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Abstract

In this thesis, we investigate the use of video magnification for the visualization

and assessment of blood flow. We address the challenge of low signal-to-noise ratios

in video magnification by modeling the problem and developing an algorithm for
measuring the SNR in the context of video magnification. We demonstrate that the

algorithm can be used to estimate the SNR of a real video and predict the SNR in the

magnified video. We use several techniques based on video magnification to visualize

the blood flow in a healthy hand and a hand with an occluded artery, and show that
these visualizations highlight differences between the hands that might be indicative

of important physiological differences.
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Chapter 1

Introduction

Video magnification technology allows us to visualize small variations in videos that

are difficult or impossible to see with the naked eye. These techniques can be used to

investigate a wide range of physical phenomena. For instance, Eulerian linear video

magnification has been used to visualize the subtle motion in the chest of a breathing

baby [1]. Recently, new phase-based algorithms have been used to visualize the

vibration of mechanical structures [2, 31.

In addition to magnifying motion, the Eulerian linear video magnification algo-

rithm magnifies color changes. It has been used to produce visualizations of the subtle

green to red variations that occur at the heart rate as blood perfuses the human face

[1]. Blood flow measures play a large role in the evaluation of peripheral vascular dis-

eases [4]. This thesis investigates the use of video magnification for the visualization

and assessment of blood flow, and its potential applications in evaluating vascular

disease. In this work, we examine the accuracy of the visualizations produced by

video magnification. We demonstrate that video magnification techniques can pro-

duce visualizations that exhibit noticeable differences between a healthy subject and

a subject affected by an arterial occlusion.

In this chapter, we discuss the clinical motivation for visualizing blood flow. We

also explore previous work in obtaining measures of blood flow.
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1.1 Clinical motivation

In 2010, approximately 8 million adults in the US and 202 million people globally were

affected by peripheral arterial disease (PAD) [5, 61. PAD is a cardiovascular condition

that is characterized by insufficient blood flow in the organs and limbs resulting from

a narrowing of the peripheral arteries. PAD can affect any of the arteries outside of

the coronary arteries, including vessels in the brain, upper extremities and kidneys

[7], but most commonly affects the lower extremities [8]. While the majority of PAD

cases are asymptomatic, asymptomatic and symptomatic PAD are both associated

with increased risk of adverse vascular events and increased mortality [9, 101. Patients

with symptomatic PAD experience decreased quality of life due to symptoms such

as claudication (reproducible muscle pain related to physical activity), pain at rest,

non-healing wounds and ulcerations. Treatments for severe symptoms of PAD such as

critical limb ischemia are typically invasive, such as revascularization or amputation

[11]. PAD is a growing problem in the US and other countries with aging populations,

since the prevalence of PAD is age-related [12]. Other major risk factors for PAD

include smoking, diabetes and hypertension [4].

1.1.1 Arterial blood flow

Before we delve any further into PAD, let us briefly review human vascular anatomy.

In the human systemic circulation system, arteries are the blood vessels that carry

blood away from the heart. These vessels branch into a network of successively smaller

vessels. As an artery enters the organ that it is supplying, it branches into arterioles,

which in turn branch into a network of capillaries, the smallest class of vessels. These

capillaries rejoin to become venules and then veins that carry blood away from the

organ and back into the heart [13].

The heart contracts rhythmically in a pattern called the cardiac cycle, which

consists of two main phases: systole and diastole. During systole, the heart contracts;

during diastole, the heart refills with blood. This process causes blood to be ejected

in a pulsatile manner. The arterial wall is elastic and responds to propagated pulse

16
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Figure 1-1: Arteries carry blood from the heart to the tissues of the body. As arteries
near the organs, they branch into arterioles and then capillaries, through which the
exchange of oxygen and nutrients occur. Venules and veins carry the deoxygenated
blood back to the heart. Figure reproduced from 1141.

of blood by increasing in diameter [151. This dampens the pulsatile energy of the

blood as it approaches the organs. In the arterioles and capillaries, the flow of blood

is largely non-pulsatile [161.
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Figure 1-2: The aorta and the arteries of the body experience different blood pressures

during systole and diastole. This pulsatile flow is dampened by the arterial walls;

blood flow is mostly non-pulsatile by the time it enters the smaller vessels. Figure

reproduced from [171.

The pulsatile quality of arterial flow serves as the basis for many measures of
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vascular health. For instance, the shape of the blood velocity waveform measured

by Doppler ultrasonography (which we will discuss in section 1.1.3) can indicate the

presence of an arterial obstruction.

1.1.2 Causes and symptoms of PAD

PAD is most commonly caused by atherosclerosis [4], a pathologic process in which

the arteries become narrower due to the accumulation of lipid and fibrous materials

in the vessel walls [181. Other causes of PAD include arterial aneurysms, thrombosis,

arterial injury, etc. [19].

The severity of the symptoms experienced by an individual with PAD depends on

the degree of stenosis (that is, arterial narrowing), the number of affected arteries, and

the patient's physical activity level. Many patients with PAD do not experience any

symptoms. Patients with more advanced PAD experience symptoms ranging from

intermittent claudication (pain during exercise) to non-healing ulcers and gangrene

[19].

Stage Symptom

I Asymptomatic

Ha Mild claudication

IIb Moderate to severe claudication

III Ischemic rest pain

IV Ulceration or gangrene

Table 1.1: Fontaine's Stages for the classification of PAD. Patients are classified as
asymptomatic if they do not exhibit typical claudication symptoms. Claudication
refers to the reproducible muscle discomfort that produced by exercise and relieved
by resting for 10 minutes [20]. Ischemic rest pain refers to pain at rest that is caused
by insufficient blood supply [19]. While this classification method is not used in
clinical practice, it is commonly used for research purposes. Table reproduced from
[20].

It is estimated there there are 2 to 5 times as many asymptomatic individuals

with PAD as symptomatic individuals. Individuals are designated as asymptomatic

18



if they have no symptoms, or if they do not exhibit any typical claudication symp-

toms. However, asymptomatic individuals may have more subtle impairments of leg

function [4]. Furthermore, asymptomatic PAD and symptomatic PAD alike are as-

sociated with increased risk of mortality and cardiovascular events [9]. There has

been increasing interest in detecting PAD in asymptomatic patients through routine

screening procedures. We will discuss this further in the next section, where we review

existing tools for the assessment and treatment of PAD.

1.1.3 Diagnostic tools for PAD

There are many tools that are currently used for diagnosing PAD. These tools range

from inexpensive and easy-to-obtain blood pressure ratios, to blood flow measures

that require specialized equipment in a vascular laboratory, to vascular imaging tech-

niques that require intravenously injected contrast agents. Video magnification holds

the potential to be less expensive and more informative than many of existing phys-

iologic tests. In this section, we review the existing techniques and their associated

challenges.

Non-invasive vascular measures

There are several non-invasive examinations that can be used to diagnose PAD, and to

determine the location and severity of stenoses. The ankle-brachial index (ABI) is a

common test that is inexpensive and easy to perform. The ABI serves as the standard

for diagnosing lower extremity PAD in office practice [4]. It is also recommended as

a screening device for asymptomatic patients who are at risk for PAD [20, 21]. It

is computed by measuring the systolic blood pressure from the brachial artery (in

the upper arm) of both arms, and the dorsalis pedis (DO) and posterior tibial (PT)

arteries (in the lower calf). The ABI is defined as the ratio of the higher of the two

pressures from the ankle to the higher of the pressures from the two arms. Similar

measures include the wrist-brachial index and toe-brachial index, which are computed

in a similar fashion to the ABI. The wrist-brachial index is used to diagnose upper

19



extremity PAD, and the toe-brachial index is more useful than the ABI in certain

patient populations with lower extremity PAD [221.

Right-arm
systolic pressure

Right-ankle
systolic pressure

sy

DP DP

Interpretation of ABI

> 3 Non1o.0preulble
0.91-1.30 Normal

0.41-0.90 Mibf- dr PriPhr
arwiildiss"

4.00-0.40 S&ver*PW**8ears riW

dim"*e

Left-arm
stolic pressure
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systolic pressure

Figure

pedis (
1-3: The ABI is computed by measuring the systolic blood pressure the dorsalis

DP) and posterial tibila (PT) arteries in each ankle, and the pressure in each*

arm. These measurements are usually made using blood pressure cuffs and a Doppler

ultrasound device. The ABI is computed by dividing the higher ankle pressure in

each leg by the higher arm pressure. An ABI > 1.3 suggests that vessels are calcified,

and that additional vascular studies such as toe-brachial indices or pulse volume

recordings should be conducted [22]. Figure reproduced from [231.

A diagnosis made by the ABI is often considered accurate enough that verifica-

tion with further diagnostic techniques is not required. However, the ABI produces

inaccurate results in some patient populations; since the process of measuring blood

pressure requires using a blood pressure cuff to abolish systolic blood flow, the ABI is

falsely elevated when the patient has calcified vessels that do not compress normally.

This occurs in a small fraction of diabetic or elderly individuals. In these popula-
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tions, other diagnostic measures such as the toe-brachial index (which is useful since

the small vessels in the toes are frequently spared from calcification) or pulse volume

recordings (which we will discuss below) may provide more reliable information [22].

Once a diagnosis of PAD is made using the ABI, further studies are often required

to determine the location and severity of the disease. Segmental pressure exami-

nations and pulse volume recordings (PVR) use specialized equipment in a vascular

laboratory to measure blood pressure and limb volume respectively at successive loca-

tions in an extremity [22]. Continuous-wave Doppler ultrasound can similarly be used

to identify the location, severity and progression of PAD. A continuous-wave Doppler

ultrasound device works by continuously emitting sound waves and measuring the

reflected waves in order to compute the real-time blood flow velocity [24, 211. This

device is commonly used to aid in the measurement of the ABI. Qualitative and quan-

titative measures of the continuous-wave Doppler ultrasound waveform also provide

information about the severity of PAD [21]. Similar to the ABI, segmental pressure

examinations and continuous-wave Doppler ultrasound measurements have limited

accuracy in certain patient populations, including patients with highly calcified and

incompressible arteries [4].

Vascular imaging

Vascular imaging studies are sometimes needed to further assess PAD anatomy, partic-

ularly in patients who are candidates for invasive treatments [4]. Cather angiography,

or contrast angiography (CA) is the gold standard for vascular imaging. It is capable

of producing high-resolution images of vascular anatomy. It requires the use of an

injected contrast agent in conjunction with imaging technology. The contrast agent is

administered via a percutaneous catheter inserted near the target vessel to be imaged.

CA is an invasive procedure and incurs risks associated with percutaneous arterial

access, catheter manipulation, contrast agents and radiation exposure. It is also the

most costly imaging technique in use for PAD [25]. There are several non-invasive

alternatives to CA. Duplex ultrasound is a relatively low-cost and widely used imag-

ing technique [26]. It combines continuous-wave Doppler ultrasound with B-mode

21
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ultrasound, which uses reflected sound waves to produce grayscale images of tissue

structures. Duplex ultrasound can be used to visualize the flow of blood in vascu-

lar structures [221. Magnetic resonance angiography (MRA) is another non-invasive

imaging technique, and studies suggest that it is more accurate than duplex ultra-

sound [26]. MRA uses magnetic resonance imaging technology, often coupled with

intravenously injected contrast-enhancing agents, to rapidly produce two-dimensional

and three-dimensional images of arterial structures. Computed tomographic angiog-

raphy (CTA) is a relatively new non-invasive imaging technique, and has been shown

in several early studies to perform well compared to existing techniques for detecting

occlusions [261. CTA uses an intravenously injected contrast agent in conjunction with

X-ray imaging. Like MRA, CTA is capable of rapidly acquiring images to produce

three-dimensional images of arterial structures.
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Dianosic ool Provides
Diagnostic tool . Advantages and disadvantagesinformation about

Ankle-brachial / Fast, easy to perform
W index (ABI)

X May be inaccurate for non-compressible arteries

Segmental
pressure Severity, location X May be inaccurate for non-compressible arteries
examination

a Pulse volume . Useful for non-compressible arteries
r (Severity, location

W recording (PVR)
X Less accurate than other noninvasive localization tests

/Useful for non-compressible arteries
Continuous-wave
Doppler Severity, location X May report normal waveform downstream of severe stenoses

ultrasound X Limited accuracy in overlapping or densely calcified segments

Duplex 2D vascular / Inexpensive compared to CA
ultrasound structure Low-risk

Magnetic / Fast

resonance 3D vascular / Inexpensive compared to CA
e angiography structure

(MRA) X Cannot be used in patients with stents, pacemakers, and
certain implants

/ Fast

Computed
3D vascular / Inexpensive compared to CA

tomography structure in
.- angiography volumetric slices X Risks associated with contrast agents

S(CTA) X Relatively new, requires more studies of accuracy and
;> effectiveness

/ Established technique with well-studied accuracy and
effectiveness

Contrast 2D vascular
angiography structure in limited X Expensive
(CA) orientations X Invasive

X Risks associated with contrast agents

Table 1.2: Comparison of diagnosis and imaging tools for PAD. These tools are
listed in order from least expensive (ABI) to most expensive (CA). Many of these
tools are also useful for monitoring patients after therapeutic interventions such as
revascularization. Information adapted from [4, 22, 201.
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The diagnostic tools that are currently used for PAD are summarized in Table 1.2.

We hypothesize that video magnification technologies have the potential to visualize

blood flow in a way that can identify the severity and location of PAD. These visual-

izations are likely to be easier and less expensive to obtain than segemental pressure

examinations, PVRs, and even the ABI. Furthermore, video magnification may be

able to visualize the flow in vessels that are too small for existing vascular imaging

techniques to capture. We will explain this in the following section, where we review

some existing video-based techniques for assessing blood flow, and in particular, some

existing video magnification algorithms.

1.2 Video-based techniques for measuring blood flow

The idea of obtaining measures of blood flow from videos is not new. In the past

several decades, there has been considerable interest in simple and low-cost methods

for obtaining measures of cardiac health; video-based methods have been particu-

larly sought-after as they are inexpensive and non-invasive. Recently, Verkruysse et

al. demonstrated that is possible to obtain measurements of blood flow from videos

taken with a consumer grade digital camera [27]. Their method is based on pho-

toplethysmography (PPG), a simple and inexpensive optical technique in which the

skin is illuminated with light of specific wavelengths (typically red or infrared), and

a photodetector is used to measure changes in the reflected light that are associated

with changes in blood volume. PPG utilizes the principle that light is attenuated by

its interactions with biological tissue; the amount of light received by the photodetec-

tor is dependent on factors such as the blood volume in the tissue, the movement of

the blood vessel walls, and the oxygenation of blood 1281. In their work, Verkruysse

et al. took a video of a person's face under ambient lighting. From the video, they

measured the average intensity of a user-defined region of interest containing the face.

After applying spatial averaging and temporal filtering to improve the signal-to-noise

ratio, they were able to obtain accurate measures of the heart rate, as well as visual-

izations of the pulse amplitude and phase of blood flow in the face. In 129], Poh et al.
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obtained measures of the average heart rate from videos of stationary human faces.

Their approach examined the mean intensity of an automatically determined region

of interest in a video of a person's face, and applied blind source separation algorithms

to obtain the signal corresponding to the flow of blood in the skin. Balakrishnan et al.

showed that it is also possible to obtain a signal related to blood flow by examining

the motion of the head [301. Their approach works by examining the horizontal and

vertical trajectories of multiple tracked points in the face. Blind source separation

techniques are then applied to produce a signal that coincides withe the flow of blood

in the head, as verified by an electrocardiogram.

1.3 Video magnification for visualizing blood flow

We can view video magnification algorithms as a special class of video-based tech-

niques. In general, the goal of video magnification is to magnify small changes in

videos that are not visible to the naked eye. When applied to the task of examining

blood flow, video magnification produces visualizations rather than measurements of

the variations corresponding to the flow of blood.

Early work in video magnification took a Lagrangian approach, in which motions

are explicitly computed and video frames are warped according to the magnified

motion vectors [31, 32]. These techniques are useful for magnifying small motions,

but are computationally expensive and often produced noticeable artifacts [2]. In

recent years, several Eulerian approaches were proposed, in which the variations at

specific pixel locations are amplified [1, 2, 31. These approaches are computationally

inexpensive, and have been shown to be particularly adept at visualizing repetitive

motions. The linear Eulerian video magnification algorithm (which we will refer to as

linear video magnification) amplifies the intensity changes of pixels over time. This

algorithm is useful for magnifying color changes as well as motion; for instance, it has

been used to visualize the flow of blood in a human face [1]. However, the algorithm

also magnifies some of the noise in the input video [2]. Eulerian phase-based motion

magnification algorithms amplify the changes in spatial phase of pixels over time
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[2, 3]. The algorithms are capable of producing videos with convincing and relatively

noise-free magnified motions. For instance, they have been used to visualize the

movement of a digital camera during the closing of the shutter [21, and the vibration

of mechanical structures after being subjected to an impact [33]. In this work, we

focus primarily on linear video magnification and its ability to visualize the color

changes that occur as a result of blood perfusion in tissues.

The linear video magnification algorithm is capable of amplifying color changes

and motion in videos taken with consumer grade cameras, using software running on a

consumer grade computer. From an input video, it isolates the changes of interest by

applying a spatial low-pass filter and a temporal bandpass filter. The application of

the spatial lowpass filter is equivalent to performing spatial averaging on each frame,

and serves the purpose of reducing the noise level and improving the signal-to-noise

ratio (we will discuss this further in the next chapter). The temporal bandpass filter is

used to isolate the frequencies close to the human heart rate. These changes are then

multiplied by some constant factor and recombined with the input video to create an

output video in which the isolated color changes and motions are amplified. Using

this algorithm, Wu et al. were able to visualize the repetitive green to red variations

that occur when blood perfuses the face [34].

These results indicate that Eulerian linear video magnification may be useful for

assessing blood perfusion in tissues. We believe that Eulerian linear video magnifica-

tion can contribute to the diagnosis of PAD in two ways:

Cost Video magnification can quickly and cheaply produce visualizations that

can aid in identifying the location and severity of PAD. Such a tool may

be used as a low-cost alternative for the existing non-invasive vascular

measures used in diagnosis of PAD, such as the ABI or PVRs.

Aggregate flow information

We believe that Eulerian linear video magnification can provide informa-

tion about the blood flow patterns in blood vessels that are too small to

be captured by existing imaging techniques. Eulerian linear video magni-

26



fication produces visualizations of the color changes that occur near the

surface of the skin; these color changes reflect the blood volume changes

in the small blood vessels' close to the surface [27, 281. Existing vascular

imaging techniques are adept at visualizing the structure of large blood

vessels, but are not suitable for imaging small vessels. For instance, high-

resolution MRA is estimated to have a spatial resolution of 0.8mm x 0.8mm

[371; for comparison, the average diameter of capillaries in the human hand

is estimated to be 10pim [38]. The blood flow visualizations produced by

video magnification might be used to supplement the information obtained

by vascular imaging techniques.

While Eulerian linear video magnification holds promise, at present, it also faces

some challenges. Eulerian video magnification sometimes produces videos in which

the signal-to-noise ratio (SNR) that is too low for the visualizations to be accurate

or reliable. A low output SNR is caused by two main factors. The first factor is

low signal amplitudes in the input video. Video magnification techniques produce

the most interesting results when applied to small variations that are not discernible

by the naked eye. Thus, the signal of interest almost always has a small amplitude

compared to the image content. The second factor is the presence of noise that is

difficult to remove. Photoplethysmographic measurements are susceptible to motion-

related signal corruption [39]; these unwanted variations often fall within the same

temporal frequency band as the physiological signal of interest [291. For instance, we

may be interested in visualizing the rate at which blood perfuses the head, but as

shown in [301, the flow of blood in the head is associated with a "bobbing" motion that

is likely to obscure the more subtle variations caused by perfusion. Such unwanted

variations cannot be removed using temporal filtering alone. Another noise term that

is difficult to remove is the acquisition noise that is introduced by the video capture

device, typically a digital camera. As we will discuss later, noise in digital cameras is

generally assumed to be white Gaussian noise. This can be attenuated through spatial

'While the flow of blood in small blood vessels (or, the microvasculature) is generally assumed to
be steady, studies have shown that the flow in some human vessels of inner diameter ~ 20pm still
have pulsatile qualities [35, 36].
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and temporal filtering but is difficult to remove completely. In video magnification

algorithms, noise that is not removed by the filtering steps will be magnified in the

output video. The combination of noise in the output and low signal amplitudes

may result in an SNR that is too low for video magnification to produce meaningful

results. To our knowledge, no studies thus far have attempted to measure the SNR

in the context of video magnification.

In the following chapters, we present a a framework for determining the SNR of

an input video that is intended for video magnification. We discuss a model of the

signal and noise suitable for video magnification in general, as well a model for the

specific use of video magnification for visualizing blood flow. We also present two

algorithms for measuring the SNR of an input video, and compare the algorithms

using a simulated image sequence.
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Chapter 2

Signal and noise in video

magnification

In applications of video magnification, the visual changes of interest are often small

relative to the noise level. This low signal-to-noise ratio (SNR) raises the following

question: how accurate are the visualizations produced by video magnification al-

gorithms? In particular, what is the SNR in visualizations of blood flow? In this

chapter, we address this question by investigating the following sub-problems:

1. Model the signal and noise in a video intended for video magnification. This

model will allow us to develop algorithms for the next two steps.

2. Measure the signal amplitude and noise level in the input video. Compute the

SNR of the input video (which we refer to as the input SNR).

3. Given the input SNR, predict the output SNR that can be achieved by the

Eulerian linear video magnification algorithm.

To our knowledge, no studies thus far have attempted to measure the SNR of the

videos used in video magnification. While this work is tailored to the application of

visualizing blood flow, the framework and algorithms that we present are useful in

other applications of video magnification as well.
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2.1 Definitions

Video magnification is useful for visualizing small temporal variations in videos that

would otherwise not be discernible. Variations in pixel intensity can originate from

processes in the acquisition device such as analog-to-digital conversion (which intro-

duces quantization noise to each pixel), or physical variations in the video scene such

as color changes, lighting intensity changes or motion. Usually, one is interested in

only magnifying changes in the video scene that are produced by some physical phe-

nomenon of interest. Examples of interesting phenomena include subjecting a metal

beam to an impact, or the flow of blood in the face.

Motion caused

Blood flow (physical bflwIntensity
phenomenon) change in video

Color change in skin

Figure 2-1: Video magnification algorithms visualize the phenomenon of interest by
magnifying specific changes in the captured video. Blood flow is an example of a
phenomenon that causes two types of changes in the video scene. In our work, we
only want to visualize the color change in the skin.

We use the term source of interest to refer to the physical phenomenon pro-

ducing the visual changes that one wishes to visualize. As described in Fig. 2-1, this

phenomenon can produce multiple types of changes in the video scene. We define

the intensity variations caused by the changes that we wish to visualize as the signal

of interest (which we shall henceforth refer to as just the signal), and intensity

variations caused by the the changes that we do not wish to visualize as ancillary

signal. In addition to the source of interest, the scene might contain other sources of

visual changes. These visual changes are also captured by the acquisition device as

intensity changes in the video. The intensity variations in a video fall into three cate-

gories: noise caused by the camera's image acquisition process (acquisition noise),

variations caused by the phenomenon of interest, and variations caused by other
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phenomena (artifactual noise). These terms are summarized in Fig. 2-2 below.

Noise caused by camera

(acquisition noise)

Figure 2-2: The types of temporal variations that occur in a video.

Acquisition noise

All digital cameras introduce noise during the image acquisition process.

The characteristics of this type of noise have been well studied, and there

are many methods for removing or attenuating it.

interest

Video magnification differs from traditional image and video processing in

that the signal of interest is not the uncorrupted image or image sequence,

but rather the temporal variations in the image sequence that are caused

by some physical phenomenon. This signal has a small amplitude relative

to the possible range of pixel intensities, and relative to the total noise

level. This makes the input SNR lower than what is typically seen in the

image processing literature. In some applications, such as the visualization

of blood flow, the signal of interest occupies a narrow range of temporal

frequencies.
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Ancillary signal

In some cases, the source of interest introduces additional variations that

we do not wish to magnify. For example, when examining blood flow in the

human hand, we might be interested in the color changes resulting from

the amount of blood in the skin, but not in the motions that are caused

by the mechanical effects of the blood flow. This signal can be difficult

to separate from the signal of interest because it has similar temporal

signatures.

Artifactual noise

Other sources in the video scene may introduce variations to the video.

For example, when examining blood flow in the human head, we may be

interested in the motion caused by the flow of blood into the head, but

not in the blinking motion of the eyes.

The goal of video magnification is to magnify as much of the signal and as little of

the noise as possible. In other words, video magnification aims to attain the highest

possible signal-to-noise ratio (SNR) in the magnified video. There are two main

challenges in achieving this goal:

1. Ancillary signal and artifactual noise can be difficult to model, and cannot be

removed or attenuated by existing video denoising algorithms that focus on

removing acquisition noise.

2. The signal amplitude is often significantly lower than the acquisition noise level.

Existing video magnification algorithms use temporal and spatial filtering to

reduce the total noise level prior to magnifying the video. When the input SNR

is very low, the existing denoising processes used in video magnification may be

insufficient for generating an acceptable output SNR.

Later in this chapter, we shall see that in the context of visualizing blood flow, many

types of ancillary signal and artifactual noise can be minimized by making fairly

simple adjustments in the video capture stage or in the data processing stage. In the
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next section, we discuss the problem of acquisition noise and how to measure it for

the purpose of computing the input SNR.

2.2 Related work

2.2.1 Noise in images and image sequences

Modern images and image sequences are typically impaired by noise introduced by

the acquisition process, the compression process, or other factors such as motion [40].

Digital cameras introduce noise at several stages in the image acquisition process.

All modern digital cameras use an imaging sensor, most commonly a charge-coupled

device (CCD) sensor or a complementary-metal-oxide semiconductor (CMOS) sensor

to produce voltages based on the photons incident upon the sensor. The number of

photons at a collection site fluctuates randomly as a result of the quantum nature

of light; this introduces shot noise, which is proportional to the square root of the

number of incoming photons [41]. The sensor itself introduces several types of noise

including dark current noise (caused by the free electrons generated by thermal energy

in the sensor [41]), readout noise (introduced by the on-chip circuit that transforms

the charge at each site on the sensor to a measurable voltage [41]) and pattern noise (a

systemic distortion caused by imperfections in the sensor 1421). An analog-to-digital

converter is used to sample the voltages from the sensor into digital signals, adding

quantization noise [431. The intensity of a pixel in this raw image can be described

as follows (see Table 2.1 for definitions):

Iraw = L + nshot(V7K) + L - nPRNU + ndark + nread + nFP + nq

where L is the incident light power 143, 45].

Many digital cameras apply post-capture processing such as demosaicing, color

correction and gamma correction. These processes can amplify, attenuate or distort

the noise in the raw image [42]. Demosaicing is a color interpolation algorithm that

is required in some cameras to obtain high-resolution colors from the available color
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Table 2.1: Summary of

CMOS digital cameras.

the noise terms present in raw images captured by CCD or
Information adapted from [43, 44].

channels. It typically has the effect of attenuating spatial and temporal noise variance

[43], but introduces spatial correlations [46]. Gamma correction is a nonlinear encod-

ing that is used primarily to reduce the visual artifacts introduced by quantization

[471. The process can be described with a function g(.) that modifies an intensity u

according to g(u) = u'. In digital cameras, we often see 0 < -y < 1 [451; this has

the effect of increasing the noise in dark regions and decreasing the noise in bright

regions, which we will see later in this chapter.

When the digital image is written to the camera's memory device, it may be

compressed, which introduces compression artifacts 142]. While most digital cameras

may be configured to output a RAW image file (that is, the image without any post-

capture processing effects), this option is often not available for videos.

In the video denoising and image denoising literatures, the noise caused by the

acquisition step is commonly assumed to be additive zero-mean white Gaussian noise,

even though some noise effects may actually be multiplicative or spatially correlated

[43, 48, 491. Furthermore, all imaging sensors are affected by shot noise, which is
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9 Shot noise nshot Physical nature of Additive temporal and spatial variance
photons

Photo-response

non-uniformity (a Imperfections in
nPRNU Multiplicative spatial variance

type of pattern sensor
noise)

Free electrons
Dark current generated by
noise ndark thermal energy in Additive temporal and spatial variance

sensor

Noise in circuit that

Readout noise nrea transforms charge Additive temporal and spatial variance
from sensor into
voltage

Fixed-pattern
noise (a type of nFP Ier Additive spatial variancesensor
pattern noise)
Quantization Analog-to-digital
noise n conversion of signal Additive, dependent on image content



strongly dependent on the amount of incident light. CCD noise models typically

assume that the noise is independent between pixels, but is signal dependent in that

the noise level at any given pixel depends on the uncorrupted pixel intensity [45].

CMOS image sensors have also been shown to introduce noise with levels that are

dependent on the incoming photocurrent [501. The relationship between the noise

level and mean pixel intensity is described by a noise level function (NLF), which is

dependent on the natural behavior of photons, the properties of the camera and some

recording parameters 134, 51].

2.2.2 SNR estimation

We examine the individual problems of noise and signal estimation. Noise estimation

is useful in many computer vision algorithms such as denoising and motion estimation

[34]. The general principle of noise estimation is to measure the deviations in intensity

over structure-free areas (that is, areas in the image where the signal is known to be

homogenous and all variations are caused by noise rather than textures or lighting in

the image scene) [521, or over multiple images of the same scene [41]. When one has a

multiple images of a static scene containing a wide range of pixel intensities, such as in

a video of a stationary color calibration target, the NLF may be estimated by simply

measuring the standard deviation over time of the pixels at every mean pixel intensity

[41, 51]. Noise estimation from a single image or from videos of non-stationary scenes

is more difficult. Noise estimation from a single image tends to work in two ways:

by filtering the image to reduce structure and then measuring the noise level from

the filtered image [34, 52], or by classifying certain image regions as homogenous and

measuring the noise level in those regions [53, 52].

The signal in most traditional image processing literature is defined as the original

image before it has been corrupted by noise. The analog to our signal estimation

problem in traditional image processing is the problem of image and video denoising,

which aims to recover the uncorrupted image from a noisy image. A large class of

image denoising techniques rely on the concept of averaging to reduce noise levels.

In magnetic resonance imaging, for example, the signal is commonly approximated
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using the mean intensity of some user-defined regions of interest [54, 55j. One of the

simplest automatic image denoising methods is the Gaussian smoothing approach, in

which the the corrupted image is convolved with a Gaussian kernel to reduce the level

of Gaussian noise [56]. A more complex local filtering method is anisotropic filtering,

which reduces the unwanted blurring effects of the Gaussian kernel by preserving

sharp edges [57]. There are many other techniques that use local filtering, frequency

domain filtering or non-local filtering [561. Video denoising techniques use similar

techniques to image denoising, but also utilize the temporal dimension to achieve

better results. Many video denoising algorithms also apply motion compensation

methods in order to preserve temporal coherence [45].

Several key differences make it difficult to directly apply traditional denoising

techniques to signal estimation and denoising in video magnification. Firstly, video

magnification is affected by ancillary signal and artifactual noise, which may be harder

to model than acquisition noise. Many state-of-the art video denoising techniques are

capable of removing the types of noise commonly introduced by imaging devices such

as additive, multiplicative or structural noise [58, 48], but may not be applicable

to more complex noise models. Secondly, video magnification provides the most

useful results when applied to videos with low input signal levels. Most existing

denoising algorithms focus on applications with relatively high input SNR's, and may

not be accurate enough to estimate a low amplitude signal. For example, many video

denoising algorithms are evaluated on image sequences with peak signal-to-noise ratio

(PSNR) values in the 10-30 dB range, and obtain improvements in PSNR on the order

of 0-10 dB [59, 60]. In contrast, in order to visualize blood flow in the human face

using Eulerian video magnification, a magnification factor of 100 has been reported

[1]; this indicates that the amplitude of the color variation in the input video is low

relative to the image intensity, and that the SNR is frequently much lower than 10

dB.

We also consider existing techniques for one-dimensional signals. The problem of

speech enhancement bears promising similarities to the problems in video magnifi-

cation. Speech enhancement aims to produce an uncorrupted speech signal from an
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audio segment containing noisy speech. The noise in speech recordings is typically

assumed to be additive and signal-independent [61]. Practical speech enhancement

algorithms are expected to be effective in real-world environments with low SNR

values, e.g., -5dB to 15dB [62]. Speech enhancement differs from most problems in

video magnification in that the desired speech signal occupies a wide frequency range

(speech signals are often band-limited at 0 - 4 kHz [63]). Furthermore, human per-

ception of speech is affected by many spectral features such as the low-pass shape

of the speech spectrum, and spectral peaks [62, 64]. As such, most speech enhance-

ment algorithms are concerned with estimating the noise spectrum and recovering

the spectrum of the clean speech signal [62]. Speech enhancement algorithms fall into

several categories. Spectral subtractive algorithms involve estimating the noise spec-

trum (typically in the Fourier domain) from a speech-free segment of a recording, and

then subtracting the noise spectrum from noisy speech in order to obtain an estimate

of the uncorrupted speech signal [62, 65]. Spectral subtractive algorithms are simple

to implement. Subspace algorithms use matrix factorization techniques such as sin-

gular value decomposition to decompose the speech recording into a subspace that

primarily contains the uncorrupted signal and a subspace that primarily contains the

noise [62]. Another class of speech enhancement algorithms use statistical models of

speech to estimate parameters of the uncorrupted speech signal and noise [66, 62].

In the following sections, we provide definitions of signal and noise suitable for

video magnification. We then investigate two algorithms for estimating the signal

and noise level of each pixel in a video sequence.

2.3 Signal and noise model

In this section, we define a model to describe the signal and noise in the context of

video magnification. This model will allow us to develop algorithms for computing

the input SNR.
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2.3.1 General case

In Fig. 2-2, we defined the signal of interest to be the variations caused by the

"interesting" changes in the video effected by some source of interest. This signal is

corrupted by ancillary signal, artifactual noise and acquisition noise. In the Eulerian

video magnification work, Wu textitet al. present a model for a video in which the

signal is the variations in the video that are caused by rigid motion in the video scene.

The rigid motion is effected by sources such as the flow of blood in a human's head,

or the opening and closing of a camera shutter [1]. Here, we present a similar model

that includes a more general definition of signal, as well the aforementioned noise

terms.

Let I(x, t) denote the image intensity at the 2D location x and time t. The average

frame of the image sequence is Io(x). We assume that the temporal variations in the

video are small relative to the intensity of the mean frame.

We use the term ng(x, t) to describe acquisition noise, and assume that it may

be modeled by additive white Gaussian noise with pixel-dependent variance. We

use the term #(x, t, Io) to describe variations caused by the source of interest, which

encompasses the signal of interest and the ancillary signal. We describe variations

caused by all other sources, or artifactual noise (see Fig. 2-2), using n" (x, t, Io). We

model the image sequence as follows:

I(x, t) = Io(x) + (x, t, Io) + na(x, t, Io) + ng (x, t) (2.1)

For now, let us assume that the source of interest only produces one type of change

(e.g., a color change with no motion) in the scene. Ideally, video magnification should

produce the following:

Imag(X, t) = Io(x) + (1 + a)#(x, t, Io) (2.2)

where a is the magnification factor. In practice, some amount of noise is ultimately
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also amplified:

Imag(X, t) = Io(x) + (1 + a)( (x, tIo) + ana (X, t, Io) + gng (x, t))

where a and g represent some noise reduction factors that may be achieved through

a variety of techniques including image stabilization, spatial filtering, and temporal

filtering.

2.3.2 Visualizing blood flow

In the specific application of visualizing blood flow, we make additional assumptions

that allow us to simplify the model presented in the previous section.

We define the signal to be the intensity variations caused by the color changes in

the skin that occur as a result of pulsatile blood flow. In [30], Balakrishnan textitet al.

showed that the flow of blood in the head also appears to produce a mechanical effect

that causes the head to move, which can be visualized using video magnification. In

our work, we define any intensity variations that occur as a result of the mechanical

effect of blood flow (e.g. rigid motions of the limb, or pulsating motions visible on

the surface of the skin) to be ancillary signal. Equation 2.1 becomes:

I(x, t) = Io(x) + 0coior (X, t, Io) + Omotion(X, t, Io) + #a (X, t, Io) + ng(x, t) (2.3)

For now, we assume that the bmotion term is negligible after mechanically and/or

computationally stabilizing the video subject and image sequence respectively. We

will discuss this assumption later. Equation 2.3 simplifies to:

I(x, t) = Io(x) + #coior (X, t, Io) + ng (x, t) (2.4)

We assume that colo,(x, t) has zero mean. Furthermore, we assume that the ampli-

tude of 4coior(X, t) is small enough that the variance of ng(x, t) depends only on the
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mean image intensity; that is,

n(x, t) ~ N( 01 0 a,(0( )

(0 ) (an,(I0 (X)) 0

Henceforth we will use #(x, t) to describe our signal of interest, and n(x, t) to describe

the acquisition noise.

In the rest of this chapter, we present several approaches for measuring un(IO(x))

and the amplitude of #(x, t) in order to estimate the input SNR. We discuss the

denoising techniques that can be used to reduce cr,(Io(x)) and to obtain an adequate

output SNR.

2.4 SNR estimation algorithms

As defined in our model, a video intended for visualizing blood flow consists of the

signal of interest and acquisition noise. Based on this model, we present a process for

estimating the input SNR. In the following sections, we demonstrate a technique for

measuring the acquisition noise levels, and develop two algorithms for estimating the

amplitude of the signal of interest.

2.4.1 Noise estimation

As we discussed in section 2.2.1, in an image acquired by a digital camera, the noise

level at each pixel depends on the mean pixel intensity. This relationship is described

by a noise level function (NLF). The NLF can be estimated from an image as demon-

strated by Liu textitet al. 134], or it can be measured from a video of a static scene

that contains a range of pixel intensity values. For example, we measured the NLF

for a Panasonic Lumix DMC-GF2 using an approach similar to the one described in

[51].

We took a video recording of a color calibration target and measured the standard

deviation of the green channel intensity over time at each pixel. In this work, we are
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only concerned with the green channel, but this algorithm could easily be extended

to determine the NLF of other color channels. We generated an NLF (Fig. 2-3) that

is relatively flat over the range of possible mean pixel intensities, and resembles one

of the NLF's presented in [511. The shape of an NLF can be affected by post-capture

processes in the camera, such as gamma correction. The Lumix G2 supports the

sRGB and Adobe RGB color spaces. While the color space used in video recordings

is not explicitly mentioned in the camera specifications, both sRGB and Adobe RGB

require the application of a gamma correction function that may be approximated as

g(u) = uT where u is the input image intensity and -y = 2.2 [67, 68]. This has the

effect of increasing the noise level in dark parts of the image and decreasing the noise

level in bright parts. Other processes such as tone scale or color correction may have

also influenced the shape of the NLF. In our work, we assume that these processes

do not introduce any additional noise terms to our image.
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Figure 2-3: The green channel NLF of a Panasonic Lumix DMC-G2, computed by
measuring the standard deviation of the green channel intensity of each pixel in a

Macbeth Color Checker Card over 600 frames.
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2.4.2 Signal amplitude estimation

The amplitude of the signal of interest is more difficult to obtain than acquisition

noise levels, particularly when the SNR is low. We discuss two algorithms that use

denoising techniques to estimate the amplitude of this signal.

Spectral subtraction

Spectral subtraction is an audio denoising technique that estimates a clean signal

from a noise-corrupted acoustical recording by subtracting an estimate of the noise.

In this section, we modify the algorithm and use it to denoise a video and produce

an estimate of the uncorrupted signal of interest.

The algorithm described in [69] works by estimating the noise magnitude spectrum

from a segment of an acoustical recording with no speech activity. This estimated

noise magnitude spectrum is then subtracted from the magnitude spectrum of a

segment of noisy speech, while maintaining the phase of the noisy speech. The noise

is assumed to be additive and signal-independent, but potentially nonstationary (that

is, its spectral magnitude may vary slowly over time). Because of the time-varying

nature of the noise spectrum, this algorithm is performed over short overlapping

segments of the input signal.

We use a modified version of the spectral subtraction algorithm to remove the

noise at each pixel. We assume the noise is additive and white, with an amplitude

that depends on the mean intensity of the pixel. We assume that the noise levels

do not change over time, so we do not segment the signal into short overlapping

segments as described in [691. In the context of video magnification, pixels that are

known to contain no signal (e.g., pixels in the background) are analogous to non-

speech segments, while pixels within the video subject (e.g., the limb in which we

wish to visualize blood flow) are analogous to noisy speech segments. The intensity

time series at individual pixels are analogous to the short overlapping input segments

used by Boll textitet al. [69]. Our algorithm is as follows:

Spectral subtraction algorithm
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1. Identify a region of pixels that contain no signal; we call this the noise region.

Ideally, a color calibration target should be placed next to the subject of the

video for this purpose. This region should contain as wide a range of mean

pixel intensities as possible. We assume that the pixels in this region obey the

following:

I(x, t) = Io(x) + n(x, t)

2. Identify a region of pixels that contain some noise-corrupted signal; we call

this the signal region. We assume that each of the pixels in this region can be

represented by the following:

I(x, t) = Io(x) + #(x, t) + n(x, t)

Our goal is to produce an estimate of the signal #(x, t), which we abbreviate as

A(t).

3. For each pixel in the signal region,

(a) Compute the mean intensity over time and the Fourier transform of the

intensity time series. We use y(t) to denote the intensity time series of this

pixel. We use the notation F to denote the Fourier transform.

y(esw) = F[y(t)]

(b) Identify N pixels in the noise region that have the closest mean intensity

over time. For simplicity, we use the notation n(t) where i = 1, P - - ,Pto

denote the intensity time series of these pixels.

(c) Compute the mean magnitude spectrum of the N pixels from the noise

region. We use the term p(eiw) to describe this value.

p(eiw) = |nI ( )|
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(d) Subtract the mean magnitude spectrum from the magnitude spectrum of

y(eiw) to estimate the magnitude of s(eiw).

I (e W)I = Iy(e")|I - Pu(ei")

Any resulting negative magnitude values are set to 0, as described in [69].

(e) Compute the inverse Fourier transform of the frequency spectrum of pi.

s(t) = F- 1 [ (Iy(eiW)I - pu(esw)) eizY(eJ)]

(f) Compute the variance of (t) over time.

We omit the residual noise reduction step described in [69], in which the estimated

magnitude spectrum after step 3d (above) is adjusted to be more similar to the mag-

nitude spectra of the two segments preceding and following the current segment. This

achieves a similar effect to averaging the estimated magnitude spectrum over three

segments. In our algorithm, the analogous step would be to adjust the estimated

magnitude spectrum at each pixel to be similar to the spectra of the pixels in a

neighborhood around the current pixel; this is similar to performing a spatial aver-

aging operation on the estimated magnitude spectrum at each pixel. We found that

even using a small averaging neighborhood produced unfavorably smoothed results.

We evaluate the performance of this algorithm on a simulated image sequence in

section 2.5.1.

Spatial averaging

Local spatial averaging is used in a large class of image denoising algorithms to reduce

noise levels [56]. We present an algorithm that uses spatial averaging in a similar way

to estimate the amplitude of the signal of interest in our model. Our algorithm

examines the effect of spatial averaging on the noise level in a video, and extrapolates

this relationship to estimate the signal power in the presence of no noise.
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In section 2.3, we defined the signal and noise model:

I(x, t) = Io(x) + #(x, t) + n(x, t)

Under the assumption that the amplitude of #(x, t) is small enough to not affect

the value of an, all of the above terms are independent in time and the variance

over time of these terms are additive. We use the notation Vart(f(x, t)) to denote

Varlf(x, t)It], or the variance of the function f(x, t) taken over the time dimension.

Vart[I(x, t)] = Vart[Io(x)] + Vart[(x, t)] + Vart[In(x, t)]

Or, simply:

I (x) = a2(x) + al(x) (2.5)

Throughout this work, we will refer to the variance of image intensity over time,

cri(x), as the total variance since it represents the sum of the signal variance and

noise variance. When we work with real videos later in this chapter, we will refer to

this value as the total sample variance.

In general, applying a spatial averaging filter to an image with additive, signal-

independent zero-mean Gaussian noise will attenuate the noise variance by a factor

that is inversely proportional to the size of the filter. For instance, an averaging filter

(or, box filter) of size m x m attenuates the noise by a factor of 1 = [701, while

1
a Gaussian filter with standard deviation of produces a factor of oc 2 [451. In

the context of video magnification, if we convolve each frame with a box filter of size

m x m, the resulting noise variance o, is described by:

01 2 n

For now, we assume that the signal #(x, t) does not vary over space, that is,

q(x, t) = 0(t) for all x. We will relax this constraint later. The resulting variance of
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the image after convolution with a box filter, om(x), is described by:

fm(X) = o+ n(2 (2.6)M

The proof of Eq. 2.6 is fairly simple. Let Im(x, t) represent the intensity time

series of the pixel at location x in an image that has been convolved with an m x m

filter.
Sm2

Im(Xt) = I(i, t)

where each xi is a location within the filter convolution neighborhood surrounding

the pixel.

M2
Im(X, t) = 2 (Io(x ) + #(x , t) + n(xi, t))

m2 M2 M 2

Vart[Im(x, t) Vart [Io(xi)] + Vart[ 2 #[O(t)]t + Vart[ [2 m(xi, 0)
i=1i=1 i=1

m2

Vart[#(t)] + 1 4ZVar[n(xi, t)]t

O~,m(2 (X+

This proof still holds if we assume, rather than a spatially invariant signal #(t),
that there is some average signal at location x after the convolution of the image with

a filter of size m x m. We write this average signal term as:

m2

#m(X, t) = 1( ,m2

i=1

Equation 2.6 becomes:

cf m(X) = orm(X) + . 2 2 (2.7)
m
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Later in this section, we will describe an algorithm that estimates the value of a2,m(X).

It is important to note that 2,(x) is a good approximation of the variance of the

true signal over time a (x) only for sufficiently small m; if m is too large, the blurring

effect distorts the estimated signal. The appropriate value of m depends on several

factors including the spatial nature of the signal (which depends on the phenomenon

of interest) and video resolution. In the context of visualizing blood flow, we typically

assume that the signal varies gradually enough in space that a fairly large m can be

used; we discuss this in the next chapter.

What we have presented thus far is analogous to the use of spatial averaging in

image denoising. Several image denoising algorithms, such as Gaussian smoothing

and the anisotropic filtering, use a Gaussian filter to reduce the variance of additive

white Gaussian noise in an image to produce an estimate of uncorrupted image [57].

Say an image I(x) is corrupted by additive white Gaussian noise as follows:

I(x) = U(x) + n(x)

where U(x) is the uncorrupted image (which is the signal of interest), and n(x)

N (0, o2(U(x))). Applying a Gaussian filter of variance aj produces the smoothed

image:

Im(x) = Um(x) + nm(x)

1
where Var[nm(x)] = (os and oc [45].

87raf2[4]

The smoothed image Im(x) is a reasonable estimate of Um(x), when the smoothed

noise level is low compared to the amplitude of the uncorrupted image; that is,

Im(X) ~ Um(X) if cT2 < IU(x)1 2. In parts of the image where the signal U(x)

is spatially invariant, Um(x) ~ U(x). So we see that for (a < IU(x)1 2 , and suf-

ficiently small m (where the meaning of "sufficient" depends on the signal content),

Im(x) ~- U(x). As we discussed in section 2.2.2, the noise levels in images are typ-

ically small relative to the signal amplitude, so the assumption of a2 < IU(x)1 2 is
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valid.

In the context of video magnification, however, we hypothesize that our signal

amplitude is similar to the noise level even after the noise has been attenuated using

a spatial averaging filter. That is, o 2 (x) < U2 (x) and 0,m2 (x) ; ! for most values

of x. To estimate a signal amplitude that is small relative to the noise amplitude,

we propose to estimate om(x) for " =0, that is, form = o. Our algorithm is as

follows:

Spatial averaging algorithm

1. Select a range of mi x mi box filter sizes, for instance, m, = 3, m 2 = 5,... , mF

9. mF should be chosen such that a2mF 2

2. For each filter size mi, where i = 1, 2,. .-, F:

(a) Apply the filter using a 2D convolution to each frame of the image sequence.

(b) Measure Vart[Im, (x, t)], that is, the sample variance of the intensity over

time at pixel location x.

3. Define ui = $. For each pixel, compute a least squares regression line VartIm (x, t)] =

4o(x) + / 1(x) -u, where o(x) = oy (x) and 01(x) = c,2(x).

This algorithm is summarized in Fig. 2-4. The algorithm gives an estimate of the

variance of the signal over time, oy(x), which, under the assumption that q(x, t) has

zero mean, is equal to the signal power P0. The algorithm also produces an estimate

of noise variance o2(x).

In the following section, we evaluate the accuracy of these estimates using a sim-

ulated image sequence. Later in this chapter, we evaluate this algorithm on a real

video of a hand.

2.5 SNR estimation in a simulated video

To test our signal estimation algorithms, we simulated a periodic color change that is

corrupted by acquisition noise. The image sequences were created and then analyzed
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Vart[Im(x, t)]

slope=

00

&2

U3 = U2 = 4  U 1  2x2

Figure 2-4: Summary of the spatial averaging algorithm. We first estimate the fit

of Vart[Im(x, t)] (the total variance) against u (the inverse filter area, not shown to
scale in the figure). The slope of the fit estimates the noise variance (the component

of the total variance that is affected by spatial averaging). The intercept estimates

the signal variance (the component of the total variance that is unaffected by spatial

averaging).

within the same MATLAB script to avoid the quantization errors that would result

from generating and reading a video file. We used a 64-bit representation for the

pixel intensity values such that each pixel takes on a value within the range [0,1].

The general format of each image sequence is described below.

Each video frame is split into two square regions. Region A contains only noise,

while region B contains a signal as well as noise, that is:

IA(x, t) = Io(x) + n(x, t)

IB(x, t) = Io(x) + #(x, t) + n(x, t)

We defined our mean image to be spatially invariant, our signal to be a spatially

invariant sinusoid, and our noise to be additive zero-mean Gaussian noise, as follows:

Io(x) = Io

#(x, t) = A, sin(27rtf /F,)
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0 0 a2
n(x, t) ~ N( , n

2 of

The choice of #(x, t) = A8 sin(27rtfHR/F) calls for some explanation. The color

change in the skin that is caused by blood flow is not likely to be purely sinusoidal,

given that blood volume waveforms obtained via photoplethysmography are not si-

nusoidal [28]. However, the color change is likely to have some frequency component

at the heart rate f. We selected a sine wave to be a simplistic representation of a

portion of the actual signal.

To test the performance of our signal estimation algorithms on different signal

amplitudes, we created two image sequences using A, = 0.1 and A, = 0.01. All other

parameter values were held constant: a, = 0.1, 1o = 0.4, f = 1.5, F, = 30. Note that

for our zero-mean sinusoidal signal, the power is equal to the variance over time. The

variance over time and amplitude are related as follows:

2 As
8 2

We investigate the performance of the spectral subtraction algorithm and the

spatial averaging algorithm in estimating the signal amplitude in each simulated image

sequence. First, we evaluate each algorithm on the simulated image sequence with

As = 0.1.

2.5.1 Spectral subtraction results

We define region A to be the noise region and region B to be the signal region. Using

the algorithm defined in section 2.4.2, we produced an estimate of the signal in every

pixel within the signal region. We computed the sample variance of the estimated

signal at each pixel, s2(x), and the mean sample variance over all of the pixels,
2= EN2 s(Ni). The mean sample variance is the estimate of the power of the8= V2 j= s~(~.Tema oe

signal of interest. We did this for several values of N, which represents the number

of noisy samples from which we derive the mean noise magnitude spectrum. We

expected that increasing N would cause the sample mean noise magnitude spectrum
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to approach the true mean noise spectrum, which would increase the accuracy of the

signal amplitude estimate.

X 10-8-
Average over alt pixels

7 I

6-

a 6 4- ~1

~3-

2

1-

0 5 10 15 20 25 30 35 40 45 50
N

Figure 2-5: The estimated signal power, , produced by applying our spectral sub-
traction algorithm to a video with a,,, = 0.1, A, = 0.1. The error bars represent the
standard deviation in the values ofs2 over all of the pixels in the signal region. g2

appears to become more accurate as N increases; howver, it appears to converges
upon 5.4 x 10-3 rather than the true signal power U2 = 5.0 x 10-3.

In Fig. 2-5 we see that jg2 -U| decreases as N increases, as we expected. However,

g2 converges upon 5.4 x 10-3 rather than U2 = 5.0 x 10-3. This discrepancy is not

very large relative to the true signal power, but we will see later in this chapter that

this error greatly impacts our estimate of the signal amplitude when the true signal

amplitude is very low compared to the noise level. In Fig. 2-6, we see that the

estimated signal for P = 50 (Fig. 2-6b) is much closer to a sinusoid than the original

input (Fig. 2-6a), but still appears to contain some noise.

The spectral subtraction algorithm described by Boll textitet al. is known to pro-

duce audible artifacts that are frequently referred to as musical noise [71, 61]. Several

authors have attempted to reduce the residual noise through techniques such as over-

subtracting the noise spectrum [72], performing non-linear spectral subtraction 173],
or optimizing the parameters used in spectral subtraction [71], but we do not inves-

tigate these algorithms in this work. In [71], Sim textitet al. describe these artifacts
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(a) The intensity of the input video I(x, t),

plotted for several arbitrary values of x.

Figure 2-6: Input pixel intensities (left) and

video with A, = 0.1, a, = 0.1.
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(b) The estimated signal O(x, t) produced
using P = 50, plotted for several arbitrary
values of x.

estimated signal (right) for the simulated

as consisting of two components: (1) remaining noise that has the same perceptual

characteristics as the original noise, and (2) additional artifacts that are caused by

the presence of random spectral peaks in the estimated spectrum. Fig. 2-6b shows

that our estimated signal contains some noise that visually resembles additive white

Gaussian noise; however, investigating the nature of the remaining noise is beyond

the scope of this work.

2.5.2 Spatial averaging results

We used the spatial averaging algorithm to estimate the signal power in both regions

of the video. We applied several m x m filters, where:

m =3,5,7,9

1 1 11 1
U m2  32' 52' 72' 92

Using the algorithm described in section 2.4.2, we measured the sample variance over

time at each pixel, Vart [Im(x, t)], for each value of u. To obtain an accurate mea-
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(a) Estimated fit of Vart [Im(x, t)] against u for several of the uncorrelated pixels; each color
represents the fit computed from a single pixel. The standard deviation of the slope and
intercept values over all the uncorrelated pixels are 3.06 x 10-3 and 1.10 x 10-4 respectively.
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(b) The mean fit curve of Vart [Imi (x, t)] against u. This curve is computed using the mean
of the estimated linear regression coefficients produced at each of the uncorrelated pixels.
The red error bars represent the standard deviation of Vart[Imi (x, t)] computed over the

uncorrelated pixels.

Figure 2-7: Estimated fits of Vart[Im(x, t)] against u for the simulated video in which

A 8 = 0.1, o7 ., = 0.1. The slope of the fit is an estimate of of, and the intercept is an

estimate of o .

sure of the standard deviation of our results, we selected only spatially uncorrelated

pixels; that is, pixels that are greater than 9 px apart. We also excluded pixels that

were within 9 px of the image borders to avoid the edge effects of the convolution

process. We computed a least squares regression line of Vart[Im(x, t)] against u for
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each uncorrelated x. The slope coefficient is an estimate of &'(x) and the intercept

is an estimate of &'(x).

Fig. 2-7 shows that the spatial averaging algorithm produced an accurate estimate

of the true signal power from the simulated video in which A, = 0.1, or = 0.1. The

algorithm produces an estimate of the signal power and noise variance at each pixel,

as shown in Fig. 2-7a. There is some variation between the estimated slope and

intercept produced at each pixel; however, the standard deviation of these estimates

is relatively low. The relatively small standard deviation in this estimate over all

pixels suggests that it is even possible to obtain a fairly accurate estimate from a

single pixel. To investigate this, we created an estimated signal power map, shown

in Fig. 2-8. Due to the simulated white Gaussian noise in the image sequence,

these sample standard deviations vary slightly between image sequences created with

the same parameter values. Future work should derive the expected values of these

deviations.
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Figure 2-8: Estimated signal power at each pixel in the signal region (left) and noise
region (right), for the simulated video in which o-, = 0.1, A, = 0.1. The average
estimated signal power in the signal region is 5.02 x 10-'; the average estimated
signal power in the noise region is 3.62 x 10-7, which is small relative to the estimate
from the signal region and can be considered to be close to the true value of 0. The
covariance in the estimates of spatially adjacent pixels was measured to be negligible.

Fig. 2-8 shows that the spatial averaging algorithm can be used to produce an
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accurate map of the estimated signal power in a video. This visualization is useful

for analyzing real videos, which we will see in section 2.6.

2.5.3 Comparison of signal estimation algorithms

In this section, we compare the mean estimated signal power computed by each

algorithm. Each algorithm produces the estimate from 289 spatially uncorrelated

pixels.

A8 = 0.1, a = 5.00 x 10- 3  &7 Standard deviation of &2

Spectral subtraction algorithm 5.49 x 10- 7.91 x 10-4

Spatial averaging algorithm 4.99 x 10-3 1.22 x 10-4

Table 2.2: Estimates of the signal power computed by the spectral subtraction algo-
rithm and spatial averaging algorithm for the simulated video in which o, = 0.1, A, =

0.1.

A8 = 0.01, or2 = 5.00 x 10-' &2 Standard deviation of &2

Spectral subtraction algorithm 1.29 x 10-3 2.75 x 10-4

Spatial averaging algorithm 5.41 x 10 5  2.61 x 10- 5

Table 2.3: Estimates of the signal power computed by the spectral subtraction algo-
rithm and spatial averaging algorithm for the simulated video in which a, = 0.1, A, =
0.01. The spectral subtraction algorithm is not able to estimate the true signal power
from individual pixels.

The two algorithms produced comparable results for a, = 0.1, A, = 0.1 (Table

2.2). The lower standard deviation achieved by the spatial averaging algorithm in-

dicates that it can make more accurate estimates from single pixels. The spectral

subtraction algorithm fails to produce an accurate estimate of the signal power for

Un = 0.1, As = 0.01 (Table 2.3). These results indicate that the spatial averaging

algorithm is better than the spectral subtracting algorithm at estimating the signal

amplitude in videos with low SNRs.
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2.6 Applications to visualizing blood flow

In this section, we apply our model and signal estimation algorithm to a real video.

We demonstrate the process for estimating the input SNR in a video of a healthy

human hand, and evaluate our results. We briefly discuss the effects of the denoising

techniques used in Eulerian linear video magnification. We estimate the output SNR

that can be achieved by applying these denoising techniques to our video.

2.6.1 Method

We used a Panasonic Lumix DMC-GF2 to take a video of a healthy female subject's

hand and wrist. The subject was seated comfortably next to a table that was at

approximately the height of her chest. Small '+' marks were drawn on the palm to

serve as markers that can be used to estimate the motion of the hand.

100

400

500

600

100 200 300 400 500 800 700 800

Figure 2-9: A healthy female's hand next to a color calibration target.

We processed the video in MATLAB using a 64-bit representation for each pixel,

such that each pixel takes on a value within the range [0, 1]. We manually selected

a signal region that contained only the palm of the hand, to reduce any artifactual

noise that might be caused by the fingers twitching. We selected a noise region that

contained the color calibration target. A simple edge detection algorithm was used to

exclude any sharp gradients in the hand as well as the borders of the color calibration
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target. We also applied a simple erosion algorithm to exclude the pixels near the

edges of each region that would be affected by the spatial filter.

We applied our spatial averaging algorithm over 450 frames of the video, using

m = 5, 7, 9,11,13,15, to produce estimates of the signal amplitude and noise vari-

ance at each pixel within the selected regions. The values of m were experimentally

determined; future work should examine the effect of the choice of m values on the

accuracy of the estimates produced by the spatial averaging algorithm.

2.6.2 Noise level estimation

As we demonstrated in section 2.4.1, the noise level in a video can simply be measured

from a stationary color calibration target. In this section, we evaluate the noise levels

estimated by the spatial averaging algorithm, and compare them to the true noise

levels measured from the color calibration target.

Using the spatial averaging algorithm, we estimated the average noise standard

deviation in the color calibration target to be 6.10 x 10-. The mean standard devia-

tion measured from the color calibration target is 2.63 x 10-3. Fig. 2-10a shows that

for every mean intensity, the noise levels predicted by the spatial averaging algorithm

are usually higher than those measured from the video, and had a wider spread. The

difference between the mean estimated and mean measured noise levels (Fig. 2-10b)

appears to be consistent across every intensity bin. This indicates that there is some

systematic error in the spatial averaging algorithm. Future work should investigate

the nature of this error.

The noise levels in the color calibration target exhibit a grid-like spatial pattern

(Fig. 2-11). The spatial averaging algorithm produces the same pattern as the mea-

sured noise levels, although the noise level at each pixel is uniformly higher. This

pattern indicates the presence of structured noise, which is common in real videos

[481. Structured noise may be introduced by processes such as demosaicing [46J, or

H.264 compression [74]. Since structured noise can be difficult to model, future work

should endeavor to reduce this type of noise by using a digital camera does not require

demosaicing, and is capable of recording raw, uncompressed video files.
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(a) Green channel NLF. (b) Mean green channel NLF.

Figure 2-10: Using the color calibration target, we measured the noise standard

deviation in the green channel. We also used our spatial averaging algorithm to

estimate the noise standard deviation in the green channel. The average NLF (right)

was computed by binning the noise levels into 20 bins based on mean intensity and

then taking the mean noise level within each bin.
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(a) Estimated noise standard deviation. (b) Measured noise standard deviation.

Figure 2-11: Estimated noise standard deviation at each pixel. The estimated noise

standard deviation from the spatial averaging algorithm (left) fall into the same grid

pattern as the measured noise standard deviation (right).

The average estimated noise standard deviation in the hand is 2.04 x 10-2; this

is substantially higher than the estimated noise standard deviation in the color cali-

bration target. The markers that were drawn on the palm exhibit particularly high

noise levels (Fig. 2-12). The high noise levels in the hand are likely to be caused by
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small motions. As shown in Fig. 2-4, in the spatial averaging algorithm, we estimate

the relationship between the total variance (taken over time) at each pixel and the

inverse area of the box filters that are applied to the video. The slope describes the

component of the total variance that is affected by the spatial averaging filter. In

the algorithm, this component is assumed to consist of just the acquisition noise.

However, in a real video, the slope may be artificially inflated if the pixel experiences

additional variations that are attenuated by the spatial averaging, such as motion.

Small motions can significantly increase the total variance of pixels in areas with high

intensity gradients (e.g., near the markers, or in regions with visible texture such

as the palm). However, the application of a spatial averaging filter smoothes these

intensity gradients and reduces the contribution of motion to the total variance. This

is likely to cause the slope of the fit of total variance against inverse filter area to be

higher near the markers and in the textured parts of the hand. We discuss the effect

of motion further in the next section, where we estimate the signal amplitude in the

hand.
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(a) Estimated noise standard deviation. (b) Estimated noise standard deviation (top
1% of values removed to improve viewing

scale).

Figure 2-12: The estimated noise standard deviation is higher in the signal region than

in the noise region. Pixels with negative estimated noise variance1were excluded.

'For some pixels, the spatial averaging algorithm produced a negative estimate of the noise

variance and/or a negative estimate of the signal power. This is expected to occur with some low

probability. The noise in the video inevitably introduces noise to the measured total variance at
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2.6.3 Signal amplitude estimation

We used our spatial averaging algorithm to estimate the variance (over time) of the

signal in each pixel. We assume that the signal has zero mean, so we refer to this

estimated value as the estimated signal power. We refer to the square root of the

estimated value as the estimated signal amplitude.
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Figure 2-13: The estimated signal amplitude in the pixels of the hand are generally

larger than those in the color calibration target.

As expected, the estimated signal amplitudes are low in the color calibration target

(with a mean of 7.81 x 10-4) and higher in the hand (with a mean of 5.32 x 10-3).

The regions with high signal amplitudes appear to agree with the magnified videos

we obtain by applying Eulerian linear video magnification to videos of healthy hands

(which we discuss in section 3.3). It is unclear if the high signal amplitudes on the

right side of the signal region truly indicate strong tissue perfusion in that area.

Future work should investigate whether the estimated signal amplitudes reflect the

expected blood flow patterns in different scenarios. For instance, if both arteries are

occluded with a blood pressure cuff, the estimated signal amplitudes should be low

in all parts of the hand.

Fig. 2-14 shows the distribution of the estimated signal amplitudes in the hand.

each pixel, which produces noisy estimates of the noise variance and signal power.
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Figure 2-14: Distribution of estimated signal amplitudes in the pixels of the hand.

The mean signal amplitude is estimated to be 5.32 x 10- 3 , and the mean normalized

signal amplitude is estimated to be 1.1% of the corresponding pixel intensity. In

section 2.4.1, we noted that the videos produced by our camera were likely to be

gamma encoded with an approximate factor of 2. After applying the inverse factor

to decode our pixel intensity values, we obtain mean estimated signal amplitude of

0.0093% of the irradiance (in the green channel) at each pixel.
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Figure 2-15: Estimated signal power.
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In Fig. 2-15, we see that pixels near the markers on the hand produced negative

estimates of signal power. This was likely caused by the presence of motion. The

spatial averaging algorithm produces an estimate of the signal power by first plotting

the total variance of a pixel against the inverse area of the spatial averaging filters

that are applied. The estimated fit is extrapolated to estimate the total variance

when the filter has infinite area (which should reduce the contribution of the noise

variance to 0). As we discussed earlier, the presence of motion can increase the slope

of this fit, which consequently decreases the extrapolated intercept. Figs. 2-12 and

2-15 suggest that the presence of motion negatively impacts the accuracy of our signal

and noise estimates, so it is important for future work to attempt to quantify and

remove its effects.

2.6.4 Input SNR

We used the signal power and noise variance estimated in the previous sections to

compute an estimate of the input SNR at each pixel in the hand, according to the

equation:

(a=j(x)
SNR(x) = 10log10

In section 2.6.2, we described several conflicting estimates of the noise levels in

the video. The average estimated noise standard deviation computed using the pixels

in the hand is 2.04 x 10-2, which is much higher the mean computed using the color

calibration target (6.10 x 10-3). Both values are higher than the average measured

noise standard deviation in the color calibration target (2.63 x 10-3). The differences

between the estimated values in the hand and the color calibration target were likely

caused by small motions in the hand. As we discussed earlier, the presence of motion

might cause the spatial averaging algorithm to overestimate the noise variance and

underestimate the signal power for some pixels. The difference between the estimated

and measured noise levels in the color calibration target was likely caused by some

systematic error in the spatial averaging algorithm. To compute the SNR at each
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pixel in the hand, we chose to use the estimated

spatial averaging algorithm at each pixel. We aimed

estimate of the input SNR by choosing to use the

noise variance.
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(a) Estimated input SNR (dB) at each pixel.
We excluded pixels that had negative esti-
mates of signal power or noise variance, and
pixels that had very high or very low esti-
mated SNRs. These excluded pixels appear
to be gray in the image.

Figure 2-16: Estimated SNR (dB) in the
spatial averaging algorithm to the video.
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(b) Histogram of estimated input SNR (dB)
from the pixels in the hand.

input video, produced by applying the

The mean input SNR in the hand was estimated to be -12.1 dB. This estimate

is consistent with our hypothesis that the SNR in the input video is lower than what

is typically seen in the image and video processing literature. We also hypothesized

that the signal power is much smaller than the noise power. On average, the signal

power was estimated to be 11.1 times smaller than the noise power. The SNR map

in Fig. 2-16a shows that there is a significant amount of noise in our estimated SNR

values. We excluded pixels that produced negative estimates of noise variance or

signal power from the SNR map; these pixels are gray in color. The many gray areas

in the hand indicate that many pixels produced unreliable estimates. Furthermore,

some pixels in the color calibration target appear to have a similar SNR to many

parts of the hand.
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It is likely that the motion of the hand affected our estimates of the input SNR.

While we hypothesized that motion causes the pixels in textured regions to underesti-

mate the SNR, it is unclear how motion affects the pixels in texture-less regions. The

reliability of our SNR estimates can be improved by quantifying the effect of motion,

as well as other issues mentioned in the previous sections such the structured noise

introduced by the camera.

2.6.5 Denoising in Eulerian linear video magnification

In the previous section, we estimated the SNR in the input video. We briefly discuss

the denoising techniques used in Eulerian linear video magnification and their effect on

this SNR. The Eulerian linear video magnification algorithm uses a spatial averaging

filter (with a Gaussian kernel) and a temporal band pass filter to isolate and denoise

the signal of interest [1]. Each of these filters attenuates the variance of additive white

Gaussian noise. We assume that the magnification step that is applied after these

filters has a negligible effect on the output SNR.

Temporal filter

Under the assumption that the noise in the video can be modeled as additive white

Gaussian noise, applying an ideal temporal band pass filter reduces the noise power

by a factor that is proportional to the width of the filter [751. We assume for now that

this improves the SNR by the same factor; we will address this assumption shortly.

We approximate the effect of this filter on the SNR:

(F. (&(x)
SNR'(x) = 10 log

1 0 
(

2w &2 (X)

where F, is the sampling rate and w is the width of the pass band. We assume F, = 30

Hz. In [11], a band pass filter of w = 0.17 Hz is used to visualize blood flow in the face.

In our work, we assume w = 0.3 Hz, since the resting heart rate in healthy individuals

has been observed to vary by 0.12 Hz or more [76]. This value is discussed in further
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detail in section 3.2. Under these assumptions, the SNR after the application of the

temporal filter becomes:

SNR'(x) = 10 logo 50 (

To check the validity of this assumption, we measured the effect of a 2nd-order

Butterworth filter on simulated white Gaussian noise. We found that the filter reduced

the noise power by a mean factor of 60. This indicates that our assumed noise power

reduction factor of 50 is reasonable. We use the assumed factor of 50 to make a more

conservative estimate of the output SNR.

Spatial averaging filter

While the Eulerian linear video magnification algorithm uses a Gaussian kernel in the

spatial averaging step, we consider the box filter in our work. Our techniques can

easily be adapted to spatial filters of other shapes.

We saw in section 2.4.2 that applying a box filter of size m x m modifies the variance

of additive white Gaussian noise by a factor of n. This produces the output SNR:

SNRo(x) = 10 log1 o 50 m2 .

In section 2.4.2, we discussed the importance of choosing an appropriate value for

m. While applying a larger filter attenuates more noise, too much spatial averaging

will distort the signal of interest. The appropriate threshold for m depends on the

spatial characteristics of the signal of interest as well as the resolution of the video.

For the purposes of visualizing blood flow in the hand, we choose m to be equal to

the width of the index finger (this is an arbitrary heuristic and should be investigated

in future work). In our video, the width of the index finger is approximately 30px.
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Using m = 30,

SNRut(x) = 10 log10  45000 s

2.6.6 Output SNR

We predicted that applying the temporal and spatial filters described in section 2.6.5

produces an average output SNR of 33.9 dB in the hand (Fig. 2-17). On average,

the signal amplitude is in the resulting video is predicted to be over 60 times larger

than the noise standard deviation. It is likely that this estimate was affected by

the motion in the hand, which we discussed in previous sections. The accuracy of

this estimate also depends on the validity of our assumptions. We assumed that

applying a temporal filter would attenuate the noise without affecting the signal

power. However, if the signal has non-zero power outside of the pass band of the

temporal filter, applying the filter attenuates the signal power as well as the noise

power. It is also possible that using a spatial averaging filter with a width equal to

that of the index finger distorts the signal of interest and decreases the output SNR.
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(a) Estimated output SNR (dB) at each (b) Histogram of estimated output SNRs

pixel in the hand. (dB) in the hand.

Figure 2-17: Using the temporal and spatial filters described earlier, we estimate that

we can obtain high output SNRs in the hand. We predicted that these filters increase

the SNR from an mean of -12.1 dB in the input video to a mean of 33.9 dB in the

output video.
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2.7 Summary

In this chapter, we discussed a model for the signal and noise terms in video mag-

nification. We described an algorithm for estimating the amplitude of the signal of

interest in the context of visualizing blood flow. We showed that the algorithm could

be used to accurately estimate the signal amplitude in a video with a low SNR. We

discussed how the parameters used in Eulerian linear video magnification affect the

SNR of the resulting video. We applied our algorithm to a video of a hand, estimated

the input SNR, and predicted the output SNR. While our methods are tailored to the

task of visualizing blood flow, the techniques we presented can be adapted to other

applications of video magnification.
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Chapter 3

Visualizations of blood flow

When attempting to examine blood flow for the purpose of diagnosing or tracking

peripheral arterial disease, our signal of interest is the color changes in the skin that

that occur as a result of blood perfusion. In this section, we present some techniques

for visualizing this signal. We evaluate the accuracy of these visualizations, and

investigate whether they can be used to differentiate a healthy extremity from an

extremity affected by an arterial occlusion.

Peripheral arterial disease can affect any of the arteries outside of the heart, in-

cluding the carotid artery and arteries in the brain, upper extremities, kidney and

lower extremities [7]. The lower extremity vessels are affected more commonly than

the upper extremity vessels [18]. However, we focus our early investigations on the

hands since they are easy to access, manipulate and film.

3.1 Vasculature of the hands

In this section, we briefly review the vasculature of the human hand. The human

hand is supplied by two arteries: the ulnar artery (located on the same side of the

hand as the pinky) and the radial artery (located on the same side of the hand as the

thumb). As shown in Fig. 3-1, these arteries meet in the center of the hand to form

the deep palmar arch and the superficial palmar arch [781. The deep palmar arch is

supplied mostly by the radial artery, and branches into the vessels that supply the
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thumb and radial side of the index finger. The superficial palmar arch is supplied

mostly by the ulnar artery, and in turn supplies all of the fingers but the thumb.

Most of the arteries in the hand are located on the palmar side. The venous system

of the hand is mostly located on the dorsal side 1791.

Superficial palmar Palmar carpal branches
arch of the radial Superficial branch

_7 and ulnar arteries of the radial nerve

Ulnar Uln r-
Deep palmar arch artery nerve

Figure 3-1: Vasculature of the hand, viewed from the palmar side. Figure reproduced
from [80].

We found that applying linear video magnification to videos of the dorsal side of

the hand produced no color changes at the heart rate. This is consistent with the

vascular anatomy, as most of the arteries of the hand lie on the palmar side of the

muscles and bones of the hand [811.

3.2 Color change as the signal of interest

In the application of visualizing blood flow, the signal of interest is the color change in

the skin resulting from the underlying flow of blood. In this section, we make assump-

tions about the temporal and spatial characteristics of this signal. We hypothesize

that these assumptions will help us isolate and visualize the signal of interest.

There is sufficient diagnostic power in a small band of frequencies near the

heart rate

Blood pressure waveforms can have non-zero power in multiple frequency

bands, as shown in Fig. 3-2. It is likely that the color change resulting
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from the propagation of this pulse through small blood vessels has similar

characterstics. However, we assume that the components of the signal at

frequencies near the heart rate contain sufficient information to produce

an accurate visualization of blood flow. In the frequency domain, we

consider only the signal components in a band of width wh centered at

the heart rate fh. This band is intended to describe the natural variations

in resting heart rate in healthy subjects. The 95% confidence interval for

the difference in resting heart rate varies from 7 beats/min (or 0.12 Hz)

in 20-year-olds to 3 beats/min (or 0.05 Hz) in 75 year olds 1761. In our

work, we allow for variations of up to 0.15 Hz around the heart rate, and

assume Wh - 2 x 0.15 Hz - 0.3 Hz.
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Figure 3-2: Arterial pressure in the aorta (PAO), femoral artery (femoral) and radial

artery (Padial) of a female pig, in the time domain and frequency domain. Figure

adapted from [82].
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The signal varies gradually across space

We assume that each pixel exhibits a similar signal of interest to the pixels

in a small neighborhood around it. This assumption allows us to apply

spatial averaging filters up to a certain size to the video without signifi-

cantly changing the signal amplitude at each pixel. In our work, we choose

the maximum filter side length to be equal to the width of the index finger.

Future work should investigate the validity of this assumption in healthy

individuals as well as individuals with vascular abnormalities.

These assumptions allow us to determine some of the parameters used in video mag-

nification and in other visualizations, which we will see in the following sections.

3.3 Application of Eulerian linear video magnifica-

tion

In this section, we use Eulerian linear video magnification to visualize the blood flow

in two human hands. We discuss whether the magnified videos accurately reflect

blood flow. We also investigate whether the results can be used to differentiate a

healthy hand from a hand affected by an arterial occlusion.

We produced a video of the hand of a healthy female subject, and the hand of a

female subject who had an occlusion in the ulnar artery at the wrist, as verified by

MRA. Each of the videos was taken in a room with consistent, bright lighting. In

each video, the subject was positioned comfortably next to a flat surface that was

approximately level with her chest. The subject was instructed to place her forearm

flat on the surface and to keep it as still as possible for the duration of the video.

In the case of the healthy subject, we placed a handheld continuous-wave Doppler

ultrasound probe (which we will henceforth refer to as the Doppler probe) on the

subject's radial artery to obtain an audio recording of the subject's pulse.

We processed the videos using a modified version of the Eulerian linear video

magnification algorithm presented in [1]. In [11, all three color channels magnified.
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Figure 3-3: Experiment setup with a healthy female subject. The Doppler probe was

placed on the radial artery in the wrist.

Our algorithm only magnifies the green channel, as it was described by Verkruysse et

al. to contain the strongest signal relating to heart activity [27].

3.3.1 Linear video magnification algorithm for visualizing blood

flow in the hand

We processed each video in Matlab according to the following algorithm:

1. Manually designate a region of interest that includes the palm of the hand and

the wrist. This region should exclude the background, the fingers (which are

prone to unwanted motions), and the edges of the hand.

2. Examine the time series of all the pixels within the region of interest. Select a

video segment that does not contain large changes in amplitude; these are likely

caused by motion.

3. Examine the frequency spectrum of all the pixels for the selected video segment,

and confirm that there is a clear peak within the range of 0.5 Hz to 2.0 Hz.
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Designate fh to be the frequency at which this peak occurs. If there is no peak,

return to the previous step and select another video segment.

4. For the green channel of the selected video segment:

(a) Apply a spatial blur using a Gaussian kernel. The standard deviation of

the Gaussian, of, should be approximately equal to half of the width of

the index finger; the exact value can be determined experimentally.

(b) Apply a temporal band-pass filter to exclude frequencies outside of [fh -

, fh+ flh] where Wh = 0.3 Hz.

(c) Magnify the intensity of each pixel by a constant factor, a.

5. Add the magnified green channel to the original green channel.

6. Recombine the color channels to create the magnified video.

3.3.2 Results

Healthy hand

The results for the healthy subject are shown in Fig. 3-4. In examining the frequency

spectra of the pixels in the region of interest, we found a clear peak at 1.17 Hz, which

we verified to be the heart rate using the audio signal from the Doppler device. Fig.

3-4a shows that the hand uniformly exhibits a green to red color change at the heart

rate frequency; this is similar to the blood flow effect that has been observed in the

face[1].

Fig. 3-4b indicates that the minima in the green channel intensity exhibit a fairly

consistent time delay compared to the peaks in the audio signal. We investigate this

time delay in the next section. This alignment suggests that this particular magnified

video reflects the blood flow detected by the Doppler device. Due to the relatively

narrow temporal pass-band that we applied to the video, the intensity in the magnified

video is forced to vary at a rate that is close to 1.17 Hz. Furthermore, the beat-to-beat

variations in heart rate that are visible in the audio signal (highlighted by the red box)
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(a) Frames of a magnified video of a healthy hand, separated by time intervals of -I- seconds.

The heart rate fh was determined from the frequency spectra of the pixels in the region of

interest to be 1.17 Hz.

IL
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Seconds

T-

1 19 195

(b) (Top) Green channel intensity of the pixels in the region of interest of the magnified

video, which produced at the end of step 4 in section 3.3.1). Each curve represents the

intensity of a single pixel. The red lines represent the timing of the four frames presented

in Fig. 3-4a. (Bottom) Audio signal produced by the Doppler device.

Figure 3-4: In the magnified video of a healthy hand, we see that the hand uniformly

exhibits a green to red color change at the heart rate frequency.

are not apparent in the magnified green channel. Future work should investigate the

performance of the video magnification algorithm on videos that contain large beat-

to-beat variations in heart rate.

Hand with ulnar artery occlusion

The results for the subject with an occluded radial artery are shown in Fig. 3-

6. We found the heart rate fh = 1.29 Hz in a similar fashion to the previous video.
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Figure 3-5: The intensity in the magnified green channel (each curve represents the

signal at a single pixel) appears to align with the peaks in the audio produced by

the Doppler device. In the time segment highlighted in red, however, the magnified

intensity does not exhibit the same beat-to-beat variations in heart rate that are

shown in the audio signal.

Unfortunately, we did not have access to a continuous-wave Doppler ultrasound device

at the time the input video was taken. In the magnified video, the hand does not

appear to exhibit a uniform color change. There appears to be a high concentration

of color at the ulnar part of the palm near the wrist (shown in the blue box in 3-6a)

that is not apparent in the healthy hand (3-4a). This discrepancy may be caused by

the occlusion in the ulnar artery.

In this pilot study, we showed that the Eulerian linear video magnification tech-

nique produces magnified videos that appear to reflect the blood flow in a hand.

These videos also show some differences between a healthy hand and a hand with an

occluded ulnar artery. Further work is required to determine if these visual differences

are caused by differences in blood flow patterns between the two subjects. In the next

section, we explore an alternate visualization of blood flow.
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(a) Frames of a magnified video of a hand with an occluded radial artery, separated by time

intervals of g seconds. The heart rate fh was determined from the frequency spectra of the

pixels in the region of interest to be 1.29 Hz. The blue box indicates an area that appears

to exhibit large color changes.

(A

0.3

-0.4

(b) Green channel intensity of the pixels in the region of interest of the magnified video.

Each curve represents the intensity of a single pixel. The red lines represent the timing of
the four frames presented in Fig. 3-4a.

Figure 3-6: In the magnified video of a hand with an occluded ulnar artery, we see

that the hand does not exhibit uniform color changes at the heart rate frequency.

3.4 Visualization of the time delay of blood flow

The amount of time that it takes for blood to perfuse the skin may be indicative of

a nearby arterial occlusion. In continuous-wave Doppler ultrasound recordings, the

pulse transit time describes the time it takes for the pulse wave in a cardiac cycle

to travel between two sites along an artery [83I. An increased pulse transit time can

indicate the blockage of an artery [83, 84J. In this section, we use magnified videos

to produce visualizations of the time delay between the signal of interest at different

parts of the hand. We investigate the differences in the results produced for a healthy

hand and a hand affected by an ulnar artery occlusion.

77



3.4.1 Cross-correlation for determining time delay

The cross-correlation method is the most common way of determining the time delay

between two signals [85]. In [86], the cross-correlation of two sequences yi (t) and Y2 (t)

is defined as:

RYY2(-r) = E[y,(t)y2 (t - T)]

For finite-length signals, the cross-correlation estimated for the observation interval

T is defined as:
T

RylY 2 (7) = T(t)Y2- T)dt
T -r 17

The value of T that maximizes RyY2 is the estimate of the delay D between

the signals. The input signals y1(t) and y2(x, t) may be filtered using H1 and H2

respectively prior to performing cross-correlation in order to improve the accuracy of

the delay estimate [86]. This algorithm is summarized in Fig. 3-7.

T
yj(t) H, y1(t) X Peak Max

& 10 detector peak

y 2 (t) H2  - y2(t) Delay
by -r

Figure 3-7: Cross-correlation algorithm for computing the time delay between two
signals. The input signals y1(t) and y2 (t) may be filtered to produce y'(t) and y'(t).
Figure adapted from [86].

3.4.2 Cross-correlation in magnified videos

In the visualization of blood flow, our goal is to estimate the time delay at each pixel,

D(x). We use the cross-correlation algorithm described in Fig. 3-7 to compare the

green channel intensity signal at each pixel x to some fiduciary signal yi(t).

We define the yi(t) to be the green channel intensity signal at some reliable pixel

x, which we call the fiduciary point. We define "reliable" as having a clear and high-

magnitude peak at fh in the frequency domain. The location of this fiduciary point

is determined by examining the height and sharpness of the frequency spectrum at
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fh for each pixel within the region of interest. We use y' (t) = Imag,G(xr, t), where

Imag,G(X, t) is the magnified intensity in the green channel produced by the Eulerian

linear video magnification algorithm. This is equivalent to filtering y, (Xr, t) using the

spatial blur and temporal filter described in section 3.3.1.

For each x within the region of interest, we use yj(x, t) = ImagG(X, t). We explore

all time delays in the range[ 2), that is, for all r in [- , ).

3.4.3 Results

For both subjects, we produced time delay estimates relative to a fiduciary point on

the ulnar side of the hand, close to the wrist. The pixels in this area exhibited clear

peaks at fh for both subjects.

Fig. 3-8 shows noticeable differences between the two subjects. In the video of

the healthy subject, the estimated time delays appear to be uniform throughout the

palm (Fig. 3-8a). This is consistent with our earlier observation that in the magnified

video, the healthy hand appears to uniformly change in color from green to red. In

the video of the subject with an arterial occlusion, the time delays appear to be less

homogeneous throughout the palm (Fig. 3-8c). Areas closer to the center of the hand

have more negative delays compared to the edges of the hand.

Fig. 3-8d shows that the time delays for the healthy subject have a relatively

narrow spread, and are centered approximately at 0. In contrast, the estimated time

delays for the subject with an arterial occlusion (Fig. 3-8b) have a wider spread with

two peaks. The time delays also appear to be shifted towards more negative values.

While there are noticeable differences between the videos of the two subjects, it is

unclear if the differences are significant or contain diagnostic power. Further study is

required to determine if these differences are caused by the arterial occlusion in the

second subject.
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Figure 3-8: The estimated time delay of the magnified green channel intensity signal
in each pixel. These delays were computed over 250 video frames.

3.5 Summary

In this section, we presented several ways to examine blood flow in the hand. We

produced visualizations from a video of a healthy hand, and a video of a hand

with an occluded ulnar artery. The magnified video produced by the Eulerian lin-

ear video magnification algorithm appeared to agree with the audio signal produced
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by a continuous-wave Doppler ultrasound device placed on the healthy subject's ra-

dial artery. The magnified videos showed several qualitative differences between the

healthy hand and the hand affected by an arterial occlusion. We produced maps of

the estimated time delay of the signal in each pixel in the hand in each video. These

delay maps and their associated histograms indicated that the hand with an arterial

occlusion had a higher spread of time delays. Future work should study the accuracy

and reliability of these results.
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Chapter 4

Conclusion

In this work, we addressed an important question about video magnification that had

previously gone unanswered: how reliable are the visualizations produced by video

magnification algorithms? Videos that are intended for video magnification typically

have low SNRs. To our knowledge, no previous studies have measured the input 'or

output SNR in video magnification.

We are particularly interested in producing accurate and reliable visualizations of

blood flow in the human body. We presented a model to describe the signal and noise

in the general context of video magnification, and then presented a more specific model

to describe the signal and noise in the application of visualizing blood flow. Based

on this model, we developed an algorithm for estimating the amplitude of the color

change caused by blood perfusion in a video. We showed that this algorithm is able

to accurately estimate the amplitude of a periodic color change in a simulated video

with a low SNR. We applied the same algorithm to a real video of a healthy hand,

and produced plausible estimates of the input SNR. Using these values, we predicted

that the existing denoising methods used in video magnification were sufficient for

producing a high output SNR. While our algorithm focused on the application of

visualizing blood flow, it can be adapted to assess the SNR in other applications of

video magnification. In future work, we would like to verify and improve the accuracy

of our estimates and predictions.

We also demonstrated that video magnification can be used to produce visualiza-

83



tions that have noticeable differences between a healthy individual and an individual

with a vascular abnormality. Such visualizations might be useful in a low-cost tool

for evaluating vascular disease.

This work suggests that it is possible to obtain accurate visualizations of blood

flow using video magnification. We believe that video magnification technology has

the potential to make a meaningful impact in the evaluation of vascular diseases.
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