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Abstract

Using random row projections, we show how to approximate a data matrix A with a much
smaller sketch A that can be used to solve a general class of constrained k-rank approximation

problems to within (1 + c) error. Importantly, this class of problems includes k-means clus-

tering. By reducing data points to just O(k) dimensions, our methods generically accelerate

any exact, approximate, or heuristic algorithm for these ubiquitous problems.

For k-means dimensionality reduction, we provide (1+ e) relative error results for random

row projections which improve on the (2 + e) prior known constant factor approximation

associated with this sketching technique, while preserving the number of dimensions. For k-
means clustering, we show how to achieve a (9+,e) approximation by Johnson-Lindenstrauss

projecting data points to just 0(log k/ 2 ) dimensions. This gives the first result that leverages

the specific structure of k-means to achieve dimension independent of input size and sublinear

in k.

Thesis Supervisor: Ankur Moitra
Title: Assistant Professor of Applied Mathematics
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Chapter 1

Introduction

Dimensionality reduction has received considerable attention in the study of fast linear al-

gebra algorithms. The goal is to approximate a large matrix A with a much smaller sketch

A such that solving a given problem on A gives a good approximation to the solution on

A. This can lead to faster runtimes, reduced memory usage, or decreased distributed com-

munication. Methods such as random sampling and Johnson-Lindenstrauss projection have

been applied to a variety of problems including matrix multiplication, regression, and low

rank approximation [IMT1 1, Mah IJ.

Similar tools have been used for accelerating k-means clustering. While exact k-means

clustering is NP-hard [ADHIP09, MNV091, effective heuristics and provably good approx-

imation algorithms are known [Llo82, KMN+02, KSS)4, AVO7, HPK07. Dimensionality

reduction seeks to generically accelerate any of these algorithms by reducing the dimension

of the data points being clustered. In this thesis, given a data matrix A E Rnxd, where the

rows of A are d-dimensional data points, the goal is to produce a sketch A E R"X', where

d' << d. Typically, since k is considered to be very small with respect to input size, we seek

to achieve d' which is a function of just k and an error parameter, and not of n or d.

We start by noting that the k-means clustering problem can be viewed as a special case of

a general constrained k-rank approximation problem [DFK4 04], which also includes problems

related to sparse and nonnegative PCA [PDK13, YZ13, APD14I. Then, following the coreset
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definitions of [FSS131, we introduce the concept of a projection-cost preserving sketch, an

approximation where the sum of squared distances of A's columns from any k-dimensional

subspace (plus a fixed constant independent of the subspace) is multiplicatively close to that

of A. This ensures that the cost of any k-rank projection of A is well approximated by A

and thus, we can solve the general constrained k-rank approximation problem approximately

for A using A.

Next, we give a simple and efficient approach for obtaining projection-cost preserving

sketches with (1 + E) relative error. All of these techniques simply require multiplying by a

random projection matrix. These methods have well developed implementations, are robust,

and can be accelerated for sparse or otherwise structured data. As such, we do not focus

heavily on specific implementations or runtime analysis. We do emphasize that our proofs

are amenable to approximation and acceleration in the underlying sketching techniques - for

example, it is possible to use sparse Johnson-Lindenstrauss embeddings.

In addition to the applications in this paper, we hope that projection-cost preserving

sketches will be useful in developing future randomized matrix algorithms. They relax the

guarantee of subspace embeddings, which have received significant attention in recent years

[Sar06, CW13]. Subspace embedding sketches require that lixll | l ~xAll simultaneously

for all x, which in particular implies that A preserves the cost of any column projection of

A'. However, in general such an A will require at least e(rank(A)) columns. On the other

hand, our projection-cost preserving sketches only work for projections with rank at most k,

but only require O(k) columns.

1.1 Summary of Results

In Table 1.1 we summarize our dimensionality reduction results, showing how projection-cost

preserving sketches were obtained. We note how many dimensions (columns) are required

for a sketch A that achieves (1 + E) error. We compare to prior work, most of which focuses

on constructing sketches for k-means clustering, but applies to general constrained k-rank

1 11(I - P)AJIF 10 - P)AIIF for any projection matrix P.
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approximation as well.

Previous Work Our Results

Technique Reference Dimensions Error Theorem Dimensions Error

Random Thm 6 O(k/E 2 ) 1 + f
[BZDIOJ O(k/c 2 ) 2 + c

Projection Thin 7 (log k/62 ) 9+ E

Table 1.1: Summary of results.

Our random projection results are based on a unified proof technique that relies on a

reduction to a spectral approximation problem. The approach allows us to tighten and

generalize a fruitful line of work in {BMD09, BZD10, BZMD15, BMI13J, which were the

first papers to address dimensionality reduction for k-means using random projection. They

inspired our general proof technique.

Specifically, we show that a (1 + E) error projection-cost preserving sketch can be obtained

by randomly projecting A's rows to O(k/e 2 ) dimensions - i.e., multiplying on the right by

a Johnson-Lindenstrauss matrix with O(k/ 2 ) columns. Our results improve on constant

factor bounds in [BMD09, BZD10, BMI13, BZMD151 which shows that an O(k/E 2 ) dimension

random projections can give (2 + E) error for k-means clustering.

Finally, for general constrained k-rank approximation, it is not possible to reduce to

dimension below e(k). However, we conclude by showing that it is possible to do better

for k-means clustering by leveraging the problem's specific structure. Specifically, randomly

projecting to O(log k/E 2 ) dimensions is sufficient to obtain a (9 + E) approximation to the

optimal clustering. This gives the first k-means sketch with dimension independent of the

input size and sublinear in k. It is simple to show via the standard Johnson-Lindenstrauss

lemma that O(log n/ 2 ) dimension projections yield (1 + E) error, also specifically for k-

means [BZMD15]. Our results offers significantly reduced dimension and we are interested

in knowing whether our (9 + E) error bound can be improved.

t k-means clustering only. I k-rank approximation only.
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Chapter 2

Preliminaries

2.1 Linear Algebra Basics

For any n and d, consider a matrix A E R"ld. Let r = rank(A). Using a singular value

decomposition, we can write A = UEVT, where U E R""' and V E Rdxr have orthogonal

columns (the left and right singular vectors of A), and E E R"rxr is a positive diagonal matrix

containing the singular values of A: Ux1 > U2 >- -. or,. The pseudoinverse of A is given by

A+ = VZ-1UT.

A's squared Frobenius norm is given by IIA|12 = Ai j = tr(AA T ) = EZ or. Its

spectral norm is given by |A112 = or. Let Ek be E with all but its largest k singular values

zeroed out. Let Uk and Vk be U and V with all but their first k columns zeroed out. For

any k < r, Ak = UEkVT = UkakVT is the closest rank k approximation to A for any

unitarily invariant norm, including the Frobenius norm and spectral norm [Mir60. That is,

IIA - AJF = min )=A - BlIF and
Bjrank(B)=k

||A - AJl2 = min ||A - B||2-
Bjrank(B)=k

We often work with the remainder matrix A - Ak and label it Ar\k.

For any two matrices M and N, IIMNIIF 5 IIMIFIINI12 and |IMNIIF < IINIIFIIMII2 . This

15



property is known as spectral submultiplicativity. It holds because multiplying by a matrix

can scale each row or column, and hence the Frobenius norm, by at most the matrix's

spectral norm. Submultiplicativity implies that multiplying by an orthogonal projection

matrix (which only has singular values of 0 or 1) can only decrease Frobenius norm, a fact

that we will use repeatedly.

If M and N have the same dimensions and MNT =0 then IIM + NI11 = JIM + |INII2.

This matrix Pythagorean theorem follows from the fact that IIM + NI11 = tr((M + N)(M + N)T).

As an example, note that since Ak is an orthogonal projection of A and A,\k is its residual,

AkA'k = 0. Thus, IIAk + IIA 112 = IAk + A,.\ = IIA 11.

For any two symmetric matrices M, N c R"', M -< N indicates that N - M is positive

semidefinite -- that is, it has all nonnegative eigenvalues and xT (N - M)x > 0 for all x E R

We use Ai(M) to denote the ith largest eigenvalue of M in absolute value.

Finally, we often use P to denote an orthogonal projection matrix, which is any matrix

that can be written as P = QQT where Q is a matrix with orthonormal columns. Multiplying

a matrix by P on the left will project its columns to the column span of Q. If Q has just k

columns, the projection has rank k. Note that B* = PA minimizes IA - BIIF amongst all

matrices B whose columns lie in the column span of Q [Wool4].

2.2 Constrained Low Rank Approximation

To develop sketching algorithms for k-means clustering, we show that the problem reduces

to a general constrained low rank approximation objective. Consider a matrix A E Rn"d

and any set S of rank k orthogonal projection matrices in R" ". We want to find

P* = arg min IA - PAjI. (2.1)
PES

We often write Y = Ix, -P and refer to IA-- PAII2 = IIYAI2 as the cost of the projection

P.

When S is the set of all rank k orthogonal projections, this problem is equivalent to

16



finding the optimal rank k approximation for A, and is solved by computing Uk using an

SVD algorithm and setting P* = UkUT. In this case, the cost of the optimal projection is

1hA - UkUT Ah11 = IIA,\kI1I. As the optimum cost in the unconstrained case, IIAr\kII is a

universal lower bound on 11A - PAIIF.

2.3 k-Means Clustering as Constrained Low Rank Ap-

proximation

Formally, k-means clustering asks us to partition n vectors in Rd, {a1, ... , an}, into k cluster

sets, {C1,..., Ck}. Let ,it be the centroid of the vectors in Ci. Let A e Rn" be a data

matrix containing our vectors as rows and let C(aj) be the set that vector a is assigned to.

The goal is to minimize the objective function

k n

1 -yaj- _i1=Z E aj - c(aj)L.
i=1 ajECi j=1

To see that k-means clustering is an instance of general constrained low rank approxima-

tion, we rely on a linear algebraic formulation of the k-means objective that has been used

critically in prior work on dimensionality reduction for the problem (see e.g. [BMD09]).

For a clustering C = {C1,..., Ck}, let XC E Rnxk be the cluster indicator matrix, with

Xc(i, j) = 1/V'[j[ if a. is assigned to C. Xc(i, j) = 0 otherwise. Thus, XcXTA has its

it row equal to pc(a,), the center of a,'s assigned cluster. So we can express the k-means

objective function as:

1A - XcXTAI} = 11 a -- IC(aC)112-
j=1

By construction, the columns of Xc have disjoint supports and so are orthonormal vectors.

Thus XcXT is an orthogonal projection matrix with rank k, and k-means is just the con-

strained low rank approximation problem of (2.1) with S as the set of all possible cluster
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projection matrices XcXT.

While the goal of k-means is to well approximate each row of A with its cluster center, this

formulation shows that the problem actually amounts to finding an optimal rank k subspace

for approximating the columns of A. The choice of subspace is constrained because it must

be spanned by the columns of a cluster indicator matrix.

18



Chapter 3

Projection-Cost Preserving Sketches

We hope to find an approximately optimal constrained low rank approximation (2.1) for A

by optimizing P (either exactly or approximately) over a sketch A E Rflxd' with d' < d. This

approach will certainly work if the cost j. -- PAII1 approximates the cost of IjA - PA112

for any P E S. An even stronger requirement is that A approximates projection-cost for all

rank k projections (of which S is a subset). We call such an A a projection-cost preserving

sketch. This definition is equivalent to the (k, e)-coresets of [FSS13] (see their Definition 2).

Definition 1 (Rank k Projection-Cost Preserving Sketch with Two-sided Error). E G Rn"d'

is a rank k projection-cost preserving sketch of A E Rnxd with error 0 < c < 1 if, for all

rank k orthogonal projection matrices P E R"*X,

(1 - e)IIA - PA112 < tiA - PAI + c < (1 + c)IIA - PAII ,

for some fixed non-negative constant c that may depend on A and A but is independent of

P.

19



3.1 Application to Constrained Low Rank Approxima-

tion

It is straightforward to show that a projection-cost preserving sketch is sufficient for approx-

imately optimizing (2.1), our constrained low rank approximation problem.

Lemma 2 (Low Rank Approximation via Projection-Cost Preserving Sketches). For any

A E Rn"x and any set S of rank k orthogonal projections, let P* = arg minpC3 IA - pAII-

Accordingly, for any A E Rn , let P* = arg minpas ljA-PAII1. If A is a rank k projection-

cost preserving sketch for A with error e, then for any-y ? 1, if 11 APAI11 < yI| -A&*AII1

(F + F)

1IA - PAI112 (1 + 6 7IIA - P*A 11 2
(- e)

That is, if P is an (approximately) optimal solution for A, then it is also approximately

optimal for A.

Proof. By optimality of P* for A, < *1A - P* 112 and thus,

11A - PA|IIF 5 yJA - P* F-i (3.1)

Furthermore, since A is projection-cost preserving, the following two inequalities hold:

A- p*_1 2 < (1+ c)||A - P*A I- c,_C (3.2)

|IA - PAI~ (1 - e)IIA - PAIIF - c. (3.3)

Combining (3.1),(3.2), and (3.3), we see that:

(1 - c)IIA - PA|L| -- c < (1 + e) --yJIA - P*A I - _Yc

I1A - PAlI 5 (1+ )711A -- P*A1I,

where the final step is simply the consequence of c > 0 and > 1.

20



For any 0 < E' < 1, to achieve a (1 + E')y approximation with Lemma 2, we just need to

set 6 = E ;> .

3.2 Sufficient Conditions

With Lemma 2 in place, we seek to characterize what sort of sketch suffices for rank k

projection-cost preservation. We discuss sufficient conditions that will be used throughout

the remainder of the paper. Before giving the full technical analysis, it is helpful to overview

our general approach and highlight connections to prior work.

Using the notation Y = I,, - P, we can rewrite the guarantees for Definition 1 as:

(1 - E) tr(YAAT Y) < tr(YAA T Y) + c < (1 + E) tr(YAA TY). (3.4)

Thus, in approximating A with A, we are really attempting to approximate AAT.

Furthermore, sketching through random row projections is linear - i.e. we can always

write A = AR. Suppose our sketching dimension is m = O(k). For a Johnson-Lindenstrauss

random projection, R is a d x m random matrix. So, our goal is to show:

tr(YAA TY) ~ tr(YARRT ATY) + c.

A common trend in prior work has been to attack this analysis by splitting A into separate

orthogonal components [DFK+04, BZMD15I. In particular, previous results note that A =

Ak + A,\k and implicitly compare

tr(YAA TY) = tr(YAkA Y) + tr(YA,\kAT kY) + tr(YAkAT kY) + tr(YA,\kA TY)

= tr(YAkA Y) + tr(YAr\kAkY) +T 00,

21



to

tr(YARR TA TY) = tr(YA ARRTAlY) + tr(YA,\kRRT Aky)

+ tr(YAkRRT AkY) + tr(YA,\kRR T AY).

We adopt this same general technique, but make the comparison more explicit and analyze

the difference between each of the four terms separately. In Lemma 3, the allowable error in

each term will correspond to E1 , E2 , E3 , and E4 , respectively.

Additionally, our analysis generalizes the approach by splitting A into a wider variety of

orthogonal pairs. Our random projection results split A = A2k + A,\2k, while our O(log k)

result for k-means clustering splits A = P*A + (I - P*)A where P* is the optimal k-means

projection matrix for A.

3.3 Characterization of Projection-Cost Preserving Sketches

Next we formally analyze what sort of error, E = AAT -AA T, is permissible for a projection-

cost preserving sketch.

Lemma 3. A is a rank k projection-cost preserving sketch with two-sided error E (i.e. sat-

isfies Definition 1) as long as we can write C = C + E1 + E 2 + E3 + E 4 where

1. E1 is symmetric and -e 1C - E1 - e 1C

2. E 2 is symmetric, _1 IA(E2 )1 E21AIAr\kI, and tr(E 2) c'1AIAr\kI

3. The columns of E3 fall in the column span of C and tr(E T C+Ea) E 1|A\112

4. The rows of E 4 fall in the row span of C and tr(E4C+E' ) C2 ||Ar\k1F

and E1 + E2 + E'2 + E3 + e4 = E. Specifically, referring to the guarantee in Equation 3.4, we

show that for any rank k orthogonal projection P and Y = I - P,

(1 - e) tr(YCY) tr(YCOY) - min{0, tr(E2)} - (1 + C) tr(YCY).
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To get intuition about this lemma note that since P is a rank k projection, any projection

dependent error at worst depends on the largest k eigenvalues of our error matrix. Since the

cost of any rank k projection is at least IIAr\k|2 we need restrictions having cIA,\k 112 as

upper bounds on the traces of the different error types to achieve relative error approximation.

Proof. By linearity of the trace note that

tr(YCY) = tr(YCY) + tr(YE1 Y) + tr(YE2Y) + tr(YE 3Y) + tr(YE4Y). (3.5)

We handle each error term separately. Starting with El, note that tr(YE1Y) = E' y'E1 yi

where yi is the ith Column (equivalently row) of Y. So, by the spectral bounds on El

-ci tr(YCY) tr(YEIY) Ei tr(YCY). (3.6)

For E2 , note that by the cyclic property of the trace and the fact that Y 2 = Y since Y

is a projection matrix we have

tr(YE 2Y) = tr(Y 2 E2 )

= tr(YE2 )

= tr(E 2) - tr(PE2 ). (3.7)

Since E2 is symmetric, let vi, ... , v, be the eigenvectors of E2 , and write

E2 = Ai(E 2)vivT and thus
i=i

tr(PE2) = Ai(E 2) tr(Pviv7). (3.8)
i=1

23



Note that

r r

tr(PE2)= 3 Ai(E 2 ) tr(Pviv7) < JAj(E2)l tr(PvivT).

For all i, 0 K tr(Pvvf) < Kit 2 K 1 and Z>1 tr(PvNvF) < tr(P) = k. Thus,

Sril iAj(E2)i tr(PvvT) is minimized when tr(PvivT) = 1 for v1, ... , Vk, the eigenvectors

corresponding to E2 's largest magnitude eigenvalues. Combined with our requirement that

-j=1 IAj(E2)j E2iIATskII}, we see that I tr(PE2 ) < E2 iiArs\iIF. Accordingly,

tr(E2 ) - E2IIAr\k liF tr(YE 2Y) <

min{0, tr(E2 )} - E2llAr\k 12 < tr(YE 2Y) K

min{0, tr(E 2)} - (E 2 + E') tr(YCY) < tr(YE 2Y) K

tr(E2 ) + E2|lA,\klF

min{0, tr(E2)} + (2 + e')l|Ar\kjl

min{O, tr(E2 )} + (E2 + E') tr(YCY).

(3.9)

The second step follows from the trace bound on E2 . The last step

that I|Ar\k112 is a universal lower bound on tr(YCY).

Next, we note that, since E 3 's columns fall in the column span

Thus,

follows from recalling

of C, CC+E3 = E3.

tr(YE 3Y) = tr(YE 3) = tr ((YC)C+(E 3)) -

(M, N) = tr(MC+N T ) is a semi-inner product since C = AAT, and therefore also C+, is

positive semidefinite. Thus, by the Cauchy-Schwarz inequality,

Itr ((YC)C+(E 3))l < tr(YCC+CY) -tr(ET C+E 3) < C3 jAr\jF ' Vtr(YCY).

Since ftr(YCY) > IIAr\kIIF, we conclude that

ltr(YE 3Y) 5 E3 - tr(YCY). (3.10)
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For E4 we make a symmetric argument.

|tr(YE4Y) = Itr ((E 4)C+(CY))I Vtr(YCY) -tr(E4 C+E4) 5 E4 -tr(YCY). (3.11)

Finally, combining equations (3.5), (3.6), (3.9), (3.10), and (3.11) and recalling that

El 62 + E' + E3+64 = E, we have:

(1 - E) tr(YCY) _< tr(YCY) - min{0, tr(E 2)} 5 (1 + E) tr(YCY).
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Chapter 4

Reduction to Spectral Norm Matrix

Approximation

To prove our random projection results, we rely on a reduction from the requirements of

Lemma 3 to spectral norm matrix approximation. Recall that for random projection, we can

always write A = AR, where R E Rdxm is a random Johnson-Lindenstrauss matrix. In

order to simplify our proofs we wish to construct a new matrix B such that, along with a

few other conditions,

IIBRRTBT - BBT 112 < E

implies that = AR satisfies the conditions of Lemma 3. Specifically we show:

Lemma 4. Suppose that, for m < 2k, we have some Z E Rdxm with orthonormal columns

satisfying 11A - AZZT 112 2 A,\k 11 and 11A - AZZ TI 2 < |I1Arv 1. Set B E R(n+m)xd to

have B1 =ZT as its first m rows and B 2 =- (A - AZZT ) as its remaining n rows.

Then 1 < IIBBT 112 5 2, tr(BBT ) < 3k, and tr(B2BT) < 2k. Furthermore, if

IIBRRTBT - BBT 112 < E (4.1)
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and

tr(B2RRT BT) - tr(B2BT) ek, (4.2)

then A = AR satisfies the conditions of Lemma 3 with error 6e.

Note that the construction of B is actually just an approach to splitting A into orthogonal

pairs as described in Section 3.2. The conditions on Z ensure that AZZT is a good low rank

approximation for A in both the Frobenius norm and spectral norm sense. We could simply

define B with Z = V2k, the top right singular vectors of A. In fact, this is all we need for our

random projection result, but we keep the lemma in this more general form. Also note that

tr(B2B2) - ,IA - AZZTI1I < (1 + E)k. So equation (4.2) is in essence just ensuring

that R preserves the trace of this block of BBT to relative error.

Proof. We first show that 1 < IIBBTI 2 < 2. Notice that 1 BT = 0, so BBT is a block

diagonal matrix with an upper left block equal to B1BT = I and lower right block equal

to B 2B2T. The spectral norm of the upper left block is 1. By our spectral norm bound

on A - AZZT, IIB2B2TI1 2 < ZIIA,\kIA 112 k 2, giving us the upper bound for BBT.

Additionally, tr(B2B2 ) k |AI I1A - AZZT112 < 2k by our Frobenius norm condition on

A - AZZT. Finally, tr(BB T ) = tr(B1BT) + tr(B 2BT) < 3k.

We now proceed to the main reduction. Start by setting E = - C = ARRT A T - AAT.

Now, choose W1 E Rnx(n+rn) such that W1 B = AZZT. Note that W1 has all columns other

than its first m as zero, since reconstructing AZZT only requires recombining rows of B1

ZT. Set W2 E Rnx(n+m) to have its first m columns zero and its next n columns as the n x n

identity matrix multiplied by IAr\kIF . This insures that W2B = JJ IFB 2 = A - AZZT.

So, A = W1 B + W 2B and we can rewrite:

E = (W1BRR T B TW[ - W1 BBTWT) + (W2BRRT B T WT -- W2 BBTW2)+

(W 1BRRT B T WT - W 1BBTWT) + (W2 BRRT B TWT - W 2 BBTWT)

We consider each term of this sum separately, showing that each corresponds to one of the
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allowed error terms from Lemma 3. Set E1 = (W1BRRT BTWT - W1 BBTWT). Clearly

E1 is symmetric. If, as required, |IBRRT BT - BBT 112 < E, -I - (BRRT BT - BBT) < 61

so -EW1WT d E1  C EW1WT. Furthermore, W1 BBTWT = AZZTZZTAT - AAT =

C. Since W, is all zeros except in its first m columns and since B1 BT = I, W1 W =

W1 BBTWT. This gives us:

W1 WT = W1 BBTWT d C. (4.3)

So overall we have:

(4.4)

satisfying the error conditions of Lemma 3.

Next, set E2 = (W2 BRRTBTWT - W 2 BBTWT) Again, E2 is symmetric and

tr(E 2) = IIAr F tr(B2 RRT BT - B2B2T) EjIAr\k12

kk
kNE) 2 k F kE)

by condition (4.2). Furthermore,

i=1

< k - |ArSkIIFIA1 (B2 RRT BI - B2 B2 )I
k

K IIAr\kI 12 -A(BRR T B T - BBT)

by condition (4.1). So E2 also satisfies the conditions of Lemma 3.

(4.5)

(4.6)

Next, set E3 = (W1BRR TBT WT -W 1 BBT WT). The columns of E3 are in the column
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span of W1 B = AZZT, and so in the column span of C. Now:

E TC+E3 = W 2(BRRT B T - BBT)WTC+W1(BRRT BT - BBT)WT

W1WT d C by (4-3), so W1C+W 1 d I. So:

E3TC+E3 -< W2(BRRTBT - BBT) 2W2

which gives:

IIE T C+E3 || 2 IIW2(BRRrBT - BBT) 2W11 2 - Ak (BRRTB"
2 k

- BB T)212 5 62|IAr\kI F
k

by condition (4.1). Now, E3 and hence E3TC+E3 only have rank m < 2k so

tr(E TC+E3) 2e2 |JArj 112 (4.7)

Finally, we set E4 = (W2 BRRT B TWT - W2 BBTWT) = E T and thus immediately

have:

tr(E4C+E T ) < 2E2||Ar\k112 (4.8)

Together, (4.4), (4.5), (4.6), (4.7), and (4.8) ensure that A = AR satisfies Lemma 3 with

error 3c + 2 2c < 6E.
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Chapter 5

Sketches through Random Row

Projections

The reduction in Lemma 4 reduces the problem of finding a projection-cost preserving sketch

to well understood matrix sketching guarantees - subspace embedding (4.1) and trace preser-

vation (4.2). A variety of known sketching techniques achieve the error bounds required,

including several families of subspace embedding matrices which are referred to as Johnson-

Lindenstrauss or random projection matrices throughout this paper. Note that, to better

match previous writing in this area, the matrix M given below will correspond to the trans-

pose of B in Lemma 4.

Lemma 5. Let M be a matrix with q rows, IIMTMI| 2 < 1, and < k. Suppose R

is a sketch drawn from any of the following probability distributions of matrices. Then, for

any e < 1 and 3 < 1/2, |IMT RTRM -MTM|I 2  E and Itr(MTRTRM) - tr(MTM)j I ek

with probability at least 1 - 6.

1. R G R'*q a dense Johnson-Lindenstrauss matrix with d' = ( k+1og(1/), where each

element is chosen independently and uniformly as + /1/d' |AchO,9. Additionally, the

same matrix family except with elements only O(log(k/6))-independent [CW09].

2. R E Rd'^ a fully sparse embedding matrix with d' =0 2 ), where each column has
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a single k1 in a random position (sign and position chosen uniformly and indepen-

dently). Additionally, the same matrix family with position and sign determined by a

4-independent hash function [CW13, MM13, NNI.

3. R an OSNAP sparse subspace embedding matrix [NN13].

Lemma 5 requires that M has stable rank F < k. It is well known that if M has rank

< k, the IIMTRTRM - MTM 112 < e bound holds for all of the above families because they

are all subspace embedding matrices. It can be shown that the relaxed stable rank guarantee

is sufficient as well [CNWI4]. We include an alternative proof that gives a slightly worse 6

dependence for some constructions but does not rely on these stable rank results.

Since |IMTMII 2 K 1, our stable rank requirement ensures that tr(MTM) = IMI12} < k.

Thus, the jtr(MT RT RM) - tr(MTM)| I Ek bound holds as long as IIIRM iI' - IIM1 2 <

,EIIMI1. This Frobenius norm bound is standard for embedding matrices and can be proven

via the JL-moment property (see Lemma 2.6 in [CW09 or Problem 2(c) in [Nel13). For

family 1, a proof of the required moment bounds can be found in Lemma 2.7 of [CW09]. For

family 2 see Remark 23 in [KN14. For family 3 see Section 6 in [KN14].

To apply the matrix families from Lemma 5 to Lemma 4, we first set M to !BT and

use the sketch matrix RT. Applying Lemma 5 with e' = e/4 gives requirement (4.1) with

probability 1 - 6. Note that for all the above families of random matrices, (4.2) follows from

applying Lemma 5 separately with M = 'BT and e'= e/4.

5.1 Projection-cost preserving sketches from random pro-

jection matrices

Since all the matrix families listed are oblivious (do not depend on M) we can apply Lemma

4 with any suitable B, including the one coming from the exact SVD with Z = V2k. Note

that B does not need to be computed at all to apply these oblivious reductions - it is purely

for the analysis. This gives our main random projection result:
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Theorem 6. Let R G Rd'xd be drawn from any of the first three matrix families from

Lemma 5. Then, for any matrix A E Rn*d, with probability at least 1 - O(6), ART is a

rank k projection-cost preserving sketch of A (i.e. satisfies Definition 1) with error O(e).

Family 1 gives oblivious reduction to 0(k/ 2 ) dimensions, while family 2 achieves O(k2 /6 2 )

dimensions with the advantage of being faster to apply to A, especially when our data is

sparse. Family 3 allows a tradeoff between output dimension and computational cost.

A simple proof of Theorem 6 can be obtained that avoids work in [CNW14I and only

depends on more well establish Johnson-Lindenstrauss properties. We set Z = Vk and

bound the error terms from Lemma 4 directly (without going through Lemma 5). The

bound on E1 (4.4) follows from noting that W 1B = AVkVk' only has rank k. Thus,

we can apply the fact that families 1, 2, and 3 are subspace embeddings to claim that

tr(WIBRRT BTWT - W1BBTWT) etr(WIBBT WT).

The bound on E2 (4.6) follows from first noting that, since we set Z = Vk, E2 =

(ArxkRRT Ak - Ar\kAk). Applying Theorem 21 of [KN14] (approximate matrix mul-

tiplication) along with the referenced JL-moment bounds for our first three families gives

IIE211F , ' IIAr\k 1F. Since Ek_1 IAi(E2)I 5 V'IE2IIF, (4.6) follows. Note that (4.5) did

not require the stable rank generalization, so we do not need any modified analysis.

Finally, the bounds on E3 and E4 , (4.7) and (4.8), follow from the fact that:

tr(E TC+E3) = ifE UT(WiBRRTBTWT - W1 BBTWT)1| = |IVkRRTAI|fT <, 2 ||A \1|f

again by Theorem 21 of [KNI4] and the fact that IIVk112 = k. In both cases, we apply

the approximate matrix multiplication result with error E/V4/. For family 1, the required

moment bound needs a sketch with dimension 0 (k lo(1/6) (see Lemma 2.7 of [CWO9J).

Thus, our alternative proof slightly increases the J dependence stated in Lemma 5.
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Chapter 6

Constant Factor Approximation with

O(log k) Dimensions

In this section we show that randomly projecting A to just O(log k/e 2 ) dimensions using

a Johnson-Lindenstrauss matrix is sufficient for approximating k-means up to a factor of

(9 + e). To the best of our knowledge, this is the first result achieving a constant factor

approximation using a sketch with data dimension independent of the input size (n and d)

and sublinear in k. This result opens up the interesting question of whether it is possible

to achieve a (1 + E) relative error approximation to k-means using just O(log k) rather than

O(k) dimensions. Specifically, we show:

Theorem 7. For any A E R'nd, any 0 < e < 1, and R E R drawn from a

Johnson-Lindenstrauss distribution, let A = ART. Let S be the set of all k-cluster projection

matrices, let P* = argminpS I1A - PA IF, and let P* = argminpES || - PA F. With

probability 1 - 6, for any 7 > 1, and P E S, if ||A - Ai| 7|AlA - ]*A||1:

1hA - PA I (9+ e) - rIA - P*A 112

In other words, if P is a cluster indicator matrix (see Section 2.3) for an approximately

optimal clustering of A, then the clustering is also within a constant factor of optimal for A.

35



Note that there are a variety of distributions that are sufficient for choosing R. For example,

we may use the dense Rademacher matrix distribution of family 1 of Lemma 5, or a sparse

family such as those given in [KNJ14.

To achieve the O(log k/ 2 ) bound, we must focus specifically on k-means clustering - it is

clear that projecting to < k dimensions is insufficient for solving general constrained k-rank

approximation as A will not even have rank k. Additionally, other sketching techniques than

random projection do not work when A has fewer than O(k) columns. Consider clustering

the rows of the n x n identity into n clusters, achieving cost 0. An SVD projecting to less

than k = n - 1 dimensions or column selection technique taking less than k = n - 1 columns

will leave at least two rows in A with all zeros. These rows may be clustered together when

optimizing the k-means objective for A, giving a clustering with cost > 0 for A and hence

failing to achieve multiplicative error.

Proof. As mentioned in Section 3.2, the main idea is to analyze an O(log k/E 2 ) dimension

random projection by splitting A in a substantially different way than we did in the analysis

of other sketches. Specifically, we split it according to its optimal k clustering and the

remainder matrix:

A = P*A + (I - P*)A.

For conciseness, write B = P*A and B = (I - P*)A. So we have A = B + B and A =

BRT +BRT.

By the triangle inequality and the fact that projection can only decrease Frobenius norm:

hIA - PAJIF JIB - PBIF + B - PBIF JIB - PBIF + IB IF- (6.1)

Next note that B is simply A with every row replaced by its cluster center (in the optimal

clustering of A). So B has just k distinct rows. Multiplying by a Johnson-Lindenstauss

matrix with O(log(k/6)/E2) columns will preserve the squared distances between all of these

k points with probability 1 - 6. It is not difficult to see that preserving distances is sufficient
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to preserve the cost of any clustering of B since we can rewrite the k-means objection function

as a linear function of squared distances alone:

ni k

IB - XcXTB 11= 2 lb3 - Ico) 11 2 1 b -bkl11.
j=1 i=1 bj,bkECi

jok

So, FB - FB-I (1+ c)IBRT - PBRTII}. Combining with (6.1) and noting that square

rooting can only reduce multiplicative error, we have:

IA - PAIF 5 (1+ E)IBR T - PBRT JIF + IIBIIF-

Rewriting BRT = A - BRT and again applying triangle inequality and the fact the projec-

tion can only decrease Frobenius norm, we have:

IA - PA IF (1 + E) - R T ) - P(A -- RT ) IF + IIBIF

< (1 + c)IIA - PAIF + (1 +, 1(I _ P)BRT IF + IIBJF

< (I + E)IIA - PAIF + (1 + c)JIIRT IF + JIB IF-

As discussed in Section 5, multiplying by a Johnson-Lindenstrauss matrix with at least

O(log(1/6)/C 2 ) columns will preserve the Frobenius norm of any fixed matrix up to E error

so ||BR T IF ! (1 + E)IIBIIF. Using this and the fact that ||A - AiI2 | 1y|A - *A||12 <

1y1A - P*A 112 we have:

IA - PAIIF - (1 + E)VY1IA' - P' llJ + (2 + 3E)IIBIIlF.

Finally, we note that B = A - P*A and again apply the fact that multiplying by RT

preserves the Frobenius norm of any fixed matrix with high probability. So, I|A - P*AIIF <

(1 + E)IIA - P*AIIF and thus:

hA - PAIF (3 + 6e)V/fllA - P*AIIF-
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Squaring and adjusting e by a constant factor gives the desired result.
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