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Abstract

With the advent of high-throughput sequencing technology, Genome Wide Associa-

tion Studies (GWAS) have identified thousands of genetic variants that are associated

with disease and complex traits. Many of these variants reside in the non-coding re-

gion of the genome, and affect gene expression and downstream cellular phenotype by
disrupting the regulatory machinery of the cell. For example these variants can alter

the binding of the transcription factors (TF). In this thesis we present Whole-genome

regulAtory Variant Evaluation (WAVE), a computational method that models the TF

binding ChIP-seq signal solely from DNA sequence and predicts genetic a variant's

effect on TF binding. Applying WAVE to two important transcription factors, NF-
nB and CTCF, we show that WAVE accurately predicts ChIP-seq signal on held-out

chromosome. WAVE discovers the DNA motif of the target TF as well as the bind-

ing co-factors, displaying substantially greater expressiveness in modeling TF binding

than conventional motif-based approaches. Furthermore, with AUC larger than 0.7
in the most stringent control scenario, WAVE outperformed existing motif-based ap-

proaches in predicting genetic variants associated with allele-specific binding.

Thesis Supervisor: Professor David K. Gifford
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

Next-generation sequencing (NGS) technology has dramatically decreased the cost

and time for whole-genome sequencing, enabling the possibility of large-scale geno-

tying of human individuals across various population cohorts. Exploiting the power

of the technology, Genome-Wide Association Studies (GWAS) provide a systematic

method to examine the possible associations between common genetic variants and

complex traits such as major diseases [1-4]. Thousands of genetic variants have been

identified by GWAS studies to be significantly associated with important diseases

from schizophrenia to Alzheimer's disease. However, the mechanism by which these

variants disrupt cellular function and contribute to downstream phenotypes remains

largely unknown.

Variants in protein coding sequences including missense and nonsense mutations

are simple to characterize, as they have direct effects on the composition of the protein

transcribed from the coding sequence. However, the majority of GWAS detected

variations reside in non-coding regions with potential regulatory roles in the cell

machinery [4, 51. With the lack of functional annotation in these non-coding regions,

the influences of such variation on gene expression and other cellular functions are

not well understood.

The gene expression in the cell is regulated through complicated machinery that

13



involves the interaction of many protein complexes, and transcription factors (TF)

play an important regulatory role in these complexes. Previous work has observed

that non-coding DNA changes in the recognition sequences of transcription factors

can affect gene expression and cellular phenotypes [6]. Thus predicting the effect of

genomic variants on TF binding is an essential for interpreting the role of non-coding

variants in pathogenesis.

1.2 Experimental methods for regulatory variant dis-

covery

Several generations of experimental approaches have been designed to determine the

transcription binding site in vivo, among which chromatin immunoprecipitation fol-

lowed by deep sequencing (ChIP-seq) is a widely used method . In the ChIP-seq

protocol, the target transcription factor is cross-linked in vivo to DNA which is then

sheared to fragments using sonication. These DNA fragments are co-precipitated with

transcription factor-specific antibodies, unlinked and purified for high-throughput se-

quencing. Mapping the sequencing reads to the genome result in a genome-wide

profile of the binding of the target transcription factor.

After obtaining in vivo binding data from ChIP-seq experiments, two categories of

approaches are usually used to determine the effect of genetic variants on transcription

factor binding.

Association Test

An association test exploits the statistical power of the large number of genotype

and ChIP-seq data from different individuals. Referring to the haplotype without the

variant as reference allele and the haplotype with the variant as the alternate allele,

the association test is built on the assumption that the total binding strength of the

TF around a variant site should be associated with the number of alternate alleles

(0,1 or 2 for human as we are diploid creature) if that variant has an causal impact

14



on the binding signal.

Allele-Specific Analysis

Allele-specific analysis is built on the assumption that heterozygous variants will

exhibit an "allelic imbalance" where the reads will come from one allele more often

than the other depending on whether the variant has a positive or negative effect on

the TF binding.

Although experimental methods that utilize high-throughput sequencing technol-

ogy such as ChIP-seq provide direct evidence for the effect of genetic variants on

transcription factor binding, it is limited in several aspects. First, both of the two

types of analysis requires ChIP-seq experiments with a reliable antibody to the tar-

get transcription factor, which is not available for some of the factors. Second, an

association-test analysis needs genotype and ChIP-seq data from a large number of in-

dividuals, while allele-specific analysis requires very deep sequencing to have sufficient

read depth for reliable identification of allelic imbalance. Both of these requirements

are costly and time-consuming. Thirdly, many variants are excluded from the anal-

ysis either because they are not common enough to appear in the limited number

of samples in the association-test analysis, or because they are not close enough to

the peak of the binding (therefore without enough read depth) in the allele-specific

analysis. Both of these factors limit the range of variants that we are able to evaluate.

Therefore, developing models that could computationally predict the effect of variant

becomes crucial for the genome-wide discovery and assessment of regulatory variant .

1.3 Computational methods for regulatory variant

discovery

Because of the limitation of experimental methods discussed above, a series of compu-

tational approaches to evaluate the effect of genetic variants have been proposed [7-

13]. However, they are all based on the classical model of transcription factor binding

15



using sequence motif, which severely limits their efficiency and scope in regulatory

variant discovery.

1.3.1 Modeling transcription factor binding using motif

When binding to DNA, majority of the transcription factors recognize and bind to a

factor-specific sequence of 6-20 bp long. The binding preference of each transcription

factor can be summarized as a consensus matrix or 'position weight matrix' (PWM)

where at some positions (called 'degenerated positions') different nucleotides are al-

lowed. This representation is called a 'binding motif'. Different experimental and

computational methods of determining the binding motifs for transcription factors

have been developed, and the binding preference found by different studies have been

systematically collected in databases such as JASPAR, TRANSFAC and UniProbe.

The simplicity of motif representation of individual transcription factors binding

to their preferred binding sequences enables efficient scanning of putative binding

site on the entire genome based on how well the sequence matches the PWM or so

called "PWM score". However, it has been often criticized for its inability of capturing

some of the important information in transcription factor binding, such as the non-

canonical motifs, the role of binding co-factors and interaction between nucleotides

inside motif.

1.3.2 Prior work on computational models

Existing computational methods are all based on quantifying how differently the

reference and alternate allele of a variant match with the binding motif. In terms of

the category of the variant, they all focus on single nucleotide polymorphisms (SNPs),

the simplest form of genetic variants. RAVEN [71 scores a SNP by the change of the

PWM score on the two alleles. is-rSNP [8] scores a SNP by the ratio of p-values for the

PWM score on the two alleles. sTRAP [91 scores a SNP by the ratio of p-values of a

Fourier transform derived affinity score of the two alleles. rSNP-MAPPER [10] scores

a SNP by the difference of the two allele matching with binding motif represented in

16



a Profile Hidden Markov Model. HaplogReg2 [11] scores a SNP as altering the TF

motif when at least one of the alleles passes a pre-defined p-value threshold of the

PWM matching score.

1.4 Thesis Overview

The rest of the thesis are organized in the following manners. Chapter 2 describes a

novel computational approach to predict the effect of genetic variants on TF binding.

Chapter 3 investigates the properties of this model and compares it against existing

computational models under the same topic. Chapter 4 summarizes the thesis and

discusses possible future extensions.
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Chapter 2

Methods

Previous work [14] successfully predicted DNase-seq signal from DNA sequence alone,

using a computational framework (referred as k-mer model in this thesis) that maps

from sequence to high-throughput sequencing data such as DNase-seq read counts.

Several properties of the k-mer model make it a good choice for modeling the

binding of transcription factor binding and predicting the effect of genetic variants

on the binding signal:

" Spatial effect The ability of the k-mer model to capture the spatial effect of

DNA sequence on read count data makes it possible to model the behavior of

binding co-factors and other auxiliary sequences in TF binding. This capability

is beyond the power of existing motif-based methods.

" Great expressiveness The k-mer model doesn't assume the existence of a

canonical motif, but instead concurrently models the effect of all the possible k-

mers with parameter regularization. Therefore, it has greater ability in modeling

non-canonical motif and other more subtle sequence features that control TF

binding.

" Parameter Regularization The k-mer model uses Li-regularization to en-

force the sparsity of its parameters. This allows us to identify the key set of

k-mers that are crucial for TF binding.

19



* Applicability to other high-throughput data type Although the k-mer

model was originally proposed [14] as a mean to model DNase-seq data, the

model is not limited to model any specific data type. This enables the possibility

of adopting to model other high-throughput sequencing data such as ChIP-seq.

Given these good properties, we adopted the k-mer model to predict ChIP-seq

signal. We score a genetic variant by the change of the predicted signal due to the

variant. In this chapter, we first describe the methodology behind k-mer model and

then introduce the full pipeline of WAVE model. Lastly we describe some of the

method used in the analysis of the WAVE model.

2.1 K-mer model

A k-mer model considers the genome as a long regulatory sequence that contains

k-mer as "code words" that induce invariant spatial effects on proximal transcription

factor binding. Following this assumption, it models the read counts at a given base

on the genome as the log-linear combination of spatial effect of a set of learned k-mers

whose effect range covers that base.

The effect profile of a k-mer is defined as a real-valued vector of length 2M that

corresponds to a spatial window of [-M, M - 1] relative to the start position of

the k-mer. Specifically, the j-th entry of the profile for a k-mer is the expected

log-change in read counts at the j-th base relative to the start of the k-mer. For

notational convenience we will use i for genomic coordinate, k for k-mer length, and

j for coordinate offset from the start of a k-mer. We assume that the genome consists

of one large chromosome with coordinate 0 to N . In practice we will construct this

by concatenating chromosomes with the telomeres acting as a spacer. We represent

the effect vector of all k-mer of length k as a parameter matrix 6 k of size 4 k x 2M.

For any particular k-mer of length k starting at base i on the reference genome, we

define gf as its row index in 0 k . So Okk - would denote the effect of this kmer at offset

j E [-M, M - 1] . Additionally, a special parameter 0o is used to set the average read

rate of the genome globally.

20



Given these definitions, a generative model for high-throughput reads on the

genome was proposed in which observed counts ci are generated from a Poisson dis-

tribution with rate parameter A2 defined as:

Ai = exp(( E
k jC[-M-kmax 1,M-1]

k j) - Go)

The problem to solve then is a regularized Poisson regression.

would like to maximize the following:

max{( cilog(A) - A) - I k }

(2.1)

Particularly, we

(2.2)

To efficiently optimize this objective function, the model uses minibatch-gradient

descent, a variant of stochastic gradient descend method where in each iteration the

gradient and error is calculated against a 'mini-batch' of all the samples 1151. The

detail of implementation can be found in the supplementary text of [14J.

2.2 Overview of WAVE model

The WAVE pipeline of variant scoring consists of the following three steps (Figure 2-

1):

" Learn the spatial effect of k-mers on TF binding from ChIP-seq datasets.

" Predict the TF binding signal around the reference and alternate allele of each

SNP of interest

" Score a SNP by the sum of squared per-base change of binding signal between

alleles

21
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Figure 2-1: The schematic of WAVE pipeline

2.3 K-mer spatial profile learning

Using k-mer model, WAVE first learns the spatial effect of all k-mers (k=l to 8)

over a spatial window of 400 base pairs (bp) de novo from ChIP-seq data. Here

we consider k-mers with k from 1 to 8 ( kmax = 8) as this is the maximum length

learnable with a typical ChIP-seq dataset. As ChIP-seq signals are relatively sparse

and spikey, we chose an effect range of 400 bp for each k-mer (M = 400) instead

of 1000 bp (M = 1000) as was used in the original k-mer model used for modeling

DNase-seq signal [14]

2.4 Predicting the ChIP-seq signal for reference and

alternate allele

For each genetic variant, we refer to the original allele without the variant as reference

allele, and the allele with the variant as alternate allele. The generative nature of

the k-mer model enables the possibility of quantitatively characterizing the binding

change between the reference and the alternate allele. Specifically, if the variant is

located at position i on the genome, then k-mers reside in the range of [i - kmax + 1, i]

will be affected and therefore the binding signal in the range of [i - kmax + 1 - M, i +

22



M - 1] will be altered by the variant.

Given the effect profile 0 ' of all the k-mers learned from k-mer model trained in

step 1, we then predict the expected ChIP-seq count A at each position i across the

reference genome by combining the effect of proximal k-mers into the log-linear model

using equation 2.1. In a similar manner, we predict the read counts of the alternate

allele A' after replacing the k-mers that are affected by the variant. If we assume a

Single Nucleotide Polymorphism (SNP), at most 1 x (4kmax - 1) k-mers will change.
3

2.5 Variant scoring

In step 3, we score a SNP at locus i on the genome by the sum of squared per-base

change of predicted binding signal at all bases within the effect range of any k-mers

affected by the variant:

si= (A, - Ai+j)2 (2.3)
jE[-Mkma.+1,M-1]

2.6 Analysis of the performance of WAVE

In this section, we describe the detail in how we analyze the performance of WAVE

and compare it with existing methods.

2.6.1 Discriminating SNPs known for altering TF binding from

negative control

As was introduced in detail in Chapter 3, we performed a series of analysis to bench-

mark the performance of WAVE and other existing motif-based methods in distin-

guishing positive SNPs reported to alter TF binding from negative controls set. In

all the analysis of this kind, we used WAVE and other competing methods to nu-

merically score all the variants in the positive and negative set. For each method,

we varied the score cutoff to produce a receiver operating characteristic (ROC) curve

reflecting how well the method prioritizes the positive set over the negative control.
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Then we quantified the performance by calculating the area under the curve (AUC)

of the ROC, which would be 0.5 for random chance and 1 for a perfect classifier.

2.6.2 Comparing with existing motif-based methods

sTRAP

We used the R version of sTRAP downloaded from the website for scalability. We

used motif data from the JASPAR (included in sTRAP R package) and TRANSFAC

(2013.1) databases, including MA0105.1, MA0107.1, MA0061.1, M00054, M00194,

M00052, M00051, M03557, M00208, M03563 for NF-KB and MA0139.1, M01200,

M01259 for CTCF. For binary classification, we chose an absolute log ratio cutoff of

0.21 and min-pvalue cutoff of 0.1 as was suggested by the sTRAP paper. To plot the

sTRAP ROC curve we ranked the SNPs by their absolute log ratio.

rSNP-MAPPER

We scored SNPs with rSNP-MAPPER using the models associated with target TF

in rSNP-MAPPER model library, including MA0105, MA0107, MA0061, M00774,

M00054, M00052, T00595, T00594, T00606, T00593, T00592, T00591, T00588, T00587,

T00590, M00051 for NF-rB and T00284 for CTCF. For binary classification, we used

a score cutoff of 0 and score change cutoff of 2, as suggested in the rSNP-MAPPER

paper. To plot the rSNP-MAPPER ROC curve we ranked the SNPs by their score

change.

HaploReg2

We used HaploReg2's default parameters. As HaploReg2 is not able to give a numeric

score for each SNPs, we performed binary classification of each SNP by looking for

"NF-kappaB" or "CTCF" in the Motif column of the result for SNP sets of NF-rB

and CTCF respectively.
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2.6.3 Collapsing WAVE Profiles into PWM

We interpret the active k-mers captured by WAVE with a post-processing framework

that aggregates similar k-mers into position weight matrices after filtering on effect

size. The frame work consists of following steps:

" We filter k-mers based on the sum of effect to eliminate inactive k-mers.

" We calculate the pair-wise Levenstein distance of the remaining k-mers.

" We perform UPGMA hierarchical clustering over the candidate k-mers until the

minimal distance among clusters is larger than 2.

" For each cluster, we define its key k-mer as the one with the largest aggregate

effect. We obtain the position weight matrix for this cluster by aligning all

k-mers in the cluster against the key k-mer.
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Chapter 3

Results

3.1 WAVE learns a vocabulary of k-mers that regu-

late factor binding

We first tested if WAVE could predict held-out ChIP-seq data. We trained a WAVE

model on NF-KB ChIP-seq data from chromosomes 1-13 of 10 LCL ENCODE indi-

viduals and compared the predicted ChIP-seq signal from WAVE to ChIP-seq reads

on a held-out chromosome (chromosome 14). The predicted ChIP-seq signals are

very similar to actual ChIP-seq reads (Figure 3-1), with Pearson's correlations of

0.64 chromosome-wide and 0.44 restricted to regions within 2kb of a binding event

identified by GEM [16]. Negative control WAVE models trained to capture biases

such as chromatin state on rabbit IgG ChIP-seq datasets yield Pearson's correlations

of only 0.51 chromosome-wide and 0.10 within 2kb of binding events. The correla-

tion values are not as high as those reported for DNase-seq in the original paper [14]

which yields a correlation of 0.801 after filtering out low-signal regions. This could be

because ChIP-seq data are much sparser and spikier than DNase-seq, and therefore

harder to model in terms of magnitude.

As a complementary analysis, we calculated the standardized original and pre-

dicted ChIP-seq signal (z-score) for each base on the genome. The z-scores of original

ChIP-seq read counts have a much better linear correlation with z-scores of signal
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predicted by WAVE than with the signal predicted by the negative control WAVE

model (Figure 3-2).

To further investigate how well WAVE captures the peaks of ChIP-seq signal, we

compared the binding calls from GEM taking the original and WAVE-predicted ChIP-

seq signal respectively as experiment input (referred as original GEM and predicted

GEM in this thesis). The rabbit IgG ChIP-seq data was used as control input to

GEM in both cases. As each binding event called by GEM is a single-base position

on the genome, we defined the peaks as the region within 200 bp around each binding

events. We further define coverage as the ratio of peaks called by original GEM that

was also called by predicted GEM, and positive predicted value (ppv) as the ratio of

peaks called by predicted GEM that was also called by original GEM. We achieved a

coverage of 0.17 and ppv of 0.31 genome-wide, showing that WAVE captures around

20% of the real peaks. These results are consistent with the coverage and ppv results

in the original paper [141 where k-mer model was used to model DNase-seq data.

Many factors could lead to the failure of capturing many of the peaks, such as the

non-specificity of the antibody used in the ChIP-seq experiment and the indirect

binding of NFKB with the help of other co-factors. The fact that k-mer model caps

and smooths the ChIP-seq data before learning and therefore leads to a predicted

signal that is less spiky than real ChIP-seq signal might also confound the peak

calling using GEM.

Although WAVE fits a model with potentially large parameter space ( 400 bp

window for 87380 k-mers when max k > 8), it uses sparsifying regularization to

avoid over-fitting and to limit the number of active k-mers. For example, in the

NF-tB WAVE model, most of the binding signal is predicted by 1% of the 87380 k-

mers(Figure 3-3). WAVE is also robust to the choice of window sizes of k-mer's spatial

effect,although we found that WAVE model with window size of 400bp produced

the best Pearson's correlation (Table 3.1)

We also found the SNP scores generated by WAVE are consistent across similar

training datasets. We trained four separate WAVE models on NF-tB ChIP-seq data

from four different individuals GM12878 (CEU), GM12892 (CEU), GM18951 (JPT)
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Figure 3-1: Example held-out genomic region on chromosome 14 showing ChIP-seq
reads (red), WAVE-predicted reads (black), and reads from a negative control model
trained on rabbit IgG ChIP-seq data (green).

TF Data Source K-mer Effect Window Size Pearson's Correlation

CTCF GM12878 800 0.52
CTCF 10 LCL individuals Combined 800 0.62
NFKB GM12878 800 0.55
NFKB 10 LCL individuals Combined 800 0.64

NFKB 10 LCL individuals Combined 400 0.63
NFKB 10 LCL individuals Combined 2000 0.59

Table 3.1: Summary of chromosome-wide Pearson's correlation under different exper-

iment setup

and GM19193 (YRI). The SNP scores for the set of common (minor allele frequency

>1%) SNPs from the 1000 Genomes Project (1KG) are consistent across the four

different models (Figure 3-4). Moreover, we found the WAVE model trained on

the combined ChIP-seq data from 10 LCL individuals had a clear improvement in

Pearson's correlation between predicted and actual reads when compared with any

model trained from a single individual (Table 3.1)

3.2 WAVE captures primary and auxiliary sequences

We then examined if WAVE correctly learned the strongest expected sequence features

from the binding data that correspond to the canonical motifs for NF-rKB and CTCF.
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WAVE (Control)

2 0 2 4

Predicted ChIP-seq Reads by WAVE (Z-score)

Figure 3-2: Comparison of z-score of WAVE-predicted (x-axis) and observed (y-axis)
ChIP-seq reads in binned regions of held-out chromosome 14. Models were trained
on combined ChIP-seq data from 10 ENCODE LCL individuals (black) or rabbit IgG
ChIP-seq data (red).

Both WAVE models were trained on combined ChIP-seq data from 10 LCL ENCODE

individuals and position weight matrices were generated for visualization purposes by

hierarchical clustering of the active k-mers in WAVE and matched to known TF motifs

in JASPAR and TRANSFAC with STAMP [17]. We found that the top two k-mer

clusters for NF-iiB were strongly matched to motifs from NF-,B family (Figure 3-

5(a)) and the top 6 k-mer clusters for CTCF were all strongly matched to the CTCF

motif (Figure 3-5(b) and Figure 3-6).

Many of the other k-mer clusters learned by WAVE correspond to co-factor bind-

ing motifs. The top k-mer clusters in the NF-KB WAVE model matched to ETS1,

API, IRF1 and NRF1 (Figure 3-5(c)), which have been associated with NF-rB regu-

lation 118-211 . To validate the role of these transcription factors in NF-KB binding,

we performed co-factor analysis on the same NF-KB data using GEM to search for

transcription factors that have spatially binding constraint with NF- KB. This analysis

identified AP-1 and IRF1 as the strongest co-factors of NF- KB binding. Thus, WAVE

captures the sequence context of factor binding and provides additional descriptive

power.
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Figure 3-3: Distribution of the summed effect-size of all 87380 k-kmers with length

less than or equal to 8 from NF-KB WAVE model

(a) GM12878 vs. GM12892
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Figure 3-4: WAVE is consistent cross LCL cell lines. Scatter plots of SNP scores

assigned by WAVE models trained on ChIP-seq data from different LCL individuals.

3.3 WAVE outperforms motif-based methods in pre-

dicting ASB SNP

We then compared WAVE's performance against motif-based approaches in discrim-

inating SNPs that are known to alter transcription factor binding. Allele-specific

binding (ASB) studies have identified SNPs associated with significantly imbalanced

binding events on heterozygous sites, making these SNPs an ideal standard for bench-

marking [22, 231. We used the list of SNPs that are reported to induce allele-specific

binding (ASB) of NF-KB and CTCF in GM12878. Our NF-rB positive SNP set

consists of 70 ASB SNPs combined from [221 and [231. Our CTCF positive SNP
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Figure 3-5: Active k-mers detected by WAVE contains the canonical TF motif and
associated cofactors

set consists of 1336 ASB SNPs from [221. After filtering on minor allele frequency

(>0.01), we are left with 54 SNPs for NF-rB and 1247 SNPs for CTCF, from the

latter of which we further down-sampled 60 SNPs as our final CTCF positive SNP set

to accommodate the limited scoring throughput of motif-based approaches evaluated

in this study.

We constructed three sets of negative SNPs that we assume do not exhibit differ-

ential factor binding. All of these negative sets are subsets of 1KG common (minor

allele frequency >1%) SNPs. The first negative set is a random selection of 1000
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Figure 3-6: The 2 d to the 6 th strongest k-mer clusters for CTCF captures different
parts of long CTCF motif. The average k-mer effect and aggregated position weight
matrix of the 2rd, 3rd, 5th, 6th and 7th strongest k-mer cluster from CTCF WAVE
model compared with CTCF motif (MA0139.1).

1KG common SNPs from across the genome in order to sample overall background.

To account for the non-uniform distribution of ASB SNPs on the genome, the second

negative set was composed of 1KG common SNPs within 1kb from an ASB SNP.

We found that 47 out of 56 NF-rB ASB SNPs reside in one of the 15522 NF-,iB

binding regions (BR) identified by previous work 1241. Thus the third negative set

was constructed for NF-,rB analysis only to control for the confounding effects arise

from proximal binding strength. This final negative set is a subset of second negative

set that are located in any BR that contains a positive ASB SNP.

We evaluated the performance of HaploReg2, sTRAP, rSNP-MAPPER, and WAVE

in discriminating our positive set from each of our three negative sets. The NF- KB

and CTCF WAVE models were trained on combined data from 10 LCL ENCODE

individuals. The other models are evaluated as described in Chapter 2
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We found that WAVE outperformed all the other tested methods and had an

AUC > 0.7 on the third and most stringent negative set (Figure 3-7 and Figure 3-8).

Since HaploReg2 does not provide a way to retrieve the actual score for each SNP,

its binary classification performance was plotted as a point on the ROC curves.

0 1 0 02 03 04 00 0 0. 0.0

(a) Control set 1

(b) A O . 0st 92

(b) Control set 2

1 -01 2 Oc A C n O. 0 7 0 

(c) Control set 3

Figure 3-7: WAVE significantly outperforms motif-based approaches in prioritizing
NF-KB ASB-SNPs. ROC curves for discriminating NF- B ASB-SNPs from each
of the three negative sets using WAVE, sTRAP, rSNP-MAPPER and HaploReg2.
Dashed line indicates random chance.
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(a)A t se 1.

(a) Control set 1

0 0.1 01 0a 04 0. 00 0.7 0.

(b) Control set 2

Figure 3-8: WAVE significantly outperformed motif-based approaches in prioritizing
CTCF ASB-SNPs. ROC curves for discriminating CTCF ASB-SNP from the various
negative sets using WAVE, sTRAP, rSNP-MAPPER and HaploReg2. Dashed line
indicates random chance.

34

j01

~04

NO1

dN-wMWW0m0AIn

07

O

ON

ON

0.1

WAEVM-

0A

-WAVE VAWaTIM)
_6MP(AU04A8W)
- OW4MPM WC-OAMIM

A H

NO

A

O.N I



3.4 WAVE prioritizes SNPs that disrupt motifs

The power of motif-based approaches is constrained to evaluating variants that fall

inside a factor's motif. To evaluate the power of WAVE on this narrower task we

next tested WAVE's performance on SNPs in our positive set that could be detected

by motif based methods.

As the first step, we classified our positive sets of NF- KB and CTCF ASB SNPs us-

ing sTRAP, rSNP-MAPPER and HaploReg2 with their default parameter and cutoff

settings. As motif disruption has been considered the primary mechanism by which

variants alter transcription factor binding, we would expect most of the ASB SNPs

to be identified by these methods. Surprisingly we found that the best motif-based

method (rSNP-MAPPER for NF-KB and HaploReg2 for CTCF) detected only 30%

of our positive SNPs. The set of correctly classified positive SNPs by the approaches

significantly overlapped, while the efficiency of each method varied across different

transcription factors (Table 3.2). A total of 21 out of 56 NF-KB ASB SNPs and 24 out

of 60 CTCF ASB SNPs were detected by at least one of the three motif-based meth-

ods. We refer these SNPs as motif-disrupting (MD) SNPs. A large fraction (around

60%) of positive SNPs were not detected by any of the traditional motif-based ap-

proaches. These results are consistent with our previous results (Figure 3-7) which

shows that the prediction power of motif-based approaches dramatically decreases to

random after the top 30% positive targets.

Method NF-iB CTCF
HaploReg2 16/56 22/60

sTRAP 12/56 10/60
rSNP-Mapper 19/56 2/60

Combine above 21/56 24/60

Table 3.2: Existing motif-based methods only detects 30% ASB SNPs

We then compared the performance of WAVE, sTRAP, rSNP-MAPPER and Hap-

loReg2 in discriminating the motif-disrupting SNPs from our three negative sets. For

both transcription factors, WAVE achieved performance equal to motif-based ap-
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proaches with an AUC >0.85 (Figure 3-9, Figure 3-10) in all control scenarios.

0 0.1 " OA (A CotOle 0se 1

(a) Control set 1 (b) Control set 2

10*

101

Figure 3-9: WAVE achieves performance equal to motif-based approaches in prior-
itizing NF-KB SNPs within binding motifs. ROC curves for discriminating NF- B
SNPs identified by any motif-based method (MD SNPs) from the various negative
sets using WAVE, sTRAP, rSNP-MAPPER and HaploReg2. Dashed line indicates
random chance.
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Figure 3-10: WAVE achieved similar performance as motif-based approaches in pri-
oritizing CTCF MD SNPs. ROC curves for discriminating CTCF MD SNPs from
the various Negative sets using WAVE, sTRAP, rSNP-MAPPER and HaploReg2.
Dashed line indicates random chance.

36

0.1 02 0 *A 0* 0* . ? 0

(c) Control set 3

10.

02

0

A

-WAVF 6ALOO-DA9014)
-TWOUD-GAM"

4AL002711010
A

- f~&02
0.1

--~ ()4o

". 1". I

-

A EO -S0A

U2

047



Chapter 4

Conclusion

We have proposed a computational model WAVE that accurately predicts the effect

of genetic variants on transcription factor binding. Unlike existing methods that are

based on binding motif discovery, WAVE directly predicts ChIP-seq signal from DNA

sequence and scores a variant by the change of predicted binding signal between the

reference and alternate allele.

We have found the power of position weight matrices to be insufficient to properly

score the effect of variants on factor binding. Motif-based approaches were only able

to correctly annotate 30% of ASB SNPs in our test set. In addition, the performance

of a motif-based model can vary dramatically across different transcription factors

(Table 3.2). We expect that the poor performance of rSNP-MAPPER on CTCF

might be the consequence of its use of a single CTCF position weight matrix. Thus

motif-based methods are strongly constrained by their underling model.

WAVE significantly outperformed motif-based scoring methods in prioritizing ASB

SNPs from negative controls. We find that WAVE's incorporation of a window of

sequence context permits it to model the effect of other sequences involved in tran-

scription factor binding including co-factors. These sequences are neglected by con-

ventional motif-based motif modeling.

WAVE outputs a numeric score for each SNP that is easy to interpret as the

predicted number of reads changed by the variant. We showed that WAVE scores are

robust to the choice of window size, and are consistent across the individuals used for
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training. We further demonstrated that by combining ChIP-seq data from multiple

individuals of the same cell lines type to increase the size of the training set, we could

improve WAVE's goodness of fit to ChIP-seq reads

4.1 Contributions

The primary contributions of this works are:

" The first fully generative model that directly predicts ChIP-seq signal from

DNA sequence. Not only does this produce scores of variants that can be

straightforwardly interpreted as the predicted change of binding signal, it also

allows us to understand how exactly each k-mer affect the binding signal around

it.

" Concurrent modeling of all k-mers with k from 1 to 8 without assuming prior

knowledge about the motif, our model learns an unbiased vocabulary of TF

binding.

" Unlike existing methods which only model the occurrence of the DNA sequence,

our model takes the spatial effect of DNA sequence on TF binding into account.

This enables the model to characterize the effect of co-factors and other auxiliary

sequences in the process of transcription factor binding.

" Our method substantially outperformed existing motif-based method in pre-

dicting genetic variants reported to cause alelle-specific binding.

4.2 Future Work

The future direction of WAVE can be summarized in three categories.

* Interactive interface

The first future extension of WAVE is to design a an interactive website that

takes requests from users and return the scoring results for the variants re-
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quested. A difficulty for this interface is the long runtime of k-mer model

(usually around 3 days for one experiment). However, this can be circumvanted

by pre-training k-mer model on a library of common TFs and providing scoring

services only for these TFs.

o Use WAVE predictions for other application

The computational nature of WAVE makes it very efficient to predict the effect

of many variants on the binding of many TFs. Therefore the second possible

direction is to use the prediction from WAVE for solving other interesting bi-

ological problems. For instance, previous work [25, 26] showed the possibility

that a change in histone modifications is associated with change in TF binding.

Therefore, one might be able to build a computational model that takes the

WAVE-predicted effect of variants on the binding of a library of TFs as input,

and predicts their effect on histone modifications.

o Adopt the methodology to other high-throughput datatype

The third direction is to use WAVE to model the effect of variants on other

high-throughput data such as ATAC-seq, histone marks ChIP-seq data, etc.
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