contrary, one assumes<1'' - o , one gets Mk . I,

Thus, under either hypothesis, one has an order of magni-

tude agreement with the previous estimate. If the electron

is assumed to be punctual, the photon cut off is low enougi

and the nucleonic sizes small enough, that photons of the

cut off energy can only see the nucleon size, but not its

structure. If, on the other hand, the electron is not

punctual, and the photon cut off high enough, (it may be

infinite), these conclusions are not valid, and the approach

followed by Wick,(22), is more reliable, as it allows in

principle to take into account the deformability of the

nucleons; the experimental situation is however much too

poor to take advantage of this latter formulation.

At :ny rate, it is clear why the result found by Wick

has the wrong sign: since he used the Stanford radius,

his calculation is roughly equivalent to a calculation
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with such a small photon cut Off that

the contribution of pair states is negligible, and that

it is known to yield a negative mass difference, (6).

To conclude this section, we should like to remark that

the evaluation of the neutron proton mass difference,

which in some respects may be thought of as replacing

a Moller scattering experiment, will be a very sensitive

test of the existence of a photon ctt off, once the

nuclear matrix elements are better known; this is so

because of the fast variation of this quantity as a

function of the cut off value.

C. Photon cut off correction to the Schwinger magnetic

moment.

Selecting in the lowest

order radiative correction to the

electrodynamic vertex the tera1 pro-

portional toT5. yields:(23)

Whereas this cut off correction is very small for the elec-

tron, it is for thee-meson of the same order of magnitude

as the fourth order radiative correction, ( .7 5 ), (24),
7Ca

with the opposite siga, and, for the time being, two

orders of magnitude remote from the obtainable accuracy,

(25).
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Moller scattering.

As was previously

ationed, the cut off correc-

ons become important when the

aentum transfer is of the or-

r of the cut off mass squared:

that is to say, at high energies and large angles, when

the ordinary Moller scattering is small. One finds indeed,

in the center of mass frame of reference, (see the deriva-

tion in Appendix A) :

(II,9) No [-
whe re

A : O , as expected.

M-k J'+4f

In order to observe a 10% correction, one needs a center

of mass energy CgiLk 4.100 Mev, which corresponds, in the

laboratory frame, to an incident electron energy of the

order of 40 Bev.

In the case of EL-e scattering., there is no

exchange scattering, and one finds, in the center of mass

frame:

24J
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(II,10) -- k.

which is maximum for backward scattering. In order to ob-

serve a 10% deviation., one must require a laboratory

-meson energy, (the electron being taken at rest),of the

order of 20 Bev.

These experiments are thus at present outside

the range of experimental possibilities.

E. Bound state problems.

Tn the case of the hydrogen atom, the energy

shift due to the finite proton size is, (26):

(II,11) AE= 1. <r"> (o)e

where o) is the electron wave function evaluated at the

position of the proton. In the ground stateit amounts

to .11 Mcs, and, as was pointed out before, does not

indicate anything more about the photon cut off than

the Stanford experiments do.

In conclusion, there does not seem to be

at the moment any practicable new experiment which might

decide for or against the existence of a photon cut off.

Whereas electron-electron scattering requires too high

energies, our knowledge of nuclear phenomena does not

allow us to squeeze any more information out of the

values of the nucleon radii or of their mass difference.



CHAJPTER III. FERMION CUT OFF CORRECTICNS.

We have seen that, in spite of the inconsis-

tencies inherent to the model, the theoretical situation

concerning the photon cut off is fairly clear, that is to

say, one can calculate photon cut off corrections, and,

in principle, test the result experimentally. In the medium

energy range where the model is assumed to be valid, all

the results are expressible in terms of the size of the

cut off, and are insensitive to the shape of the cut off

function.

In the case of the fermion cut off, the problem

is much more undetermined. The first difficulty which

comes up is that, in view of the non-measurability of the

fermion field, no obvious interpretation proposes itself.

Secondly, we shall see that the requirement of local

gauge invariance implies that the fermion cut off function

does not suffice to describe the high energy behaviour

of physically observable effects. Deviations from the

usual formulas will of course manifest themselves in

processes where virtual fermions are involved far off tbeik

mass shell, i.e; when the corresponding matrix element

of the conventional theorr is small, due to the occurrence

of a large retardation denominator . We have seen further-

more that gauge invariance requires, together with an
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alteration of the propagator, a modification of the vertex,

which is to say, essentially, of the current. One easily

interpretable effect due to this alteration would be, for

free particles, to produce an additional magnetic moment.

However, since we are concerned here with alterations

connected with the regularization of vacuum polarization,

we shall not study such an effect, and thus , we shall

definitely have to deal with modifications which affect

virtaal particles.

The elementary processes involving virtual

fermions are the following:

-Fermion self energy.

-Radiative corrections to the scattering in an external

field; (in particular, the Schwinger magnetic moment.).

-Processes of the type "Compton scattering",( Compton

scattering, pair creation, bremstrahlung, in an external

field).

In the usual perturbation theory,

processes are closely connected:

- Compton diagram

Q
+>k""1*::'+ +

these

S

k I

pwl

- Self energy diagram:

Prrc



- Ver tex:

7 ~( N

II.' Li

k k

k +

P1

The self energy is obtained from the Compton diagram by

closing up the photon lines into a single virtual photon

line, whereas the vertex is obtained by inserting a photon

in all possible ways in the self energy diagram.Since the

Compton diagram plays a prominent role, we shall first

make a few remarks concerning the gauge invariance requi-

rements it is subjected to.

A. Gauge invariance problems related to the Compton process;.

It is shown in appendix B that the gauge inva.'

riance condition relating the vertex operator to the fer-

mion propagator is not sufficient to insure the gauge

invariance of the Compton matrix element. In other words,

the two "improper" diagrams which only involve the modi-

fied vertex and propagator, do not combine into a gauge

invariant contribution, the lack of gauge invariance that

they exhibit being compensated by that of the proper

Compton part.

Let us call k) the operator whose

28

i
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matrix element between free fermion statesi(r),(t), yields

essentially the amplitude for Compton scattering of a

photon of momentum k, polarization %, from an initial fer-

mion of momentum p, into a photon of momentum ki', polari-e

zation and a fermion of momentum p4 . Then we define

the proper amplitude ',I f.k) through:

(Iv, 1) Itex -''P'i t~

+ k', (%', p'-k) Sca (p'-k) T' (P'- P)

+ Ip (p'.k) P 
k)

there being understood that the four-momenta are linked

by momentum conservation:

P'+k'= +k
The gauge invariance conditions are, (see Appendix B):

k, CA (IP:' y,k)m .. p-'g q)a(p+ p)asCs

(IV,2)

CP (K k'; pk) Cv -TVIL '),(q) Sci p).- {iM Scot 1i)9,'b

where q and q' are the intermediate fermion momenta

occurring in the uncrossed and crossed diagrams, respec-

tively. The corresponding conditions on the proper part

r ('ct pk) are:

n i k T ' the m a k )i e(lo p)o ri' h ha', ')
(IV,3)

(notice that the matrix elements of the right hand side3
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of Eq.IV,2, between free particle states vanishwhich is

consistent with the gauge invariance condition usually

quoted).

If one makes the gauge invariant approximation

syi p)o, one can write:

C~v k% ro it 2 d
(IV,4) OK

+ C )fi =IS

where k C (,'k'; C (k;, 0k) k.O

Thus, whereas one would have expected that the out off

corrections would have set in through the improper part,

one sees that these corrections are cancelled by terms

of the proper part in such a way that gauge invariance is

preserved. The matrix element of the first part of CpvVk

appearing in Eq.IV,4; (excepting pk'.ic)), is exactly

identical to the usual expression, because the Inverse

propagators St.), k p), select under the integral those

terms which have a pole for j4eo, .1.4 .

We must take this result as a proof that,

under the assumption of local gauge invariance, the cut

off corrections to the Compton process, if they exist,

are not determined by the out off function responsible

for the regularization of vacuum polarization. We shall

reach a similar conclusion in a somewhat: more transparent

analysis to be found in Chapter V, whereas the contradic-

tory poltt of view assumed in the next Chapter will lead
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to this new analysis in a natural wa-y, whereas the con-

sequences of the contradictory model will serve as a

basis for the description of the high energy behaviour

of the Compton process and related phenomena, and will

be justified in a different way.

B. Self energy and vertex.

The description of these two quantities is

just as ambiguous as that of processes of theCompton

type. We shall not investigate any more the self energy

since in the physically interesting case of the neutron

proton mass difference, the strong couplings play such

a prominent role.

If one wants to make a statement about the

cut off correction to the radiative magnetic moment,

one has first to hope that the proper diagram in small

compared to the others;(whereas this is impossible to

do in the case of Compton scattering where the proper

part is known to have a contribution of the same order

of magnitude as that of the improper part, as a consequence

of gauge invarianceone can do it here because the photon

is virtual). Such a simplification would be physically

acceptable if the vertices on which the photon is attached,

are more strongly damped towards high momenta in the proper

part than in the others. 'Then one has the gauge invariant

approximation:
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(To 5) idLa T l -D,,.tkgk') [q,-ttrsP,
+ace' f4k'(y'k Pg(p',ok'a p; ,-)

+ ( -k. |-AP) scot r v'.- k;)

which fulfills the lard identity:

(The upper index I means that the proper diagram ban

been neglected both in the vertex and in the self energy)

Thus, for free partieles, one can rewrite:

(IVp6) J ff) ..- -cA(kq P'i')er '

-. C,(p-k9 j e. e&~S4 r,( c9-F',p-k' p)-k' fl(t- ?k')()P)P 1 )

., i*p)5 (P') ) I- S (P') 't) (

Cs-ae f~ +3 s-p.. kz)k k k

The first two terms correspond to charge renormalisation

whereas the magnetic moment is contained in the integral.

In view of the unreliability of the result we would get,

we shall not pursue in this direction any further.

Our conclusion on all this is that the

description of processes involving virtual fermions mainly

depends on the structure of the Compton matrix element,

rather than on that of the charged particle propagator.
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This is specifically a consequence of local gauge invariance.

In the next chapter, we shall try to somewhat change the

point of view we have taken here: recognizing the important

role played by the Compton-proess, we shall try to take

it as the fundamaentel entity describing the physics of

virtual fermions, rather than the more abstract propagators.
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ChAPTER IV. TE "COMPTCt CUT OFF"

We have seen that an attempt to formulate a gauge

invariant fermion cut off in terms of the elementary

operators which characterize the covariant perturbation

theory, (propagators and vertex), has failed to provide

an unambiguous description of the elementary electr6-

dynamic processes which involve virtual fermions. The

scheme we previously proposed had furthermore the un-

pleasant feature that it was difficult to interpret

physically, because its formulation forced us to argue

in terms of virtual particles; this is due to the very

detailed interpretation of the Feynman theory, one draww-

back of which is the separation of transition amplitudes

into several parts, each of which has no meaning, except

in the framework of this interpretation. Thus, we imposed

gauge invariance in a much more artificial and detailed

way than if we had just required that the transition

amplitudes themselves should be gauge invariant, as this

latter demand makes only restrictions on the dependence

of physical phenomena upon the states of free incoming

particles.

We however gained the feeling that processes of,

the same type as Compton scattering deserve a special

attention, because they cannot be fully expressed in

terms of the regularized operators 6f perturbation theory.

We should like here to reverse the situation, and, stressing
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the important role played by the Compton amplitude in the

structure of the lowest order approximation in perturbation

theorytake it as a basis for an alternative out off pro-

cedure, susceptible of a more direct physical interpreta-

tion. More precisely, instead of first trying to make

finite the fermion self energy and vacuum polorization,

we should like to modify the Compton amplitude at high

energy in such a way that the basic infinities are removed.

A. Connection between the Compton amplitude and the

divergent diagrams.

We shall rewrite here the results of second

order perturbation theory in a more suggestive, (may be

misleading) way than has been done before. We recall

that the Compton matrix element is given by:

(IV,1) <', k'.'j C I >,k,6 (2rf4 ie~

where pt, k', (pk), are the final, (initial), fermion and

photon momenta, E",( L), representing the final, (initial)

photon polarization.( We have omitted the trivial normali-

zation factors - "NO ). The matrix elements for

pair creation and bremstrahlung are obtained from Eq.IV,l.

by the substitution law,(cf. (9), p.162), as a consequence

of the local character of the interaction, (ie0' the posi-

tive and negative frequency parts of the free field operators
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are symetrically involved in the S-matrix), and of the

fact that the S-matrix is the same functional of the

external electromagnetic field as it is of the quantized

Maxwell field. The self energy operator, on the other

handis given by:

(IV,2) (

whereas the vacuum polarization kernel is usually written

as:

(IV,3) f kJ' 4'

which only fulfills the gauge invariance requirement

within a shift of origin in k-spacewhich, forbidden in

a quadratically divergent integral,(cf. (9),p.457),

produces the well known spurious photon mass, unless a

strong regularization of the fermion loop is imposed;

thus, it is just as correct to write it in the symmetrized

form:

(I,4 II k P

We now want to express the two divergent

operators in terms of the forward Compton effect; the

forward Compton matrix is:

(IV,5) C(PIk ) #k + i(
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or G ~mks~

Now, w' can express the self energy in terms of the Compton

matrix:

(IV,6) E() p

The electromagnetic mass itself is given by:

(IV,6m) aa )JP 4 -

it is a weighted integral of the Compton matrix element

over a virtual photon spectrum.

The form used in Eq.IV,4 to describe vacuum polari-

zation is however not very suitable because, although it

is formally gauge invariant, actual computation exhibits

the well known lack of gauge invariance which is in parti-

cular associated with the appearance of a quadratically

divergent photon mass. This formal trouble is associated

with the fact that expressions of the type T<O PI6 g)49IO

are not well defined, since [.(9),444oforXeSOO; as is

explained in Chapter V; on the contrary, T4 ) (09 an

be assigned an unambiguous meaning, since Ps) Jvofor XLX

Thus, we shall express T,(k)in terms of the better

defined

Now, if one writes:

(IV,7) 
a () : . 3t (D

whereby we assume that -T "(k(,) + 'a
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one has to require:

(IV,8) Te (o) 0 , C(O) finite.

Thus, eliminating off hand the spurious photon mass, we

shall replace Eq.IV,4 by:

ea1" 1 a .rIP'L f P, Irp

(IV,19) iy "e '' L'140L /J

Thus, C(.)= - nf(-V)-

B) The Compton cut off.

In view of the formal connections we just esta-

blished, we may want to blame the occurrence of divergences

on the fact that khe forward Compton matrix does not

decrease fast enough at high energies. We may put:

(IV,10) ,' 1 4 0~ N-'Cv ,'O8; P.e

where CO.(k) is the usual Compton matrix, and where

the cut off function (.',k.k)exhibits charge conjugation

invariance and crossing symmetry. The g-function must

have the following properties:

when y.y..vev or k.kkw, in order to make the

wave function renormalization constants finite.

b) J. a4 , in order to preserve the Thompson limit;

c) my-'kdk') does not have any singularities in the

first and third quadrant of the p.p' and k.k' complex planes

so that condition a) makes it to be a cut off function.

d) If this function were required to suppress the diver-

gent photon mass, one should impose the condition:
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but we do not believe that this condition is physically

meaningful.

With such prescriptions, the dependence of the

cut off function on p.p' provides the finiteness of vacuum

polarization, whereas its dependence on k.k' provides a

substitute for a photonncut off, which makes the self

energy finite.

In what follows, we shall study observable con-

sequences of these two cut offs.

C) Physical consequences.

-The neutron proton mass difference.

The out off factor to be used here is

which fixes the value of Mat about one nucleon mass or

more, if one believes that an appreciable part of the

mass difference is provided by this Compton cut off.

-Compton scattering.

As one always has k.k'< 0, p.pt< 0, one comes

to the conclusion that, although our cut off was initially

based on the formal connection between the Compton matrix

and the divergent processes, the cut off function is not

involved in these two classew of processes for the same

values of its arguments. If, however, the same analytic

form is used for positive and negative values of the argu-

ments, one sees that both cut off effects are important

for large angle scattering:

the characteristic energy parameter is , so that very

large energies would be required in order to exhibit

deviations from the usual behaviour; this is forbidding

in view of the smallness of the cross section at high

energy.
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-Pair creation.

The two cut off effects are quite different in

this case: the first one can be observed if p.p' ,
that is to say, when both me&bers of the produced pair

come out with large energies and at large angle from

each other, whereas k.k':k;(p,+ p.) can be large if

either of the produced particle comes out with a large

energy, at large angle from the photon, even though the

other one tends to go forward ( k.p small).

-Bremstrahlung.

The first cut off can be observed when the in-

cident energetic particle suffers a large deflection as-

sociated with a small energy loss, whereas the second

cut off appears when k.k'.vk'.( p-p'), that is to say,

when a hard photon is radiated at large angle from the

incident particle, (then, p' is small).

D) Concluding remarks.

-Experimental.

As the second cut off needs not be invoked

in order to suppress the divergences, one would be tempted

to think that the crucial experiments to be performed

are the following:

-energetic pair creation of two particles at large angle

from each other.

-observation of a Bremstrahlung process in which the ra-

diating patticle suffers a small energy loss, but a

large deviation.

On the other hand, the existence of the second Compton

cut off can be tested by studying:

- observation of one energetic member of a pair coming

out at a large angle from the producing photon.

-High energy, large angle Bremstrahlung.
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-Theoretical.

With the photon cut off studied in Chapter III,

and the Compton cut offs which we have just investigated,

one can describe high energy deviations of the main electro-

dynamic processes from their, behaviour as predicted by

the conventional lowest order perturbation theory.

Such deviations are consistent with the finiteness of

the renormalization constants. Both of these cut offs

have simple physical interpretations.

As their construction was essentially based on the ana-

lytic forms of the amplitudes predicted by second order

perturbation theory, we should like to study in the next

and last chapter what basic properties of the conventio-

nal scheme imply such analytic structures.
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CHAPTER V. REMARKS ON THE STRUCTURE OF THE S-MkTRIX.

A. The S-matrix constructed from the Lagrangian formalism.

Although we have already given a brief sum-

mary of the properties of the conventional S-matrix at

the beginning of Chapter I, we should like to insist on

a few specific points. We have pointed out that the intro-

duction of renormalization constants was made necessary

by the stability requirement:

(Vi) SIO > = 10> ; I i pi irk~k> = I p F e

We shall presently see, however, that even if these con-

ditions were fulfilled , the local and causal structure

implied by the presence of time ordered products would

leave some ambiguity. Indeed, it is well known that the

time ordered product of two operators -which has only a

meaning if they"commuteP outside the light cone- is not

well defined when the two points it refers to coincide.

If these two operators commute at the same space-time

point, their time ordered product can be smoothly defined

when the two points coincide, but if they do not, it is

only defined within a quasi-local operator,(27). Thus,

whereas the S-matrix is, from this point of view, well

defined, its matrix elements, obtained by the application

of Wick's theorem, are not; thus, besides the inconsistency

implied by the divergence of the conventional renormali-
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zation constants, there is still left the possibility to

introduce new constants. The attitude one usually takes

is to use as few constants as possible, besides those w

which come out infinite, that is to say, to define the

time ordering function, each time this is possible, as:

(V,2) 6(X)= +I , X E joWre hB CehL ; 6con -1, X - pab hht cone

6(0) WO0
In the next section, we shall try to see how far one can

go in constructing a local electrodynamics, starting from

an S-matrix with reasonable properties, since the Lagran-

gian formalism, which implies the "existence" of a conti-

nuous set of evolution operators, and forces the coupled

field operators to satisfy canonical commutation rules,

has proved difficult to modify.

B. Unitarity and causality of a "local" S-matrix.

We start from an S-matrix, a functional of

free in-field operators which describe assemblies of

uncoupled physical particles, (27),(28), (29). The S-matrix

can be written in normal ordered form:

(V,3) S:- 14 A

As it is written, it only involves Fourier transforms of

the F-functions for momenta on the mass sh6ll; however,

it will soon prove necessary to extend their definition

for virtual momenta in order to specify the local proper-

ties of the theory.
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The stability conditions:

(V, 4) 0ly 6 iJak0=l M

imply the vanishing of some of these Fourier transforms

for particular values of their arguments, which will be

used in several connections.

The S-matrix is assumed to be unitary:

(V,5) St.

As to the condition of microscopic causality, it has been

formulated by Bogoliubov and coworkerfunder the following

form: (27 ), (28)

(V,6) SAC)L-a4 ) =0

and proved under the assumption that there exist unitary

evolution operators- i.e. in the framework of a Lagrangian

formalism-; hereN%)and f(t)are any two functions or ope-

rators entering the functional definition of the S-matrix;

the functional differenciation is defined in the same way

as it is in the usual scheme, and requires well known

cares when the operators involved in the process anti-

commute.As it will be seen that, in the conventional theories,

the quantities

(V,7) frX) LS

are the "sources" or "currents" of the coupled fields
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which tend asymptotically to the in-fields 86c) , hermitian

by virtue of the unitarity of the S-matrix if the B-fields

are real, this condition has a simple physical meaning: it

states that the effect on a property of the system observed

at point (y) of a disturbance applied at point (x) can

only be felt if (x) is in the past light cone of (y).

More generally, it is reasonable to formulate local causa-

lity in the following form:

(v,8) S = 0 X 

where 3) is a locally measurable quantity and SA(4), a

disturbance. This condition can be taken as a postulate.

It implies the ambiguities that we pointed out in the pre-

ceding section, since it leaves undetermined the response

of the system to a disturbance at the point where this

disturbance is applied. This undeterminacy must be taken

as a proof of the incompleteness of a causal theory

formulated in terms of local fields, since the high energy

behaviour of all the relevant matrix elements- which are

Fourier transforms of vacuum expectation values of time

ordered products of current operators, by virtue of the

causality and unitarity requirements- depends on unknown

renormalization polynomials of the relativistic invariants

which can be formed with the four-momenta involved.

C. Definition of coupled field operators.

In order to complete the specification of the

local aspects of the theory, one has to state prescriptions



according the coupled field operators should be defined.

One will then have a scheme comparable to the lagrangian

formalism. Given an in-field O,,(g) , we shall define the

corresponding coupled field through:

(V,9) 0. S

This relationship holds in conventional theories. In order

that this definition might have a meaning, it is necessary

to rewrite the S-matrix in time ordered form, using the

converse of Wick's theorem. Using Eq.V,2. for the defini-

tion of the time ordering function, together with the free

field equations of motion and commutation rules, one

readily obtains:

Thoseof th 4&.st gr)+f, (xg-elma 9QuS'tio)ns ),have~ 1,C)

, WNf dS )d Ic%

v,.) aIt' t1(x + tC ( t xS 4 )' A (x) zrt ot r

O(VI ~ 10).~ 41

Thaese equations are essentially those proposed in (29).

Those of the first group, (Yang-Feldman equations), have

been obtained b7y commuting the in-field operators in Eq.,

VP,. eilii'er to the right or to the left, whereas those of

the second group make use of the differenciation of a time

ordered product together with the commutation rules.
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Whereas these equations assume familiar forms, they have

some unsatisfactory features. Indeed, in order to decide

whether these fields should be taken as the renormalized

or unrenormalized operators, we should evaluate the matrix

elements (olt, iv.)II o*rck>, (o> <oI Ay)I k(4. One is tempted

to write (O j($j1): /*4 ) in view of

the stability property <0I-() II>:=(oj j)II:O, (see (27),

p.38 9). However, in the conventional theory, the integrals

occuring in the Yang-Feldman equations assume the undeter-

mined form O/0, (cf. (1), p.342 and ff.), so that, after

all, this definition keeps being ambiguous. As however

the field operators have no direct physical meaning, we

shall leave this question open.

We should like, before closing up this section,

to point out that this scheme may be, so far, much broader

than the usual one, since no dynamics has been defined yet,

(for instance one does not have necessarily (i): $tI(f4 ip))b 4)

s tT (ieofit)* }P, and since it has even not been

specified that there exists an interaction Hamiltonian.

D. Specification of the dynamics and of an approximation

scheme.

The dynamics of the system '.are contained

in the F-functions defined in Eq.V,3. which are restricted

by the usual covariance properties and the unitarity and

causality requirements. The simplest three functions are:
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-the fermion self energy:

(V, 11) "(X X9= 0 tiO;

-the photon self energy:

(V,12 r (, K) = '<O 1 S AS

-the vertex operator:

(V, 13) _XX_ _

The stability conditions imply that the Fourier transforms

of the first two vanish for momenta on the mass shell.

They are the kernels involved in the definition of the

propagators:

(V,14) 5r-SCCx9 T40 q>Fx)I9$J0

(V,15) - (r T 0 . 5). 0 >

Some physically relevant matrix element .of the current

operators are on-the-mass-shell Fourier transforms of the

vertex function; for instance, describes the par-

ticle charge and magnetization distributions, whereas

01 ,Pl> describes the production of pairs by an ex-

ternal field.These two quantities are therefore analytic

extensions of each other, (p'-.-p'). Similar remarks can

be formulated about matrix elements of the type <'j)jpok>

4 ifjk) >



As all the matrix elements of products of

current operators can be expanded, using a complete set

of states, and since this process will never stop, one

would like to set up an approximation scheme in which

one might cut off this infinite expansion. We first of all

decide that the terms of the expansion should not contain

other matrix elements then those of the vertex operator.

It seems then natural to base the approximation method

on some expansion of the vertex. Since the vertex is

ambiguous within a quasilocal operator which belongs to

its dispersive part, we conjecture that if one takes it

to be:

and combine the intermediate state expansion with a series

expansion in powers of e, ,and suitable renormalization

prescriptions for the various other matrix elements, one

should be able to reproduce the results of the conventional

theory. Since these finite quasilocal operators can be

suspected to produce divergences, and es we would like to

keep the relationships implied by unitarity and causality,

we shall introduce a breakdown of the theory in the fol-

lowing fashion:

-assume that the S-matrix we start from desefibes a wider

scheme than electrodynamics.

-take as a first approximation to the vertex an expression

allowed by causality.



-in order to compute an effeet, split the corresponding

amplitudes into invariant parts, and express their

coefficients in terms of matrix elements of products of

current operators; then, evaluate these matrix elements

by combined use of the two above mentioned expansions.

(Only the states involving charged fermions and photons

will be considered; we feel that this is a convenient

way to violate unitarity and causality.)

E. The extended electron model.

A physically reasonable deviation from the

electrodynamics of a point particle is obtained when one

assumes that the particle is spread. Thus, we take for

the lowest approximation to the current, the following

causal expression:(see (1) p.35bo ff.)

(V, 17 )

where the barred functions are Hilbert transforms of the

unbarred ones. We shall presently see that if the form

factors are sufficiently damped for large momentum trans-

fers, the usual divergences are suppressed,

a) The current induced in vacuum by an external field.

We shall write the S-matrix in the presence

of an external field by replacing )byA()t The appro-

ximation to the current induced in vacuum, linear in the

external field, is:



(V, 18) o) A , /&9

where, by virtue of the causality requirement:

(V, 19) ($ )(xx 0 A, " 1

The covariance requirements on the polarization kernel

are the following:

-it is a symmetric tensor.

-it is gauge invariant ( or rather has to be made gauge

invariant with the help of the proper quasilocal term).

Thus, it must assume the form:

(V, 20) Kiv ( Y, T (.

since there must not be any induced current if

which cbrresponds to a gauge transformation. In terms of

the Fourier transforms, one has:

(V,2l) ,r -) P

As charge conservation implies that the induced charge must

vanish, we must require that

(V,22) (O):0

which is achieved by using another renormalization counter-

term. Thus finally, the total observed current must be:

(V,23) J; [
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(see (1) p.282) . Now, it is well known that causality im-

plies the separation of JF)into an absorptive and a dis-

persive part.: ( ref .(1) p.344 & ff .)

(V, 24) JT(Pj'p) inco ) i" (

where An fM (n) S (P -P') 0(1I 1 n> 4 ft Uio0>

and J 7 is the Hilbert transform of Jij9; JTU,) essentially

describes the production of real particles by the external

field. The production of pairs is contained in:

(V, 25 ) PLN)= P-''9 AP OCP V( )Sq O** (P + 00t")

oI $ Pt~"><t|" pic
and is essentially given by the perturbation theoqry result

provided one disregards the anomalous magnetic moment term.

It is then clear that, as the matrix element <Oj fr'> is
the analytic extension of the electromagnetic form factor,

if the latter is sufficiently damped for large time-like

as well as space-like momenta, then the dispersive part is

finite as well as 3T(). As now bothR.nd JI)go to zero

when ' goes to infinity in the future light cone, the

finite renormalization I+NLo)describes the response of

vacuum to an external field at the very same point where

it is applied, and defines the bare charge:

(V,26) [+ M

which one would see if one could perform an experiment

during an infinitely short time.
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One point of interest is whether assuming a form factor

would suffice to insure the finiteness of all the terms

contributing to the polarization of vacuum. For instance,

the one pair, one photon term, should be evaluated in the

lowest approximation, in conjunction with the use of the

second approximation to the vertex in the one pair term.

This would take us too far and will be done in the near

future.In the event that the contribution of this process

is finite, one shall have to see whether it implies a

modification of the Compton amplitude of the type indicated

in Chapter IV, and, if it is soptconnect the S-function

with the fermion form factor; this, however takes us

beyond the philosophy we have adopted. Before giving up

this question, we should like to remark that, as there is

not yet any rigorous proof of dispersion relations for

Compton scattering with non vanishing momentum transfer,

(30), there is no reason not to expect deviations of the

above mentioned or of another type.

We shall now go back to the lowest approximation.

b) The self energy.

The electromagnetic mass is naturally defined

in the Hamiltonian formalism through:

(V,27) Sm <P1 j J~tK)

or, with the help of 8q.Vl0.



(V,28) SM ' 1I p)A ,6)lP -- & ' <

The first term is connected with the forward Compton

amplitude, "biereas the second term can be expressed,

using the expansion in terms of intermediate states,

as a sum of squares of matrix elements for otber pro-

cosmos off the mass shell. So, essentially the same

observations as were made about vacuum polarisation

hold here too.

However, this definition may not be consis-

tent, and we have too use the alternative definition in

terms of the S-matrix, that is to say, we have to interpret

the mass as a parameter involved in the definition of

the propagator,. The stability requirement

(V,29) <01 jx) IP>=0

implies that the self energy operator destroys one particle

states:

MV30) Z(P) e (.%UPd )X.-9.7Xr<W)(1

The counter terms necessary in order to satisfy this

condition must then be interpreted as self energy terms:

(setually, we find here again the ambiguity stated about

the definition of the coupled field operators; this is

however irrelevant for the evaluation of the lowest appro-

ximation.

(V,31y .(P)
tivtI* a



Again, in view of the separation of the self energy

operator into absorptive and dispersive part, a out

off on matrix elements of the type (<O1p.,' supplies

the necessary convergence.

F. Conclusion.

Although we have not made a complete study

of the "extended electron" model, it suppresses the

divergences in the first approximation, for reasons

which are physically sensible. It allows for an eg'

tension of our philosophy on cut offs, in a way which

does not exclude the conclusions of practical interest

we came to in the preceding chapter.
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APPEqDIX k. MOLIBR SC&TTERING.

A. lectron-oElectron scattering.

The matrix element is

well known diagrams:

computed in terms of the

The cross section is found to b.:(9)

+ . P) 2C

where A, B, C, are suitable traces of Dirac matrices and

projection operators on positive ehergy states. The cut

off correction is given by:

CIA.

(A,2) - 2 +

In the *enter of mass frame of reference, i1

(AtW34 4t '2

where( and Iare the common velocity and energy of the

electron, and 9, the scattering angle. This expression is

valid provided that <, which is the condition of

validity of the model. With

I

I
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A . )+ I#c"'9) -2)+1A( Ieco? ]

Vi. tY")-#e - (Y+4e)e

(A, 4)

one finds:

if--ao'.

-~ (8I') 9
6, ... e (4) t I'i

B. -meson* electron scattering.

In this case, there is only one diagram:

(L) (e)

Thus, only the dimect term survives; since In the relative

correction A cancels, one has:

(At7) 40 X --6 31 "IT q

provided that( 'Ji where jLis the Lk-eson m~as.

(A,5)

Hence

(A,6)

iS 4 1 I



LPP3NDIX B. GMNERALIZED WARD IDENTITIES.

In order to investigate the requirements imposed

by local gange invariance, we shall sttudy the propagation

of a fermion in an external electromagnetic field; lot

(B, 1) TI4 +(X) Ct9 '(( XX' = X, Y-9

be the fermion propagator; in the presence of an external

field which we assume to be week, we can perform an expan-

aion:

G A ) p ( L) A (A

In terms of diagreas, one ban the following representation:

sni + X

+ +

where ~' 4

is the complete photon propagatolo in which one free propa-

gation function has been oitted. We then define:

(B,3) &A 91t-2 1

where r.jidis the "polarized vertex which differs from

the usual one by the multiplicative factor i+.J.T+ D. nD +-

Similarly, let

(B,4) US-
C.t V f
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define the two fold polarized Compton operator. The vertex

operator can also be expanded in powers of the external

fields

(B,5) ' L1.) '+ '

and define the singly polarized proper Compton operator:

(B,6) 1_ = (X , ,

We now define the Fourier tranniftred quantities 1y ( p'p; k)

and C PI) through:

(B,7 1) 9(P?Pk)1,PLP)

L2n* &( p'+kL ..PK)C~p'k'..k)S 6&?~4k~- Yk
wheru the crossing symmetry is expressed by:

(B,8) Cp k; L,-9 =09

We further remark on the connection between the total and

proper Compton operators:

(B,9 ) Z 'i .txr i 9 ( . . (01
+ f~ fr *9+ it.'" I d'#'.' I A'''

Let us now perform a gauge transformation by putting

A~ .ALI). Then we know that

G %iAjLA) = CaG (Y.xJ9
(B'lO) Itc~~x) f [A(% - .(It.j4 

MODjc'
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Thus, we obtain from Zq.B,2.

(B,11) -ZAt'q) fe Q EN

in terms of the Fourier transformed 9perators, and in view

of the transversality of ,p A , one has, owing to the gauge

invariance of the vacuum polarization:

(Bl2) -a (pq C )n) A(p'-0 Pf.9 -PN

which is essentially the first Ward identity:

(B #124

where G g)J (,)

Similarly, from Eq.B,5. one deduces:

(B,13) k A ( Ck)(bf(ip(d. J(P)] (p!w-'-k).-Lf k)LI)

x8(t'+k'-t-)P) T'p itr' ~ yk
where the polarization part has dropped out for the same

reason as in R4.B,ll., and where ve have used the valus

of the uncrossed and crossed momenta:9qctk':iik, qipik, p-k .

Thus,

(B,14) )16p,' ~ ) ', ' Pq p(

and, from the crossing symmetry,

(Bpl5) y (P k 'yk) P y(sy -e

Furthermore, since

we also ) ave
+ P p'nek

we also have:
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Cp (p', 'p,k) La kvT('q)4(q)''-GX. )GLq')v i')

(B, 17)
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APPENDIX 0. FORMAL STRUCTURE OF THE VACUUM

POLARIZATION AND SELF ENERGY DIAGRAMS.

We wish to establish here the high energy devia-

tions of the vacuum polarization and fermioAt self energy

in a theory where the fermions interact with some neutral

regulator fields.

The equations of motion are:

'(+ tx)= -e PAMA(X4(x) +fb)

where +() is the operator which represents the effect of

the non electromagnetic couplings.

The photon propagator is defined by:

(0,2) I2 cy .x T<oIA'o (- a><-

where the differenciation is taken with an external current.

Now,

(0,3) 0') J + T ))

- jC9j + Ce h YG(x'

where G (Xx')= T(oJ0c o> is the fermion propqgator.

Now, writing 9 A Y

one obtains: TD

(a,4)
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in which

(-x ") Tr e ( .

From the definition of the vertex operator:

(C,6)

one deduces:

!2 e G (X (x"xi XR) G(
C,7) f
Thus,

(6,8) T (X, Xf L: xew

which proves Eq.I,12 in the text, if jv(') and l(&,r*) are

approximated by their zerpth orderapproximation in the

electromagnetic coupling.

The fermion propagator, on the other hand, can

be written: GtLW)- T<ol 9.xau , where IM, qjc') ,are

the fermion fields coupled to the neutral regulator fields,

Se.0, being the electromagnetic S-matrix, in which the

current operator is expressed in terms of the same fields.

Correctly to the second order in the electromagnetic

coupling, one has:

(09) j%~KJ')4.eafic,." *rm01 4KX~it9ag)jv~)

4 @(
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The latter vacuum expectation value, in which S4* is the

S-matrix produced by the abnormal couplings, is closely

connected with the Compton Green's function. More pre-

cisely, one has:

T<01 J)tOLjs) 1k 6*>" - ga)L3
(C,10)

Hence, the self-energy is given by:

011x Z u ',x) +ie JADgjj')Cy xle.,' x) a4A'

where 7 ( ,X9 is the self energy due to the abnormal

couplings, and where the electromagnetic part is expressed

in terms of the Compton matrix. This justifies the result

quoted p.27 of the text.( The techniques used here are

those to be found in : J. Schwinger. Proc. Natl. Acad.

Sci. U1. 452, 1951.)

'JA.. Y C .* (1, .5 *( '-9 Al'l
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