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Abstract

Traditional error correction and source coding has focused on the stochastic setting
where separation based schemes are optimal, and current solutions for applications
requiring both lossy compression and noise resilience reflect this approach. However,
in the adversarial setting, with worst case errors, separation based schemes are far
from being even asymptotically optimal. This work investigates fundamental limits,
achievability and converse bounds, practical codes, and algorithms for joint source
channel coding (JSCC) in the adversarial setting. Particular attention is paid to the
cases of flip and erasure errors.
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Chapter 1

Background

Coding theory, more specifically, source and channel coding, has a long and fruitful

history paved with many seminal papers and culminating in comprehensive textbooks.

Traditionally, these coding problems have been divided into two categories, stochastic

and adversarial/combinatorial, based on the error model, average for stochastic and

worst case for combinatorial. The focus of this work is combinatorial joint source-

channel coding (CJSCC). In particular, CJSCC in Hamming space with flip or erasure

errors where the distortion measure of interest is the Hamming distance.

1.1 Combinatorial Coding

In Hamming space, the combinatorial coding problem is a packing problem and is

addressed extensively in [11 and [2]. The packing problem seeks the maximum number

of points with the distance between any two points greater than a given minimal

distance, or, equivalently, the maximum number of disjoint balls of a given radius

that can be packed into binary Hamming space of a given dimension. An exact

asymptotic solution is open, the best known lower bound is the Gilbert-Varshamov

bound and the best known upper bound is the MRRW bound [3]. The multiple

packing problem [41 is an extension of the packing problem wherein any Hamming

ball of a given radius cannot contain more than a given number of points.
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1.2 Combinatorial Compression

The corresponding compression or source coding problem is a covering problem, and

a near comprehensive treatment is given in [5]. Historically, the covering problem has

proven to be much more attainable than the packing problem and an exact asymp-

totic characterization has been found. Moreover, it is shown in [6] that the rate

distortion function in the stochastic and adversarial settings are equal. The combina-

torial covering problem is further subdivided into linear and nonlinear, i.e. whether

the collection of points form a subspace. The asymptotic rate of the optimal linear

covering is given in [71 for binary Hamming space and [8] for non binary Hamming

space. The techniques used in [81 also demonstrate that more general tilings, beyond

Hamming spheres, can be used as efficient covers.

1.3 Stochastic Joint Source-Channel Coding

As mentioned, the primary focus of this work is CJSCC and the literature on this

topic appears to be lacking. In the stochastic setting the separation principle [9j, [10],

asymptotically there is no loss in separate source and channel coding, has supported

individual study for compression and coding. As such, research in stochastic JSCC has

been minimal, but in the interest of completeness we mention a few such endeavors.

In [11] and [12] joint coding techniques are used in estimation theory to derive new

lower bounds for signal parameter estimation. More recently, the nonasymptotic

performance of JSCC has been sharpened with the introduction of a second order

term called the JSCC dispersion 113], and the exponent of decay for probability of

success is given in [14].

1.4 Combinatorial Joint Source-Channel Coding

The adversarial joint source-channel problem and a framework for analysis were in-

troduced in [15] and expanded in [161. An adversarial joint source-channel problem is

specified by a source and an adversarial channel. A source consists of a source alpha-
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bet with a given probability distribution, a reconstruction alphabet and a distortion

metric between source and reconstructed symbols. An adversarial channel consists of

an input alphabet, an output alphabet and a conditional distribution. The adversary

is restricted to outputs that are strongly typical given the input with respect to the

conditional distribution. Two error models are addressed: flip errors, analogous to the

BSC in stochastic JSCC, and erasure errors, analogous to the BEC, and minimization

is over the worst-case adversarial action.

For flip errors, the alphabets are all binary Hamming space, the distortion metric

is the Hamming distance and the adversary is restricted to outputs whose Hamming

distance to the input are bounded according to the channel parameter. The CJSCC

problem is characterized by choice of an optimal encoder-decoder pair. Error-reducing

codes, introduced in [171, are very similar to the CJSCC problem with flip errors and

used to construct traditional error-correcting codes. More specifically, an encoder-

decoder pair is an error-reducing code if it is a CJSCC over a window of values. Jointly

tailoring matched encoder-decoder pairs has been previously investigated, but, to the

author's knowledge, not in the general framework presented in [15]. In particular, in

[18] a cryptographic based encoder-decoder pair is used to improve known results for

the adversarial channel with computationally bounded noise.

For flip and erasure errors tradeoff between optimal distortion and bandwidth ex-

pansion factor is sought. In [151 it is shown that the optimal CJSCC with flip errors

and unit bandwidth expansion factor is the identity map and this is strictly better

than any separated scheme. For higher order bandwidth expansion factors an analog

of the identity scheme is the repetition code, and, unlike the traditional stochastic

setting, the performance of the repetition code is nontrivial. This observation insti-

gated an investigation into the repetition of other small dimension codes. In [19J, the

asymptotic performance of repeating a small dimensional code and a more detailed

analysis for repetition of the perfect seven four Hamming code for flip errors is given.

Repetition of small order codes is much more straightforward for erasure errors and

the corresponding asymptotics will be analyzed.

Given an encoder one can calculate the performance of and give an explicit rep-
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resentation for the optimal decoder, and similarly for a given decoder. In particular,

for an encoder, the optimal decoder is the Chebyshev center of the preimage of a

Hamming ball dependent on the input. Unlike its Euclidean analog the Chebyshev

center is not unique, and determining the Chebyshev center and the corresponding

Chebyshev radius of a set in Hamming space is computationally intensive. There-

fore, practical implementations of CJSCC will require efficient algorithms for finding

Chebyshev radii. These and similar questions are addressed in [201, where, among

other things, an efficient approximation algorithm for calculating Chebyshev radii

using a linear programming relaxation is given.
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Chapter 2

Preliminaries

The notation for the n fold product of the field of two elements F' is used for n

dimensional binary Hamming space, d(-, -) is the Hamming distance and w(-) is the

Hamming weight. Given a set S C F2 its Chebyshev radius is the radius of the

smallest Hamming ball containing all of its points

rad(S) = min max d(x, y),
yEF2 XES

a point yo achieving this minimum is called a Chebyshev center, and its covering

radius is the radius of the smallest covering by points in S

rT 0,(S) = max min d(x, y).
yEFn2 XES

These two quantities satisfy an important relation

rad(S) = n - ro,(S).

Proof. Let c be a Chebyshev center of S and choose s E S such that d(s, 1 + c) <

cov(S), then

n = d(c, 1 + c) < d(c, s) + d(s, 1 + c) < rad(S) + rco(S).

11



Suppose rad(S) + rc,,(S) > n, then there exists xO E Fn such that

n - rad(S) < rc,,(S) max min wt(x s)
xECF sCS

= min wt(xo + s).sCS

rad(S) > max{n
sES

wt(xo + s)} = maxwt((1 + XO) + s),scS

a contradiction. 0

There are also some combinatorial quantities of interest:

* K(n, r) - minimal number of points covering F' with radius r balls;

" A(n, d) - maximal number of points in F' with distance between any two points

at least d;

* AL(n, r) - the maximal number of points in F' such that any ball of radius r

contains at most L points.

The two packing numbers are related A 1(n, r) = A(n, 2r + 1).

Lemma 1. For all x E Fn

i) Br (x) =r B(0) + x;

ii) B (X) = Bn-r-1 (X + 1).

Proof.

i) Let f(y) = y + x. Claim: f : B,(0) -+ Br(x) is an isomorphism. Suppose f(y) =

f (z), then y+x = z+x and y = z. Let z C B,(x). Then z = (z-x)+x = f(z-x),

where d(z - x,x) = w(z - x + x) = w(z) < r implies z - x c B,(x). Hence

Br(x) = f (Br(0)) = Br(0) + x.

ii) Similar to part i, B(x) = B(O) + x. Let g(y) = y + 1. Claim: g: Bnr1(0) +

B (O) is an isomorphism. From part i, it is in injective. Let z E B (O), then

z = f(z - 1). For all y e Fn, w(y -1) = w(y +1) =n - w(y). Therefore,

12
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if w(z) > r + 1, then w(z - 1) < n - r - 1 and z -1 c B,_r-1(0). Thus

Bf(O) = f (Bn-r_1(0)) = Bnri1(0) + 1.

Lemma 2. Let {an} and {bn} be sequences in R.

i) liM infn-> (an + bn) > lim infn_, 0 an + lim inf_,,, bn, whenever lim infn," an +

lim infna, bn exists.

ii) For an, bn 0, lim infna, anbn > (lim infn.m an) (lim infn,> bn).

iii) For 0 < A < 1, lim infn_,2 a Lnj = lim infn_,, an.

Proof.

i) As {(n,n) I n > k} c{(ij) I i,j n}, for all n

inf (an + bn) > inf (ai + bj) = inf ai + inf bj.
k>n (ij)Ii,j>n i>n j~n

If lim infn an and liM infn bn are both finite, then a limit will distribute over the

sum. By assumption lim infn an + lim info bn is well defined, i.e. infinite of the

same sign. It suffices to show that lim infns, 0 (an + bn) is infinite when either

lim infn_,2 an or liM infn_,, bn is infinite. This follows from the above equation.

ii) Similarly, by nonnegativity,

inf (anbn) > inf (aibj) = inf a inf bj.
k>n (ij):ij>n i>n j~n

iii) {aAj I= {an}.

El

The floor function is superadditive.

Lemma 3. For x, y C R

[x+yJ [xJ + LyJ.
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Proof. Let x, y C R, with x = nx + rx and y = ny + ry where n , ny C Z and

0 < rx, ry < 1. Then

[x + yJ = nx + ny + Lrx + ry] > nx + ny = [xJ + [y].

El

The Chebyshev radius in Hamming space is additive.

Lemma 4. For all m, n c N, A C Fm and B C Fn, rad(A ED B) = rad(A) + rad(B).

Proof. Let XA be a Chebyshev center for A and XB a Chebyshev center for B. Let

x C A and y C B, then

d([x y], [XA YB])= d(x,XA) + d(y,yB) 5 rad(A) + rad(B)

Hence rad(A ED B) < rad(A) + rad(B). Similarly, let [XAeDB YAGfB] be a Chebyshev

center of A @ B. For all x E A and y C B

d(x, XAIB) + d(y, YAeB) d([xy], [XADB YAEDB]) < rad(A ED B).

As this holds for all x, y

rad(A) + rad(B) < max d(x, XAeB) + max d(y, YADB)
X y

= max [d(x, XACDB) + d(y, YA(DB)l
xly

< rad(A @ B).

Hence rad(A E) B) = rad(A) + rad(B).

14
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Chapter 3

Flip Errors

3.1 CJSCC with Flip Errors

Definition 1. Let k, n E N, E c {O ... ,k} and A E {O,...,n}. A pair of maps

f:F F-+ and g: F -+ F is a (k, n ;E, A) CJSCC if, for all (x, y) EF 2xFi,

d(f(x),y) /XA -> d(x,g(y)) E,

or, equivalently, E(A; k, n, f, g) < E, where

E(A; k, n, f, g) := max d(x, g(y)).
(x,y):d(f(x),y)<A

In the sequel the k and n may be dropped when understood from the context.

Moreover, the notation E(A ; h) is used when h is either an encoder or decoder, an

encoder being a map from the source space to the channel space and a decoder being

a map from the channel space to the source space. In the interest of notational

consistency, typically, an encoder is denoted with an f, a decoder with a g, the source

dimension is k and the channel dimension is n.

Definition 2. The optimal distortion for a (k,n ; E, A) CJSCC is

E*(A ; k, n) := min E(A; f, g),
f,g

15



with minimization over : - F and g :2F -+ F2.

The following is a simplified characterization of the CJSCC performance of en-

coders and decoders.

i) For all f : F- Fi,

E(A ; f) := min E(A ; f, g) =
g

max rad (f -'BA(y)),
yCFn

the optimal decoder is g*(y ; A, f) c cen(f BA(y)).

ii) For all g : F' --+ F ,

E(A;g) :=minE(A;f,g) =maxmin max d(g(y),x),f xEF" zEF' ycBA(z)

the optimal encoder is f*(x ; A, g) c arg minzEFn maxyCBA(z) d(g(y), x).

Proof.

) max d(x, g(y)) = max max d(x, g(y))
(x,y):d(f (X),y)<;A yEFy xEf--1 BA(y)

ii)

> max min max d(x, z)
yCFn zCFk xCf- 1BA (y)

max rad(f -1 BA(y)),

and g(y; A, f) E cen(f-1 BA(y)) achieves the bound.

max d(x,g(y))=max max d(x,g(y))
(x,y):d(f(x),y) zA TEF' VEBan(f(T))

> max min max
XEFk zEFn yEBSn(z)

d(x, g(y)),

and f(x; A, g) E arg minEFn maXyEBn(z) d(x, g(y)) achieves the bound.

In the sequel, an encoder f : Fk -+ Fn (resp. decoder g Fi -+ I) may be called

a (k, n ; E, A) CJSCC if E(A; f) E (resp. E(A ; g) < E).

16



i) A function f : Fl -+ F' is a (k, n; E, A) CJSCC if and only if, for all S C F,

rad(S) < A implies rad(f-1 (S)) < E.

ii) Let f : Fk -+ Fn be a (k, n; E, A) CJSCC

a)

rad(f(S)) A

b)

d(x, y) > 2E + 1

rad(S) < E.

d(f (x), f (y)) > 2A + 1.

c) If f(0) = 0, e.g. f is linear,

w(x) > 2E +1 w(f(x)) > 2A + 1.

The later implications are very weak necessity conditions for any CJSCC f and

comprise the basis for a series of converse bounds.

3.2 Converse Bounds

Two important converse bounds arise by studying the behavior of intrinsic combina-

torial objects, i.e. coverings and packings, under the action of a CJSCC.

3.2.1 Covering Converse

Theorem 1. (Covering Converse) If a (k, n; E, A) CJSCC exists, then

i) K(k, E) < K(n, A);

ii) K(k, k - E - 1) > K(n,n - A - 1).

Proof.

i) Let C C Fn be a minimal K(n, A) covering. Partition F2 into {Uc: c E C} with

rad(Uc) < A for all c. By the CJSCC condition, {f-1 Uc} is a partition of Fk

17



with rad(f-'U) < E. For each c choose a Chebyshev center c' of f-'U. Let

C' = {c'}, then rov (C') < E and thusly K(k, E) < IC'I = ICI = K(n, A).

ii) Suppose K(k, k - E - 1) < K(n, n - A +1). Let S c Fk be a minimal K(k, k -

E - 1) covering. Then If (S)I < K(k, k - E - 1) < K(n, n - A - 1). Thus

rad(f(S)) < A and rad(f 1 f(S)) > rad(S) = E + 1 > E, a contradiction.

The statements are equivalent by Theorem 4. E

3.2.2 Packing Converse

Theorem 2. Let f be a (k, n; E, A) CJSCC. If an L-multiple packing of radius E

exists in Fk, then its image under f is an L-multiple packing of radius A and

AL(k, E) < LAL(n, A).

Proof. Let C be an L-multiple packing of radius E. Suppose f(C) is not an L-multiple

packing of radius A. Then there exists yo E Fn such that If(C) n BA(yo)I > L. By

construction rad(f (C) n BA(yo)) < A. Thus there exists xO such that f- 1 (f(C) n

BA(yo)) c BE(Xo). For all co c C,

f(co) c f(C) n BA(yo) -+ co c C n f (f(C) n BA(yo)).

Hence ICnBE (xo)I > ICnf -(f(C)nBA(yo)) ;> I f(C)nBA(yo)I > L, a contradiction.

The bound follows from If-1 (f(co))l < L.

With L = 1, this yields the coding converse of [15],

A(k, 2E + 1) = A 1 (k, E) < A,(n, A) = A(n, 2A + 1).

18



3.3 Basic CJSCCs

3.3.1 (Pseudo)-Identity Code

The (pseudo)-identity code Ik,, maps by identity the first min{k, n} bits and zero

pads the remaining n - min{k, n} bits.

Lemma 5. Let k, n C N and A E {0,... , n}. The distortion of the (pseudo)-identity

map Ik,, : Fi -k F" is

E(A ; Ik,,) = min{k, A + max{0, k - n}}.

Proof. Let f = Ik,n. Suppose k < n. By construction, for all y E F2, f-1 BA(y ; n) =

f -BA([yk Q]; n) = Bmin{k,A}(yk ; k). Thus E(A ; f) = min{k, A}. Suppose k > n.

By construction, for all y E F', f'BA(y ; n) = BA(y; k) ( F -,. Thus E(A ; f) =

A + (k - n).

3.3.2 Repetition Code

Let k, n E N. By the division algorithm there exists unique q, r such that n = qk + r

with 0 < r < k. The repetition codes repeats the i-th bit q + 1 times if i < r and q

times if i > r, i.e. x i-+ 4 1) ... M) where m E {q, q + 1}. Therefore, the first r

bits will be repeated q + 1 times and the last k - r bits will be repeated q times. As

such, the adversary will erase the later bits first and the corresponding distortion is

E(A ; Rk,.) - q/2
A-(k-r)fq/2 + (k -r)Ir(q+1)/21

0 < A < (k - r)[q/21

(k - r)[q/2] <A< n

The case n = pk, p C N is called the p-repetition code and is denoted Rp : Fk -+ ]Fi.
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3.3.3 Separated Code

For 2 < M < max{A(n, 2A + 1), 2}, the M-separated code SM,k,, sets a correspon-

dence between a radius E cardinality M covering in Fk and a radius A cardinality

M packing in F2 and maps points according to their respective approximation point.

The resulting distortion is the largest E such that

K(k, E) < A(n, 2A + 1).

3.3.4 Composition of Encoders

Lemma 6. (Composition Lemma) Let k,m, n c N and A c {0,..., n}. For all

fi : FI -+ F' and f2 : F' -+ F"

E(A ; f2 o f) < E(E(A ; f2 ); fi)

and

E*(A ; k, n) E*(E*(A ; m, n) ; k, m).

Proof. Let g, and g2 be the optimal Chebyshev decoders. Then d((f2 o fi)(x), y) < A

implies d(f1 (x),g2 (y)) < E(A ; f2) implies d(x, (gi o g2)(y)) 5 E(E(A ; f2) ; fi). The

second statement follows immediatley from the first using the optimal encoders. l

Combined with the pseudo-identity code this establishes a weak continuity result.

Lemma 7. Let k, n, a, b c N.

i) For all A < n,

E*(A; k + a, n + b) < E*(A ; k, n) + a.

ii) For all A > b,

E*(A; k + a,n + b) > E*(A - b; k,n).

Proof.

20



i) Let f be a (k,n; E*(A ; k, n), A) CJSCC. By Lemmas 6 and 5

E(A ; In,n+b 0 f 0 Ik+a,k) < E(E(E(A; In,n+b) -f) - Ik+a,k) = E(A ; f) + a.

ii) Similarly, let f be a (k + a, n + b; E*(A ; k + a, n + b), A) CJSCC and F = A - b.

By Lemmas 6 and 5

E(F In+b,n Of 0 Ik,k+a) < E(E(E(F ; In+b,n) - f) - Ik,k+a)= E(F+b; f) = E(A; f).

3.4 Linear Encoders

A linear (k, n; E, A) CJSCC is an n x k matrix A C F nxk and satisfies, as AO = 0,

for all x E F,

w() ;> 2E + 1 w(A) > 2A + 1. (3.1)

The structural conditions imposed by a linear encoder induce an equivalence relation

on the preimage of Hamming balls thereby reducing the number of points that need

to be evaluated. In particular when evaluating the distortion of A,

E(A; A) = max rad(A1 BA(y)),
yEF2

one can restrict to a subset of F consisting of the coset leaders of A(F k) with weight

less than or equal to A.

The performance of the repetition code, in particular, for odd p, has proven to

be nontrivial. In the class of linear codes where all of the rows have unit weight,

the repetition code assigns equal favor to all coordinates. Moreover, one can show

that the repetition code or some permutation thereof is the unique linear code such

that wt(Ax) = p wt(x) for all p. The following technical Lemma and its practical
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extension establish that the repetition code is asymptotically optimal in the class of

linear codes with unit weight rows for odd p.

Lemma 8. Let p > 0, {ci C N : 1 < i < k} with ci < c2 <.

[pkj. For all 0 < m < k
[pkJ +1

Z ci/2] < k m.
k=1

Proof. Let r = [pkJ/k. As the ci are integers,

ci +

i= i=1 2

Suppose there exists mr, such that

m

ic4/2=

By monotonicity of the ci, for j > m

cj/2]m > [cm/2]m > fci/2] >

Thus

m k

Fcj/2] = Zc/21 + 1 [ci/2]
i=1 i=m+1

r+1 T+1 T1

2 2 (k-m)= 2

a contradiction. 5

Proposition 1. Let A : F-+ Fik. If wt(ai) = 1, for all i, then for all A E {0, ... , n}

E(A; A) > min I.2 A
p + 1

Proof. Let {ci : 1 < i < k} be the sums of the k columns of A. By construction

j=1 ci = pk. WLOG assume c1 < ... < cn, CJSCC performance is unaffected
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by permutation of rows and columns. If all of the rows have weight one, then the

adversary's only option is to distort individual bits in Fk, i.e. flip [ci/21 bits in F k

wheres ci is the number of bits in column i thereby distorting bit i in Fk. Thus,

the adversary will flip bits in order of the smallest column weights according to the

following maximization

M = max m : [cI/21 A .

The corresponding distortion is

E(A ; A) = min{M, k}.

By Lemma 8,
M+1+

A < [ci/2] < 2 (M + 1),
i=1

and thusly M > 2 A- 1].

Lemma 9. Let A C F,,k and X a k-dimensional vector of i.i.d. Bernoulli(q) random

variables. Then
n 1

E [w(AX)] = - VA(1 - 2p),2 2

where VA is a generating function for the weight of the rows of A.

Proof. Let a be an enumeration of the rows of A and VA the corresponding generating

function.

E [w(AX)] = E [(ai, _X) mod 2]

-(a) n (-(-2w(ai))
2(1 - (1 - 2q)"w"d

i=1

n
=2 2Va12)
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where (a) follows because, for all j > 0,

Ef Xi mod 21 = (1 - (1 - 2q)j)
2

El

The following simple Proposition follows immediately.

Proposition 2. (Conservation of weight) For all A c F]xk

n - zr(A)
S w( Ax) = k()

XEFk xCFk

where zr(A) is the number of identically zero rows of A.

Proof. Let {X I i = 1,. . . , k} be a sequence of i.i.d. Bernoulli 1/2 random variables,

X = (X1,...,Xk) a vectorization and A E F'xk. By Lemma 9,

n 1
E[w(AX)] = _ - VA(0)

2 2
n - zr(A)

2
n - zr(A) k

k 2
n - zr(A)E[(X)]

k

As all sequences are equiprobable, multiplying both sides by 2k gives the result. E

If n = pk, then the previous theorem is more succinctly EZXEFk W(Ax) < P ZXEFk W(X)

Thus there does not exist a linear encoder A such that w(Ax) > p w(x) for all x.
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3.5 Duality

3.5.1 Dual Problem

The adversarial CJSCC problem is

E*(A; k, n) = min max d(x, g(y))
f,9 (x,y)EFkxF':d(f(x),y)<A

= min max min max d(x, z)
f yEF2 zEFk xEf-'BA(y)

= min max rad(f BA(y))
f yCF2

- min max min max d(z, x),
9 XEFk yEF' zEgBA(y)

where f :Fk - F2 and g: F' -+ Fk. The corresponding dual problem is

A*(E; k,n) + 1= max min d(f (x), y)
f,g (x,y)EF kxFn :d(x,g(y));>E+1

= max min max min d(y, z)
9 EFk zEFn yg 1 Bi(x)

= max min re,((g-1Bm(x))
9 xCFE

= max min max min d(z, y),
I yEFg xEFk zEfBC(x)

where f :Fk - F and g :Fn -+ FIk. A few basic properties of binary Hamming

space provide an immediate relationship between the primal and dual problem.

Theorem 3. (Duality)

A*(E;k,n) = n - E*(k - E - 1;n,k) - 1.

25



Proof. For S C F', rcov(S) = n - rad(S). Combined with Lemma 1

A*(E ; k,n) + 1 = maxmin rc0 '(g1 Bc(x))
9 xGFE

= n - minmax rad(g- 1 Bk-E-1(x + 1))
g x Fk

(a) n - minmax rad(g-1 Bk-E-1(X))
9 xEF2

=(b) n - E*(k - E - I1; n, k),

where (a) follows because F2 + 1 - F' and (b) follows because the minimization is

over g : Fn -+ F .

We collect some equivalent conditions and a few more implications and relation-

ships between the primal and dual problems.

Lemma 10.

i) E*(F;k,n) F if and only if A*(F;k,n) > F.

ii) If E*(F + 1; k,n) F + 1, then A*(F; k,n) < r.

ioi) If A*(F- 1;kn) < r- 1, then E*(;k, )

Proof.

i) Suppose E*(F ; k, n) < F. Let f* and g* be the maps achieving E*(IF; k, n).

Then, by the contrapositive to the JSCC condition, d(x, g*(y)) ! E*(F ; k, n) + 1

implies d(f*(x), y) > F + 1. Thus, as F > E*(F; k, n),

A*(F;k,n) +1 = max min d(f (x), y)
f,9 (x,y)EF xF :d(x,g(y)) F+1

> min d(f*(x), y)
(x,y)EFkxF :d(x,g*(y))>F+1

> F + 1.

Suppose A*(F ; k, n) > r. Let f* and g* be the maps achieving A*(F ; k, n).

Then d(x, g*(y)) > F + 1 implies d(f*(x), y) A*(F; k, n) + 1.
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ii) Let Ao = A* (F; k, n). Suppose Ao 1 1. Let f* and g* be the maps achieving

A0 . Then d(x, g*(y)) > F + 1 implies d(f*, y) > AO + 1. Thus E*(r + 1; k, n) <

E* (AO ; k, n) < F, a contradiction.

iii) Let EO = E*(F ; k, n). Suppose EO < E -1. Let f* and g* be the maps achieving

E0 . Then d(f*(x), y) < F implies d(x, g*(y)) < E0 .

A* (EO ; k, n) > F, a contradiction.

Thus A*(F- 1;k,n) >

El

Corollary 1.

i)

E*(A; k, n) = EA,

where EA is the smallest F such that A*(F ; k, n) > A.

ii)

A*(E; k,n) = AE,

where AE is the largest r such that E*(IF; k, n) E.

Proof. Let E*(.) E*( ;k, n) and A*(.) A*( ;k, n).

i) A*(EA) > A =E*(A) EA and A*(E& - 1) A - 1=> E*(A) EA.

ii) E*(AE) < E = A*(E) AE and E*(AE + 1) > E + 1 = A*(E) < AE-

El

Corollary 2.

A*(k - F -1;k,n)=n - AE - 1,

where AE is the smallest F such that E*(n - F - 1 ;k,n) < k - E - 1.

Corollary 3. If E*(A + 1; k, n) > E*(A ; k, n), then

A*(E*(A; k, n) ; k, n) = A.
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Proposition 3.

E*(E*(A ; k,n) ;n, k) = AE,

where AE is the smallest F such that E*(n - F - 1; k, n) < k - E*(A ; k, n) - 1.

Proof. Combining the results of Corollary 2 and Theorem 3

E*(E*(A ;k, n); n, k) = n - A*(k - E*(A ;k,n) - 1; k, n) - 1

= n - (n - AE - 1) - 1 =AE-

3.5.2 Operational Duality

The following Theorem provides a correspondence between achievable distortion points

at source-channel dimensions (k, n) and (n, k).

Theorem 4. (Operational Duality) A (k,n ; E, A) CJSCC exists if and only if an

(n, k ;n - A - 1, k - E - 1) CJSCC exists.

Proof. If the pair (f, g) is a (k, n ; E, A) CJSCC then the pair (g + lk, f + 1") is an

(n, k; n - A - 1, k - E - 1) CJSCC. More specifically, for all (x, y) E Fn x F ,

d(g(x) + 1k,y) < k - E - 1

--+ d(g(x), y) E + 1

= d(x, f(y)) A + 1

(w(z + l1)= k - w(z))

(CJSCC contrapositive)

=re d(x, f (y) + 1) < n - A - 1.

The reverse implication follows by symmetry.

28

0



Chapter 4

Asymptotic Flip Errors

Asymptotically we allow the user to choose the optimal sequence of source and channel

dimensions for a given bandwidth expansion factor p > 0.

Definition 3. For bandwidth expansion factor p > 0, the asymptotically optimal

CJSCC is
1

D*(6 ; p) inf lim inf -E*(Am ; km, fnm),
{Am},{km},{nm} m-+oo km

where the infimum is over unbounded sequences of natural numbers { km}, {nm} and

{Am E {O,. . .,fnm}} such that

1 n
lim Am = 6 lim - = P.

m- oo nm m--*oo k

A triplet of sequences ({Am}, {km}, {nm}) satisfying the conditions of Definition

3 is said to be a admissible (6, p) source-channel sequence. The point (D, 6) is asymp-

totically achievable if there exists a sequence of (km, nm ; Em, Am) CJSCCs (fm, gm)

such that - Em -+ D and -nAm -+ 6. The region of asymptotically achievable (D, 6)

with bandwidth expansion factor p is lower bounded by the curve (D* (6; p), 6). More-

over, the region is completely characterized by this lower boundary, i.e. a (k, n; E, A)

CJSCC is a (k, n; F, F) CJSCC for all F > E and F < A.

The following Lemma provides an approximation for the limit of a sequence of

functions acting on a sequence. This result is used to extend nonasymptotic results,
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in particular converse bounds, into an asymptotic setting.

Lemma 11. Let {ff,, : R -+ R} be a sequence of functions, {a E GR} a sequence,

{ nk G N} a subsequence and x = liminfko Xnk. Suppose there is an interval (a, b)

where the f,, are nonincreasing and lir infmn,0 f, is bounded below by a real valued

right continuous function g. If a < x < b, then

liM sup fn,(Xn) > (9.)
k--oo

Proof. Let E > 0 and KO C N. Let hk = infm;>k fnm and h = limk,,o hk. By right

continuity of g on (a, b), there exists J, > 0 such that, for all J < Js, Ig( +6) - g (_) <

E. Fix a 60 < min{6, _ - a, b - x}. Since h > g > -oo, hk converges pointwise on

(a, b). Thus, there exists K > KO such that, for all k > K1 , Ihk(!+6o)-h(x+o) < E.

Thus, for all k > K1 ,

hk( + o) > h(x+ o) - > g(x + o) - E >g()-2.

There exists K2 > K1 such that, for all k > K2, Xnk > x-60 and there exists K3 > K2

such that XnK 3 < x + 6O. Hence, as the fn are nonincreasing on (a, b),

fnK3 xnK 3 ) fnK 3 (I + 6o) hK3( + o) > g(_) - 2E.

Corollary 4. Let {f, : R -+ R} be a sequence of functions, {x,, C R} a sequence,

{nk C N} a subsequence and x = lim infk_, 0 Xnk.. Suppose there is an interval (a, b)

where the f,, are nondecreasing and lim sup,, fn is bounded above by a real valued

right continuous function g. If a < x < b, then

liminf fn(Xfk) < g().
k-+oo

Corollary 5. Let {an} be a sequence, {nk} a subsequence and {Xn} an i.i.d. sequence
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of random variables. If lim infk,_>,o aIlk < E[X], then

(1 Ilk
lim sup Pr -- Xi an, =1.

k->oo ' nk

Proof. By the law of large numbers

lim Pr ( X a = 1{a < E[X]}.
n->oo n

El

4.1 Asymptotic Converse Bounds

This section serves primarily to extend the known converse bounds of [151 and any

converses explicitly named reference converses given therein. The nonasymptotic

converse bounds of the preceding chapter are extended by analyzing the limit of their

normalized rate.

The information theoretic converse (IT) and asymptotic coding converse (CC) are

h-1(1 - p(l - h(J)) 1+)

{h-1(1-pRMaaw( 26 ))

0 < 5 < j
2

<6<1

0 < (5 < 4 -4

4 - 2

where h(x) := -x log x - (1 - x) log(1 - x) with base 2 logarithms and

RMRRW( 6 ) := min 1 + h(u2 ) _ h(u2 + 2(1 + u)6),
O<u<1-26

where h(u) h((1 - v/1 -u)/2). The maximum of these two lower bounds represents
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the current state of the art, and our contribution is an improvement for all J and p,

excluding the combination of 5 < 1/2 and p < 1, where the IT converse is optimal.

4.1.1 Asymptotic Covering Converse

Asymptotically Theorem 1 and Lemma 11 yield a lower-bound on D* (6 ; p) given by

the following function:

Dco (6;p) =
h-'(11 - p(l - h(6))I+)

1 - h-'11 - p(1 - h(1 - 6))1+)

Corollary 6. For all 0 < 6 < 1 and p > 0,

D*(J ; p) ;> Dco(6 ; p),

where, Dcov(6; p) : [0, 1] -+ [0, 1], De0 o(6 ; p)

0

h-1(1 - p(l - h(6))

1 - h-1(1 - p(1 - h(1 - 6)))

1

0 <6 < 1-

1 - OP < 6 < 1/2

1/2 < 6 < ,

p<6j<1

and 0, is the largest -y such that h(1 - -y) > 1 - 1/p.

Proof. Let ({Am}, {km}, {fnm}) be an admissible (6, p) source-channel sequence, 6 m

$Am, Dm = -LE*(Am;kmnm), D = liminfmoDm and f m : [0,1] -+ [0,1],

fm(x) := log K(m, [xmJ). Then limmoc, fm is the limit of the normalized rate for

the asymptotically optimal covering and, see e.g. 15] ch. 12, this limit exists

f(x) := lim fm() =-
m-400

1 -h(x)

0

0 < x < 1/2

1/2 < I < 1
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Thus, as fm is nonincreasing, fm (x) satisfies the conditions of Lemma 11 and fm (1 - x)

satisfies the conditions of Corollary 4. Combined with the result of Theorem 1

f(D) < lim sup fkm(Dm) < lim sup n, fn(6"m) = Pf(6 ),
m-+oo m0oo km

where the equality follows because f is continuous and Jm converges. Similarly

f(1 - D) > lim inf fkm(1 - Dm - 1/km) > lim inf ' f.m (1 - 6m - 1/nm) = pf (1 - 6).
m-+OO m-+oo km

El

It should be noted that, for 1/2 < J < 1, Dv (6 ; p)

in p with Dcv(6 ; p) > 6 for p > 1 and

is monotonically increasing

lim Dov (6; p) = 1
p--- 2

lim Do(6;p) =
p-+oo

Thus, for all 6 > 1/2,

lim D*(6 ; p) = 1
"~-00

and combined with (4.6), for all 6 < 1/2,

limD*(J;p) = .
p->o

4.1.2 Asymptotic L-Multiple Packing Converse

With L = 1, Theorem 2 is asymptotically equivalent to (4.1), and the novelty here is

using it for 6 > 1/4 or L > 1. As per the numerical evaluations given in Section 4.5,

using L = 2 gives the best asymptotic converse bound in 0 < 6 < 1/4. Lemma 14

gives an explicit characterization of the bound.

The following Theorem shows that coding with non-unit bandwidth expansion

factor p $ 1 probably yields no gain in the region 1/4 < 6 < 1/2.
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Theorem 5. Let p > 0.

i) (Plotkin-Levenshtein) For all m C N,

+ ;P
1 m

where the minimization is over admissible (6, p) source channel sequences such

that {k }, {2E*(Am; kin, nm) + 1} satisfy the conditions of Theorem 9.

ii) (Blinovsky) For all f c N,

( 21) 2 -2e ) 2-2)

Proof. (Sketch)

i) Evaluate the coding converse using the Plotkin-Levenshtein solution to A(n, d),

[11 ch. 7.3.

ii) Evaluate Blinovsky's upper and lower bounds at the endpoint of the upper bound

for ranging values of L.

The full proof is given below.

Theorem 6. [4] (Blinovsky Achievability) Let

fe,t(s) -loge

Fe,e(s):= 1 + (fe,e(s) - sf',(s));

fo,e(s) := -log 2 -is/(2e)

'iJ
+ f)2-s/2-1

1
Fo,e (s) := + 22- 1 (f'e(s) -sf',t (s)).
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+ 1

For all f E N and A E [0, 1/2],

log AL(n, ge(A)n) 5 n(1 - h(A)) + o(n),

where L is either 2f or 2f - 1.

Lemma 12. Let ak,ck > 0 for 1 < k < n and g(s) = 1 + ZE=cke--ks. Then

- log g(s) is strictly increasing with a continuous strictly decreasing derivative.

Proof. Let f(s) = - log g(s). Then f is real analytic on [0, oo), as g is real analytic

on R, log is real analytic on [1, oo) and g(s) C [1, oo). Therefore f'(s), f"(s) are

continuous on [0, oo), and it suffices to show that f'(s) > 0 and f"(s) < 0 on (0, oo).

By construction g(s), g"(s) > 0 on (0, oc) and g'(s) < 0 on (0, oo). Thus the first

derivative f'(s) = -g'(s)/g(s) is strictly positive on (0, oc). The second derivative is

f"(s) = -g(s)g"(s) + g'(s)2

f (S)g(s)2

35

For all f E N and s [0,oo),

log A2e(n, f',e(S)n) ;> nFee(s) + o(n);

log A2 -I(n, f' ,(s)n) > nFje(s) + o(n).

Theorem 7. [4] (Blinovsky Converse) Let

ge(A) 
)=



By Cauchy-Schwarz

n 2

9 (E akCke-akS)

k=1

n 2

VCke Cesk VCke ans
k=1

< (iCke aks
(k=1

akCke

(k=

as)

S(g(s) - 1)g"(s).

Therefore, -g(s)g"(s) + g'(s) 2 = -g"(s) and thusly f"(s) < 0 on (0, oo).

Lemma 13. For all e > 1

21 (-1)

i=0 (2+1

_ (2-1) + i (2)

- = 2 ) + ( (

iO(2i) 1 2-
+ 1

Proof. Expanding the numerator and denominator of the first term

e

i=1

2)

1?(2e 1)

i=O )iJ 2
22V (2)_

= 22t+1
2

with ratio (1 - (2' 2-2). Similarly for the second term

'i1

i=: (21)
4

2t) E-2

i=O

1 (2fN
2 1)

f2 1)

with ratio . (1 - (2 2-2t). The Catalan series is

iz=O

1 z = 1- 1-4z
i + 1 2z
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for jzj < 1/4. Thus the final term is

2i) 1 2
i+

and it suffices to show that

T (2i)ii

This follows from

2:) 2 -2e
f )

2(i+1) - 1
4

1 2~2i
i+1

( 2(f + 1) 2 -2(+) 2f2 2-
(f + 1) ) f e

- 0 2i) 1 2-2i
i i +'

1 = 2-2e

(2-

(2)

(2e)(21)

2 --2t 2 -

2 -2 (2 -

1 (2 + 2)(2f + 1)
2 (+1)(f+ 1) J
2f+ 

1)2 +
1 -2
+ 12

n

Corollary 7. For all f c N

i) f',e and ft, are continuous and strictly decreasing on [0, oo).

ii) Fe,e and Fo,e are continuous and strictly increasing on [0, oo).

iii) ge is continuous and strictly decreasing on [0,1/2].

iv) fe(0) = f ,e(0) = ge(1/2) = 1 (1 - (2e )2-2e)

v) Fe,t(0) =Fo,t(0) =0.

Proof. Parts i and ii follow from Lemma 12 and parts iv and v follow from Lemma 13.

Part iii follows because A(1 - A) is continuous and strictly increasing on [0, 1/2]. 0

Lemma 14. Let f c N and 6 c ge([O, 1/2]). If there exists an admissible (6, p) source-

channel sequence ({Am}, {km}, {nm}) such that lim inffmoo -LE(Am ; km, nm) < ge(1/ 2 ),

37

1 !!P (2f+ 2)!
2 (2f)! (f + 1)!(e + 1)!,'



then

D*(J ; p) > (f',e o Fe-) (p(1 - (ho g')(6)))

and

D*(6; p) > (f,e o F-')(p(1 - (h o g-')(6))).

Proof. Let ({Am}, {km}, {nm}) be any such admissible (6, p) source-channel sequence,

Jm =$Am, Dm = E*(Am ;km, nm), D liminfmno Dm, fm(x) = logA2e(m, [XnJ)

and I, = (0, ge(1/ 2 )). By Corollary 7, fe,e(s) fe,,e(O) = gt(1/ 2 ) and fe,e(s) is invert-

ible. Moreover, lim._,,, fe,t(s) = 0. Thus Fe,e o (fe'-) is well defined on Ie and, by

Theorem 6, for all x E 1e, lim infk->o fm(X) ;> (Fe,, o (f',Y')-(x). Therefore, as the

fm are nonincreasing, combining the results of Lemma 11, Theorem 2 and Theorem

7

(Fe,, 0 (f',)(D) < lim sup fkm(Dm)
k-+oo

< lim sup .fn(Jm) + I log 2
k-+oo km km

< lim sup nm (I - h(g 1 (Jm))) + 0(1)
k-oo km

=p(1 - h(gel5))

The given expression follows from Corollary 7 part i, ii and extension to f,e and Fo,e

follows by symmetry. L

Theorem 8. (Plotkin) For 2d > n,

A(n, d) < 2d/(2d - n).

Theorem 9. (Levenshtein) Provided enough Hadamard matrices exist (if k := [d/(2d-

n)], then Hadamard matrices of order 2k (k even), 2k + 2 (k odd), 4k and 4k +4 are

sufficient)
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i) Ifd is even and2d>n>d

A(n,d) = 2d d1

ii) If d is odd and 2d +l > n > d

A(n, d) = 2
d +1L2d +1 - n_

Proof of Theorem 5

i) Let ({Am}, {km}, {fnm}) be any such admissible (6, p) source channel sequence,

Dm= E*(Am ; km, nm), D = lim infmoo Dm,

fm(x) = 2 min 2x + 1/M 2x + 2/m
f4x - 1 + 2 /m 4x - 1+ 3/m_

and A = { : n E N}. Then, for 1/4 <x < 1/2,

f(x) := lim fm(x) = 2
m-oo

as 2x/(4x - 1) is strictly decreasing.

A(nm, 2Am + 1). Thus

f(D) <(a)

[4x1-1
xcz A

By Theorem 2, A(km, 2Dmkm + 1) <

lim sup fkm(Dm)
m-400

< (b) lim sup A(km, 2Dmkm + 1)
m-*oo

< lim sup A(nm, 2Am + 1)
m-oo

<(c) lim sup 2 Am 1
M-+00 4Am+2-nm

= 24
45 -1l
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where (a) is Lemma 11, (b) is Theorem 9 and (c) is Theorem 8. Therefore, for

all m 1E N, 6 > .2 implies D > m2- if D A and D > -+1 if D E A.22m-1 2 2m-1 2 (m 1)-1

Hence, for all m c N, 6 > }2-I implies D > m22--

ii) By Lemma 14, for all E > 0,

D*(ge(6) - E ; p) > (f,,e o F-)(p(1 - h(g-I(ge(6) - E))))

and by Corollary 7 all functions on the RHS are continuous.

4.1.3 Repetition Scheme Converse

An L-repetition scheme feL : Fjk -+ FL, is the L times concatenation of a based code

f : F2 -+ F2. Previous results 1151 have demonstrated that repeating a small base

code may yield good CJSCC. The asymptotic performance of L-repetition schemes

is characterized in [19, Thm. 21 where it is shown that, for all p > 0, k C N and

f : FI - the limit function

1
D(6; f) := lim -E(LJL[pkJJ ;feL)L->oo Lk

exists and is concave in 6. The concavity in 6 and the covering converse, Dcv(6 -p),

yield the following lower bound on the asymptotic performance of any repetition

scheme:

Lemma 15. Let 0 < 6 < 1, p > 0. For all f : F -+ FLA,

Do(0;p)
6 0 < < 50

D(5 ; f* ) > 6, (4.3)

DCoV(j ; p) JO < j < 1

where 6J is the unique solution in 1/2 < 6 < O, to

6D'c,(6 ; p) - Deov( ; p) = 0
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and O, is the largest -y such that h(1 - -y) > 1 - 1/p.

Proof. Let hp(6) := Dco (J ; p). By the covering converse and 119, Thm. 2], D(J ; f* O)

is lower bounded by the least concave function upper bounding h,(6) and thus it

suffices to show that this is the given function. Let I, = (1/2, Op) C (0, 1). A

necessity of concavity on [0, 1] is h' (6)6 < h,(6). The binary entropy function h

is strictly increasing and strictly concave on (0, 1/2) and thusly its inverse h' is

strictly increasing and strictly convex on (0, 1). Therefore, h. : I, -+ (1/2, 1) is

strictly increasing and strictly concave. Let g(J) = Jh',(6) - hp(6), then

g'(J) = h' (J) +6h"(6) - h' (6) = Jh' (6) < 0,

since h" is strictly concave and J c I,. Thus g(J) is strictly decreasing. Using the

inverse function theorem
ph'(1 - )

h' (J) = h~ -J
h h'(1 - hp(j))

where h'(6) = log Lj. Furthermore, h' is strictly decreasing on (0, 1/2) with lims\o h(6) =

oo and h'(1/2) = 0. Therefore as h'(1 - 0,) is bounded and h,(Op) = 1/2

lim h' (5) = 0,S/'op

and, by L'H6pital's rule,

lim h'(6) = lim -ph"(1 J)
\1/2 P 15\1/2 -h"(1 - h,(J))h',(6)

- lim -ph"(1 -6) lim 1
6\1/2 -h"(1 - h,,()) 8\1/2 h'(6)

Thus lims\1/2 h,() = , and

lim g(J) = 1/2( F - 1) > 0, lim g(j) = -1.
P,\1/2 810,

Hence by continuity of g there exists a unique JO C I, such that g(6o) = 0. Linear

interpolation up to JO yields a concave function. E
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This bound is increasing in p, strictly greater than 6 for all p > 1 and shows that

repetition schemes are suboptimal for low distortion and large bandwidth expansion

factor, e.g. when compared to separated schemes.

4.2 Asymptotic Linear Encoders

For linear encoders we can sharpen the double staircase result given by the multiple

packing bound and established a restriction on the weights of rows for a sequence of

linear encoders achieving zero distortion. We begin with a technical Lemma.

Lemma 16. Let A be a linear (k, n ; E, A) CJSCC. For all 0 < q < 1,

1 (1-(1-(1-2q)'A)n q< 1Pr(w(AX) > 2E + 1) <
--2A 1

where X is a k-dimensional i.i.d. Bernoulli(q) vector, w (A) : j' w(ai) and {ai}

is an enumeration of the rows of A.

Proof. Using (3.1),

E[w(AX)] = E[w(AX), w(X) < 2E] + E[w(AX), w(X) > 2E]

> E[w(AX): w(X)>2E] Pr(w(X)>2E)

> (2A + 1) Pr(w(X) > 2E).

By Lemma 9
n 1

E [wt(AX)] - -VA(1 - 2p),2 2

where VA is a generating function for the weight of the rows of A. Let a = 1 - 2p.

Then
n

VA(1 - 2p) = VA(a) - a~
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If q < 1/2, then a is positive, VA(a) is convex in w(ai) and

VA(a) = n I E w(a) > naw(A)/n.
n

i=1

If q > 1/2, then a is nonpositive and, as w(a2 ) E {,... ,n}, the least positive term

is a. El

Theorem 10. For all p > 0 and 1/4 < 6 < 1/2, the asymptotically optimal distortion

for linear encoders is bounded

D*(; p) > 6.

Proof. Let ({Am}, {km}, {nm}) be an admissible (6, p) source-channel sequence, Em =

Ej*(Am ; km, nm), Am a linear (km, nm ; Em, Am) CJSCC, D = lim infmx LEm and

Xim a km dimensional i.i.d.

Lemma 16,

Bernoulli(q) vector. Choose q > max{2D, 1/2}.

Pr (w(Xm) > 2Em + 1) < qnm
2Am + 1*

Taking limits

1 = lim sup Pr (w(Xm) > 2Em + 1) < -
m*o 2J

where the equality is Lemma 11 and the law of large numbers. Hence q > 26, and

thusly D > 6. El

Proposition 4. Let ({Am}, {km}, {nm}) be an admissible (6, p) source-channel se-

quence for p > 0 and 0 < 6 < 1/4 and {Am} a sequence of (km, nm ; E(Am ; Am), Am)

CJSCCs. If lim supwo 1 W(Am) < oo, then

1
lim inf -- E(Am ; Am) > 0.
m),D km

Proof. Let Em - E (Am ;Am),7 D - lim infmoo -LEm and M = lim supm, Lw (Am).

If D > 1/4 the assertion follows. Suppose D < 1/4. Choose q < 1/2 such that
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q > 2D. Let Xm be a km dimensional i.i.d. Bernoulli(q) vector. By Lemma 16

1 nm(1-(1-2q)(Am)/nm)
Pr (w(Xm) > 2Em + 1) <

2 2Am + 1

Therefore, by Corollary 5,

1 nm(1 - (1 - 2q)w(Am)/nm)1llim sup~ A
maoo 2 2 An+1I

1 - lim inffmoo(1 - 2q)w(Am)/nm

46

(a)1 - (1 - 2q)M/P
46

where (a) follows because (1 -2q)' is decreasing and continuous. Rearranging provides

1
q > - [1 - exp (p log(1 - 46)/M)] > 0,2

as 0 < 6 < 1/4. Hence D > 0.

In particular, a linear encoder with vanishing density of ones in every row cannot

achieve zero distortion for a positive channel parameter.

4.3 D - Trade-Off as a Function of p

In the information theoretic setting there is both monotonicity and continuity in p.

This section partially extends these properties to the combinatorial setup. A basis

for this analysis is the performance of CJSCCs combined by composition.

Of particular interest is the canonical admissible (6, p) source-channel sequence

(L[ pkJ J, k, [pkJ). To facilitate in the analysis of such sequences we define upper and

lower limits

T(6 ; p) lim sup I E*(L6[pkJJ ; k, [pk])
k- ook

and

( ; p) :=lim inf -E*( [6 [pkJ J ;k, [pkJ).
k-+ook
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The notation e(J ; p) is used in statements that apply to both.

An immediate application of the composition Lemma shows that e(J ; p) is more

or less impervious to finite deviations and provides a limited monotonicity result.

Proposition 5. For all p > 0, a, b C N and 0 < 6 < 1

1
(6- ; p) < lim inf E*( L6( LpkJ + b)] ; k+a, LpkJ +b) < e(6+ ;p)

k-+oo k + a

and

1
E(J- ;p) < lim sup E* (L6([pkj + b)] ; k+a, [pkj+b) < -(6+ ; p).

k-+oo k + a

Proof. If 6 = 0 or 6 = 1, then the statement is vacuous. Suppose 0 < 6 < 1. Let

Ak = [J([pkj + b)] and 0 < E < min{6, 1 - 6}. There exists K such that, for all

k > K, [(6 - e)[pkJj Ak - b and there exists K2, such that, for all k > K2 ,

Ak < [(J + E) [pkJJ. There exists K3 C N such that, for all k > K3, b < Ak < [pkJ.

Let K = max{K1 , K2, K3}. By Lemma 7, for all k > K,

E*([(J -6c)[pkJj ;k, [pkj) < E*(Ak - b;k, [pkj)

< E*(Ak; k + a, [pkJ +b)

< E*(Ak ; k, [pkj)+a

< E*L(6+E)LpkJ J ; k, [pkJ) +a.

Taking limits gives the result.

Proposition 6. Let p,r > 0 and 0 < 6 < 1. If iMr supk,. [,]E* ([6 [pk j 1; [TkJ, [pk [) <

5, then (O; p) <(6-+ ; T).

Proof. Let e> 0. Let Ak = [(J+-) [rkJJ, Ek = E*(Ak; k, [rkJ), E = lim supk_! Ek,

rk = [6 [pkj J, Fk = E* (F ; [TkJ, [pkJ), F = UN sup_,k ]F. There exists K1 E N

such that for all k > K1, Ek < (E + e)k. By assumption, F < . Thus there exists

K2 such that, for all k > K2 , F < Ak. Let K3 = max{K1, K2}. Using Lemma 6
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with n = [TkJ and n = [pkJ, for all k > K3,

E*(Ik ; k, [pkJ) < E*(Fk ;k, [TkJ) < E*(Ak ;k, [TkJ) < (T(6 + E; T) + E)k.

nl

Lemma 17. For all p,T C Q

qs- 1

U(rkJ, [pkj)I c U U{(n+ LrbJ, [(p/r)nJ+ [pb)1,
kEN b=O ncN

where p = p/q and T = r/s are the unique representation of p and r as the quotient

of relatively prime integers.

Proof. Any k C N can be expressed as k = aqs + b where 0 < b < qs. Therefore,

[pkJ = [p/q(aqs + b)] = lpas + pb/qj = pas + [pb/q = paqs + [pb],

[Tkj = Taqs + LTbJ

and

{([TkJ, [pk)}} = {(raq +LTb,pas+ LpbJ)}.

Let n C {aqr: a E N}

{(n, [(p/T)nj)} = {(aqr, [((ps)/(qr))(aqr)J)} = {(aqr,psa)}.

Lemma 18. Let {cn(A) : n E N, A E A} where for all A

liM sup cn(A) < a.
n-+oo

Let ak = c, (An) where {nk} is any subsequence. If A is finite then

lim sup ak a.
k-+oo
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Proof. Let e > 0. For each A C A, there exists NA such that, for all n > NA,

cs(A) < a + E. Let N = maXACA NA. As nk > k and {ak} C UAEA{cn(A)}, for all

k > N, ak <a E.

Lemma 19. If p, T C Q, then

1
lim sup E* (L6pkJ; [rkJ, Lpkj) < -(J+ ; p/T ).

k->oo LTkJ

Proof. Combine the results of Lemmas 17, 18 and Proposition 5. l

4.4 Achievable Asymptotic Curves

The operational duality established in Section 3.5.2 yields an inverse function relation

between the asymptotically achievable (D, 6) at bandwidth expansion factors p and

1/p. By Theorem 4, the point (D, 6) is asymptotically achievable with bandwidth

expansion factor p if and only if the point (1 - 6, 1 - D) is asymptotically achievable

with bandwidth expansion factor 1/p.

Lemma 20. If the curve (D(6), 5) is asymptotically achievable with bandwidth expan-

sion factor p and D(6) is left continuous at D- 1 (1-6), then the point (1-D-'(1-6), 6)

is asymptotically achievable with bandwidth expansion factor 1/p, where D- 1(J) is a

generalized inverse

D- 1 (6) := sup{-y : D(y) < 6}.

Proof. By Theorem 4, for 0 < t < 1, the curve (1 - t, 1 - D(t)) is asymptotically

achievable at 1/p. Parametering t(6) = D- 1 (1 - 6), the curve

(1 - D-1(1 - 6), 1 - D(D-1(1 - 6)))

is asymptotically achievable at 1/p. Choose an increasing sequence {-yn} C {Y

D(y) < 1 - 6} such that -y //I D-1(1 - 6). By left continuity of D(6) at D- 1(1 - J)

D(D- 1 (1 - 6)) = lim D(7) < 1 - 6,n-+oo
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where the inequality follows by construction of {Py}. Hence 1 - D(D-'(1 - 6)) > 6

and thusly (1 - D'(1 - 6),6) is asymptotically achievable. n

Lemma 21. If the point (D, 6) is asymptotically achievable, then, for all 0 <c < 6,

the point (D, 6 - &) is asymptotically achievable using the canonical (6 - E, p) source-

channel sequence ([(6 - E) [pkj ], k, [pkJ ).

Proof. Let 0 < E < 6. Let (fm, gm) be a sequence of (km, nm ; Em, Am) CJSCCs such

that
nm Am Em D.
km n. km

Thus nm = [pk] + am and Am = [6[pkmjj + bm where am and bm are o(km). There

exists M E N such that, for all m > M,

[(6 - )[pkmJJ [6Lpkm] J + bm - max{0, am} = Am - max{0, am}.

Using a (psuedo)-identity code and the composition Lemma, for all m > M,

E*([(6 - E)[pkmJJ ; k., [pkmJ) < E*(Am - max{0, am} ; km, [pkmJ)

< E(Am - max{0, am} ; I[pkmj+am,plkmJ 0 fin)

< E(E(Am - max{0, am} ; ILpkmJ+am,[pkmJ) ; fm)

= E(Am ;fm) = Em.

For any sequence {km E N}, {([6[pkmJJ,km, [pkmJ)} C {(L6[pkJJ,k, [pkJ)}. Thus

1 1
L(6 - -; p) < lim inf -E*([(6 -,E)[pkmJJ ; km, [pk]) < lim inf -- Em = D.

M->00 km m-+oo km

Corollary 8. For all 0 <,e < 6,

e( -e ; p) < D*(J; p) < e( ; p).

A continuity relation between p and J follows.
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Proposition 7. Let 0 < 6< 1 and p > 0. For allO E < 6(1 - 6),

D*(J) (1 - J) P)
+

Proof. By the composition Lemma, Lemma 6,

- Lpk])

E* ([(6 - E)[pkj] + [pkJ - 1

For all E' < e, there exists K such that for all k > K

(6 - E)LpkJ J + [pkj - [I

(1

-'~ pkj

- p )

-6'+~) [pkJJ.

- E'+ ; p)

and the result follows by Corollary 8. El

4.5 Numerical Evaluations

The section collects numerical evaluations comparing simple achievable schemes with

the best known converse bounds.

4.5.1 Asymptotic Performance of Basic CJSCCs

e The distortion of the asymptotic (pseudo)-identity map I. is

D(6; I,) = min{1, pJ + max{O, 1 - p}}. (4.4)

e The distortion of the asymptotic p-repetition code R, is

D(S; R,) = min 1, Ep/216}.
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E* (L(6 -E) LpkJJ ; k, [(

-) pkJ ;k, [pk]).

Thus
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* The distortion of the asymptotic separated p-code Sp is [15, Sec. III-C] D(6 ; Sp)

h-'(|1 - p(I - h(26)) 1+) 0 < 6 <
. (4.6)

1< 6<
4- 2

The correspondence between achievable (D, 6) with bandwidth expansion factors

p and i/p of Lemma 20 yields dual versions of the preceding CJSCCs. The dual

separated p-code is of particular interest.

" The distortion of the asymptotic dual (pseudo)-identity code I- is

D(6; I-) = min{1, p6}.

" For p E 1/N, the distortion of the asymptotic dual p-repetition code R- is

D(6; R-L) = max {0, p[1/( 2 p)] 6 + (1 - pFl/(2p)1)}.

* The distortion of the asymptotic dual separated p-code S-L is, for 1/2 < 6 < 1,

D(6 ; S-L) = 1 - lh-'11 - p(1 - h(1 - 6))1+). (4.7)

Together the dual separated code and the covering converse, 4.7 and 4.2, establish

the maximal 6 asymptotically achieving nontrivial distortion D < 1 for bandwidth

expansion factor p

*(1- ; p) = 1 - h- 1  1 - 1 . (4.8)

4.5.2 Comparison for p = 3

Figure 4-1 gives the best known converse and achievability bounds for bandwidth

expansion factor p = 3. The dotted black line represents the uncoded or p = 1 case

where the identity scheme is optimal. Deviation from this line is of interest.

The achievability bound is given as follows:
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* 0 < J $ 0.185 - the separated 3-code (4.6);

* 0.185 J 6 < 1/3 - the 3-repetition code (4.5);

* 1/3 < 6 < 1/2 - the separated 3-code (4.6);

* 1/2 < J < 1 - the dual separated 3-code (4.7).

The converse bound is given as follows:

* 0 < j < 1/4 - the asymptotic L multiple packing converse Theorem 2 using

L = 2 and the upper bound from [211;

e 1/4 < 6 < 1/2 - the interlacing of the bounds in Theorem 5;

* 1/2 < 6 < 1 - the asymptotic covering converse Theorem 1.
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Figure 4-1: Best known achievability and converse bounds for p = 3.
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Chapter 5

Erasure Errors

5.1 CJSCC with Erasure Errors

Definition 4. Elements x, y E {0, 1, ?} are said to be equivalent modulo an index

set I C [n] = {1, 2, ... ,n}, denoted x, = y, if x = y, for all i E I.

Definition 5. The set of achievable erasure points given an element y G Fn and an

index set I C [n] is

Er(y) := {z E {0, 1, ?} I ZI = y', Z[n]\I =?}.

Definition 6. Let k, n E N, E c {, .. ,k} and S E {O, ... , n}. A pair of maps

f : Fk -+ F2 and g : {0, 1, ?}" -+ Fk is a (k, n; E, E) CJSCC if, for all x E F,

I C [n] with Il > n -E andy E {0,1,?} such that y G EI(f(x)), d(x,g(y)) < E.

Equivalently

E( ; k, n, f, g) := max max max
{xEF } {I:1II>n-e} {jyE (f(x))}

d(x, g(y)) < E.

In the sequel the k and n may be dropped when understood from the context.

Definition 7. The I plane around an element y C F' is

C(y; n) := {z c F I z, = yI}.
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Theorem 11. For all f : F' -+] F] and c {o,. .. ,n}

D(E;f) :=infD(E;f,g) = max max rad(f-CI(f(x))),
9 EFi I:|I|=n-&

where the minimization is over g : {0, 1, ?}, -+ Fk.

Proof. For all I C [n], the following two sets are equal

{(xy) 1 x C Fk, y C SI(f(x))} = {(x, y) I yi E {O, 1}0 , y[n]\I

Therefore, an equivalent maximization is the following

max max d(x, g(y)) = max max d(x, g(y))
{XE{O,1}k} {yCE(f(x))} {y:yIE{O,1}II ,Y[n]\I =?} {X:f(X)I=yI}

> max min max d(x, z)
{y:yi E{O,1}I'I ,y[n]\Ir~ -?} {zEFk} {x:f(x)i=yi }

-(a) max
- Y:ymxr,1a,y[nI--?}

= max ra
Iy:y1I {,1}WII,y1-]\V--?

rad({x : f(x)i= y'})

d(f-'CI(y))

where (a) follows by definition of the Chebyshev radius and g(y) G cen(f 1 (B(y)))

achieves this bound independent of I because I is known. Moreover, for all y such

that y' E {0, 1}1I and y[n]\I = ?

f-1C(y) =
f C1 (f (xO))
0

-lxO s.t. YI = f (xO )1

else

Thus it suffices to maximize over f(F'). Combining provides

D(E; f) = max max rad(f -- C(f(x))).
I:|II;>n-E xEFik

If J D I, then for all y G Fn2 Cj(y) C C'(y). Thus maximizing over {I : II > n- [EnJ }

is equivalent to maximizing over {I : Il = n - LEnJ }. l
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In the sequel, we focus attention on the case f : F' -+ F' and g the Chebyshev

decoder. Moreover, the characterization of the previous theorem is taken to be the

definition of a (k, n; E, 8) CJSCC and the optimal CJSCC is

E*(E ;k, n) := min E(; k, n,f).
f

5.2 Converse Bounds

A few of the flip error converse bounds carry over with appropriate factors of 1/2.

Lemma 22. (2-point converse) Let f be a (k, n ; E, E) CJSCC. Then

d(x,y) > 2E + 1 =- d(f(x), f (y)) > E + 1.

Proof. If d(f(x), f(y)) < E, then there exists Io such that IIoI > n - 8 and f(y) C

C1 (f(x)). Moreover, for all S C Fk, diam(S) < 2rad(S). l

Lemma 23. Let Ek = E* (8; k, n). Then

A(k, 2Ek + 1) 5 A(n, E + 1).

Proof. Let f be a (k,n; Ek,E) CJSCC and C C Fk achieve A(k,2Ek + 1). Then

d(x, z) 2Ek + 1 implies d(f(x), f(z)) > S + 1, and thusly f is injective when

restricted to C. Thus A(k,2Ek + 1) = 1C = If(C)I < A(n, + 1). E

5.3 L-repetition

As a corollary to the repetition converse for flip errors and as the repetition code

achieves E = E for erasure errors, the performance of any L-repetition scheme is no

better than the repetition code. In the interest of completeness a characterization of

L-repetition schemes is given. In particular, the L-repetition distortion diagonalizes.
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Theorem 12. Let f be a (k, n ; E, S) CJSCC. The distortion of its L-repetition is

E(S ; fOL) =
L

max E(i ;f).
Ej+..+L<Ei=1

Proof. Let fL :f= EL. For all L,

E(E ; fL) = max max rad(fj'CI(fL(x))).
xEFk I:\Ij>Ln-

Consider the 2-repetition encoding f2

E(; f2) max max rad(fi7CI([f(xi)f(x 2 )]))
[x1 X2 ICF k I:|II2n-E[X mx21 ma

= max max
[x 1 x 21EF 2k I:III 2n-E

= max max
[-T1 x21CF 21 I-\I'>2n-E

rad (f-0CI,(f(Xi)) ED f-CI2 (f(X 2 ))) (I:

rad (f-C1i(f(xi))) + rad (f'CI2(f(X2)))

= I1 U 12)

(Lemma 4).

By induction

E( ; fL) = max
xLFik

where x = [x, ..

L

max E rad (f
Ic[Ln:|I>Ln-E

. XL] and I = 1 U ... U IL- The result follows as

U j: IC [n], IIl'
Lj=1

{Ic [Ln] :I I Ln-E}=
L

> n - EES,
j=1

El

5.3.1 Asymptotics

Lemma 24. For all f : Fk _, F2, as a function of E,

1
lim sup -E(LeLnJ ; feL) < inf{#b 1 ko(-/n) > E(- ; f), # - concave nondecreasing}.

L-oo Lk
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Proof. Let k#(./n) > E( ; f) be a concave nondecreasing function. For all L

L

E(L[LnJ; feL) max YE(iS ;f)

L

+ max k #(ES/n) (k#(-/n) E(- ; f))

L

= Lk max E#(EFi/n)
S1+...+EL<L,-Lnj L

(0 concave)

< Lk# (Ln ) (4 nondecreasing)

< Lk4 (E).

and this holds in the limit iM supLrn Lk E([Ln]; fEL) < #. Hence, as 4 was arbi-

trary, the inequality holds over the infimum of such functions.

To better coincide with the limiting case we consider parameterizations.

Lemma 25. For all 0 < e < 1,

E([cLkJ ; feL) =

L

max E([eikJ ; f),

where 0 < ej < 1.

Proof. It suffices to show that

L

.. ,eL) ei c N, Eei
i=1

< LeLnJ = ([zinj,. .. , [zLnJ) I zi c [0, 1],

For the forward containment, consider a vector (ei,... , en). Let zj = fi, then [zinj =

ej and
L

i=1

[ecLnJ <*
Ln
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(el, 1
L

Zzi
i=1

L
i=1

L1

Li=1 n
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For the reverse containment, by Lemma 3 and monotonicity of floor,

L h

Lzin] <
L

I zin
_ iJ

< [-LnJ

Lemma 26. For all f :F -+ Fn, lim infLo nE([eLnJ; f1L) upper bounds the

base distortion . E([en]; f ) and is concave nondecreasing.

Proof. Let D(-) := E([enJ ; f), DL (e) := 'E([eLn] fEL) and D,(e) := lim infL DL (E).

By Lemma 25, for all L,

DL (E) =max
61+...+EL<;Le

IL

ZD(ei)
L 1

;> I4L
and thusly, this holds in the limit. Let XL(E) = {z C [0, 1]L : 1 _I Z } and,

9L : [0, IL -4 [0, 1], 9L(z) := 1 E([zinj ; f). Then DL(E) = maxzEXe gL(z)

Let 0 < A < 1 and E, j C [0, 1]

XL(AE + (1 - A)6)

I [AL]
S z : E i <,

[A ] =1 -

D1 [AL]
ILALJz= C

1 [ALJ+[(1-A)Lj

[(1 - A)LJ i

[AL +[\L

=[AL]

zi 6, Z[L,\]L(1-A)L]1 0

= C X[AL] (5)1 n L X[(i -A)L](5)} n {zL$L][(1-A)L] 1 =
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= [AL] +1

zi < , z L] LL1 =0}



where the first containment follows from [xJ < x. Similarly, gL(z) decomposes as

9L (z) = L

L

ED(zi)

ALJ 1 L
AL [AL ]

D(zi) + (1 - (1 - A)LJ 1 +[ )

(1 - A)L [(1 - A)LJ

IL
D(zi)

i=[ALJ+[(1-A)L]+1

AL g[ALJ(zL ) + (1 - A) [(1 - A)LJ 9[(1-A)L](Z [AL][(1-A)L])-AL I (1 - A)L [AL]+1

L
D(zi).

i=[AL]+[(1-A)L]+1

Combining these two decomposition and the fact that D(O) = 0

DL(A+ (1 - A)6) > A [AL DpLJ(E) + (I- A) (1 - A)L [(1-A)LJ(6).

Using the properties of the limit inferior from Lemma 2

lim inf [A L D[AL] (E) + (1- A) [(1 - A)LJ D[(1A)LJ (6)L-->oo I AL(1 -A)LI

> A (lim inf

+ (1 -A) limii 

-+

lim inf DpAt (E))L-ioo /

nf11-A)LJ b~lim inf D[(1-A)LJ (0)

= ADoo(e) + (1 - A)Doo(-).

Hence Do, is concave. El

Proposition 8. For all f : Fk -+ F', the limit D(e; fB) := limL_,oo -D([eLnj ;fEDL)

exists and is equal to the upper convex envelop of E( [EnJ ;f),

lim D(- ; feL) = inf{# k#(-/n) > E(- ; f), # - concave nondecreasing}.
L-+oo
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L
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Proof. Let DL(E) := E( [eLnj ; fEL). Combining the results of Lemmas 24 and 26

lim sup DL inf{q 1 kq(-/n) > E( ; f), # - concave nondecreasing} < lim inf DL.
L-*o~o L->oo

Since lim inf < lim sup these inequalities are equalities and the assertion follows. El

5.4 Linear Encoders

Lemma 27. Let k,n E N and SE {0,...,n}. If f : Fk -+ F, is linear, then

E(E ;f) = max rad(f-'C(O)).
I:jI=n-E

Proof. For all X E Fk

f -1 C(f()) = {z I f(z)i = f(x)i}

= {z I f(z-x)i =Oi}

= {z I z -X E f Ci(O)}

- f0-IC(O) + X,

and rad(f-'CI(0) + x) = rad(f C(0)).

Proposition 9. Let k, n E N and 8 E {,... , n}. The optimal distortion minimizing

over linear f :F -+ I1R CJSCCs is

E*(E; k, n) = min max
AEFnxk I: II=-&

rad(ker(A1 )).

Proof. Let A E Fnxk be a linear (k, n; E(E; f), E) CJSCC. Then

A-C(O) = {x E Fk I [Ax], = Oi} = ker(AI),

where A, is the Il x k matrix consisting of the rows of A with indices in I. The

result follows by Lemma 27. El
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The following sections find the optimal linear encoder for a given (k, n) through

exhaustive simulation.

5.4.1 k=4 and n=5

There are 4 achievable distortion patterns

1 2 3 3 4

1 2 2 3 4

1 1 2 3 4

0 1 2 3 4

Observing the following plot, of the superposition of all achievable distortions, the

optimal distortion of Theorem 9 is achievable.

4

3

4 2

1

1 2 3 4 5

The single parity check uniquely achieves this optimum [0 1 2 3 4 ], the

61
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green line,

1 0 0 0

0 1 0 0

0 0 1 0.

0 0 0 1

1 1 1 1
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5.4.2 k=4 and n=6

There are 6 achievable distortion patterns

1 2 3 3 3 4

1 2 2 3 3 4

1 1 2 3 3 4

0 1 2 3 3 4

1 1 2 2 3 4

0 1 2 2 3 4

Observing the following plot, of the superposition of all achievable distortions, the

optimal distortion of Theorem 9 is achievable.

4

3

132

1 013 3 4

1123 45
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Two matrices achieve [ 0 1 2 2 3 4 , the green line,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0

01001
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5.4.3 k=4 and n=7

There are 11 achievable distortion patterns

1 2 3 3 3 3 4

1 2 2 3 3 3 4

1 1 2 3 3 3 4

0 1 2 3 3 3 4

1 2 2 2 3 3 4

1 1 2

0 1 2

0 1 1

1 1 1

0 1 1

0 0 2

2 3 3 4

2 3 3 4

2 3 3 4

2 3 3 4

2 2 3 4

2 3 3 4

Observing the following plot, of the superposition of all achievable distortions, the

optimal distortion of Theorem 9 is not achievable.
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4

3

Al 2

1

1 2

The red line [0 02 2

Two matrices achieve [ 0 1

3 4 5 6 7

3 3 4] is achieved uniquely by the Hamming code.

1 2 2 3 4 ], the green line,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

1 0

0100

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1-

1 1 0 0

0 0 1 1
0011
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5.4.4 k=4 and n=8

There are 19 achievable distortion patterns

1

1

1

0

1

0

0

1

0

1

1

0

0

0

1

0

0

0

1

1

1

0

0

2

1

0

0

1

1

1

2

1

2

1

2

0

2

2

2

2

2

2

1

2

2

3

2

2

2

2

2

2

3

2

4

4

4

4

4 .

4

4

4

4

Observing the following plot, of the superposition of all achievable distortions, the

optimal distortion of Theorem 9 is not achievable.
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4

3

S 2

1 2 3 4 5 6 7 8
8

The red line 0 0 0 2 2 3 3 4 is achieved uniquely by the extended

Hamming code. Three matrices achieve [0 1 1 1 2 3 3 4], the green line,

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0100 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

1 1 10 1 1 0 0 1 1 0 0

1 1 0 1 1 1 1 0 0 0 1 1

1 1 1 1 1 111 1111

1 1 0 0 1 010 1 1 1 0
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5.4.5 k=4 and n=9

There are 31 achievable distortion patterns

1 2 3 3 3 3 3 3 4

1 2 3 3 33 41 1 1 2 2 2 3 3 4

0 1 1 2 2 2 3 3 4
1 1 2 3 3 3 3 3 4

1 1 1 1 2 3 3 3 4
0 1 2 3 3 3 3 3 4

0 1 1 1 2 3 3 3 4
1 2 2 2 3 3 3 3 4

1 1 1 1 2 2 3 3 4
1 1 2 2 3 3 3 3 4

0 1 1 1 2 2 3 3 4
0 1 2 2 3 3 3 3 4

0 0 1 1 2 2 3 3 4
0 1 1 2 3 3 3 3 4

> <0 0 1 2 2 2 3 3 4 >

1 2 2 2 2 3 3 3 4

1 1 2 3 33 40 0 2 2 3 3 3 3 4

0 0 0 2 2 2 3 3 4
0 1 2 2 2 3 3 3 4

1 1 2 2 2 2 3 3 4
1 1 1 2 2 3 3 3 4

0 1 2 2 2 2 3 3 4
0 1 1 2 2 3 3 3 4

0 0 0 2 2 3 3 3 4
0 0 2 2 2 3 3 3 4

0 0 2 2 2 2 3 3 4
0 0 1 2 2 3 3 3 4

1 1 2 3 33 40 0 0 1 2 2 3 3 4

Observing the following plot, of the superposition of all achievable distortions, the

optimal distortion of Theorem 9 is achievable.
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2 3 4

Two matrices achieve [ 0 0 0 1 2 2 3 3 4 , the green line,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 1

1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
10

11 0 1

1 0 1 1

0 1 1 1
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5.5 Double Identity Code

Consider p = 2 and let fk : Fk + F2
k where fk(x) = Akx = I i x. For all

x E Fk

w(fk(X)) {2w (x) w (x) is even

k w(x) is odd

Follows from w(fk(x)) = w(Ikx) + w(Ikx). Any given x has w(x) nonzero entries and

in the multiplication hx these nonzero entries will coincide with w(x) rows with one

zero and k - w(x) rows with no zeros. Thus, if w(x) is even this results in w(x) odd

sums, giving one, and k - w(x) even sums, giving zero. Similarly, if w(x) is odd this

yields w(x) zeros and k - w(x) ones.

Distortion, for 0 < S < k

D(E; fk) = max - io}.

Given S erasures the adversary can erase at most all of the codewords of even weight

supported on any [j] positions in ]F. If [ ] is even choose any xO with an odd

number of ones and, if [J is odd choose any xO with an even number of ones. In

either case, the antipodal of xO, on these positions, has odd weight, but LJ - 1 is

achievable by some codeword of even weight.

Parameterizing S this yields

- -- - a=e- (pEk] - 1) .
k _2 _k

This beats repetition for all k, but asymptotically they coincide.
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