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Abstract

Conventionally, unitary transformations on optical modes have been implemented on
a spatial basis set using a system of beamsplitters and phase shifters. We present
methods which allow orders of magnitude increase in the number of modes in linear
optics experiments by moving from spatial encoding to temporal encoding and using
dispersion. This enables significant practical advantages for linear quantum optics
and Boson Sampling experiments. Passing identical, consecutively heralded photons
through time-independent dispersion and measuring the output time of the photons is

equivalent to a Boson Sampling experiment for which no efficient classical algorithm
is reported, to our knowledge. With time-dependent dispersion, it is possible to im-
plement arbitrary single-particle unitaries. Given the relatively simple requirements
of these schemes, they provide a path to realizing much larger linear quantum optics
experiments including post-classical Boson Sampling machines.

Thesis Supervisor: Dirk R. Englund
Title: Jamieson Career Development Assistant Professor of Electrical Engineering

and Computer Science

3



4



Acknowledgments

I would like to express my gratitude to my advisor, Prof. Dirk Englund for his guidance

and assistance in this work. I would also like to thank Scott Aronson, Alex Arkhipov,

Gian Guerreschi and Ish Dhand for helpful discussions and my friends and colleagues

in QPLab.

5



6



Contents

1 Introduction 11

1.1 Linear optics and Unitary transformations . . . . . . . . . . . . . . . 12

1.2 Boson Sam pling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Advantages of Temporal Mode Boson Sampling over Spatial

Mode Boson Sampling . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Previous proposals using temporal encoding . . . . . . . . . . 15

2 Unitary Transformations with Time-Independent Dispersion 17

2.1 Description of the scheme . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Adding pulse-shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Error bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Error due to detector jitter . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Error due to discretization . . . . . . . . . . . . . . . . . . . . 22

2.4 HOM-like interference . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Hardness of sampling from time-independent dispersion . . . . . . . . 25

2.6 The pulse-shape as part of the unitary . . . . . . . . . . . . . . . . . 26

3 Unitary Transformations with Time-Dependent Dispersion 29

3.1 Direct implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Cascading dispersion and phase modulation . . . . . . . . . . . . . . 30

4 Conclusion and Outlook 33

A The Required Number of Detectors 35

7



8



List of Figures

1-1 Schematic of spatial mode Boson Sampling (SMBS) . . . . . . . . . . 13

2-1 Conceptual Schematic of temporal mode Boson Sampling (TMBS) . . 17

2-2 Schematic of TMBS with time-independent dispersion . . . . . . . . . 19

2-3 Schematic of TMBS with pulse-shaping and time-independent dispersion 20

2-4 (a) Setup for seeing 'HOM-like' interference. (b) The joint probability

of detecting the first photon at t' and the second photon at t' when two

input photons near t = 0 and separated by 100 ps are sent through

a second order dispersive element. -, = 200 fs and the dispersive

element has a GVD parameter of magnitude IDI = 27rc< 2/A2 = 10000

ps/nm. t, = 10 ps (c) The joint probability when the bin size is

increased to 100 ps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3-1 Schematic of TMBS with time-dependent dispersion . . . . . . . . . . 30

9



10



Chapter 1

Introduction

Single particle unitary transformations of photons are used to implement single qubit

quantum gates [12, 19], quantum simulations [20] and Boson Sampling [1, 24, 4, 26,

6, 5, 27, 231. Furthermore, they also form an important part of many linear optical

quantum computing schemes [12, 19]. Conventionally these transformations have

been implemented on discrete spatial optical modes. In this thesis we show how

moving to a temporal mode set and using dispersive optics can allow us to implement

a unitary on a much larger number of modes than would be possible with spatial

modes. In particular, we consider the possibility of realizing a post-classical Boson

Sampling machine using a temporal mode set.

This chapter describes

Boson Sampling.

Chapter two describes

pulse-shaping.

Chapter three describes

dispersion.

conventional spatial mode unitary transformations and

the unitary transformations using fixed dispersion and

the construction of arbitrary unitaries using time-dependent

Chapter four concludes the thesis and describes avenues for future work
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1.1 Linear optics and Unitary transformations

It was shown by Reck and Zeilinger [211 that an arbitrary unitary transformation

can be implemented using m(m - 1)/2 beam splitters and phase-shifters. Given the

relative ease of implementing linear optical elements in single photon experiments,

such transformations are extensively used in quantum optics experiments. Further-

more, integrated photonics has allowed the fabrication of large beam splitter arrays

with excellent phase stability [24, 4, 26, 6, 5]. However, for certain applications, the

required number of elements in such a decomposition can still be too large to imple-

ment experimentally. In this thesis, we explore the implementation of such unitary

transformations on temporal modes using dispersion.

1.2 Boson Sampling

Quantum Computing offers the interesting possibility of being able to solve classically

intractable problems in polynomial time. Optics is seen as a promising physical plat-

form for quantum information processing because photons do not decohere easily i.e.

a photon retains its quantum superposition for a long time. Furthermore, photons

provide a natural integration of quantum computation and quantum communication.

However, optical quantum information processing suffers from a major challenge be-

cause the nonlinear interaction strength between photons in a medium is very small.

There are ways to induce an effective interaction between photons by using the re-

sult of photon detection on part of the system to determine the linear optic unitary

transformations acting on other parts of the system (feed-forward) [11] but this is

challenging due to the fast speed of light. Finally, most quantum computing schemes

require on-demand sources which are challenging to implement.

Boson Sampling refers to the process of sending unentangled photons through a

system of beam splitters and phase shifters implementing a unitary transformation

on spatial modes and then measuring the output of the modes using single photon

detectors (Fig. 1-1)

12
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Figure 1-1: Schematic of spatial mode Boson Sampling (SMBS)

Specifically, photons are injected into input modes 1.. ... n. The system then

transforms the creation operator for input spatial mode j as 6÷ a E Uijbt, at which

point photons in each mode are measured using single photon detectors [1, 24, 4, 26,

6, 51.

It was shown by Scott Aaronson and Alex Arkhipov that an efficient classical

algorithm for estimating the output of such a system would, under plausible assump-

tions, imply a collapse of the polynomial hierarchy [1]. Furthermore, it is believed

that simulating the output of a Boson Sampling machine with 30 photons is beyond

the capabilities of today's classical computers [11.

A Boson Sampling machine is believed to be incapable of universal quantum com-

putation or even universal classical computation. However, it provides a path to real-

izing a post-classical machine without nonlinear materials or feed-forward which are

major challenges in optical quantum computing. Furthermore, unlike other quantum

computing schemes that require on-demand sources, Boson Sampling with probabilis-

tic but heralded input photons has been proposed to be computationally hard for a

classical computer [151.
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1.2.1 Advantages of Temporal Mode Boson Sampling over Spa-

tial Mode Boson Sampling

In the original Boson Sampling proposal, the unitary transformation is implemented

on spatial modes using an array of beamsplitters and phase-shifters. Most experimen-

tal implementations of Boson Sampling thus far have also used such systems (which

we shall now refer to as SMBS) [24, 4, 26, 6, 5].

SMBS entails several difficult challenges, that, as we show, favor temporal mode

encoding. First, Boson Sampling requires an extremely large number of modes to be

classically computationally difficult. Strictly speaking, the complexity argument for

Boson Sampling assumes that, if n is the number of photons in the system and m

is the number of modes, m ;> Q(n5 log 2 n). Although Aaronson and Arkhipov have

conjectured that the complexity arguments still hold when m = O(n2 ) 11], the number

of modes is still large: e.g., even with m = n2 and n = 30, the interferometer would

require 900 modes. Furthermore, the experiment would require 900 detectors and,

if the photons came from heralded sources, 900 sources [15]. To date, experimental

demonstrations of SMBS have been limited to 5 photons in 21 modes [5]. The number

of modes in temporal mode Boson Sampling (TMBS) can be increased simply by

increasing the dispersion. Even with 10000 ps/nm dispersion, which can be achieved

with off-the shelf components, and 100 ps detector jitter, which can be routinely

achieved with silicon avalanche photodiodes or with superconducting nanowire single

photon detectors [18], the number of modes in TMBS is orders of magnitude higher

than SMBS. In principle, the experiment can be implemented in a single fiber with

only a single photon source and only two detectors: one to herald input photons and

one to detect the output state, regardless of the number of interfering photons in the

system. Given the dead time tdt of single photon detectors, the output may have to

be split between a larger number of detectors. However, in general, the number of

detectors is smaller than required in SMBS '.

Furthermore, uncertainty in the time when photons are injected into different

modes leads to distinguishability and loss of boson interference. This is a particu-

14



lar problem in SMBS with heralded sources based on spontaneous parametric down

conversion (SPDC). Most SMBS experiments to date have relied on downconverted

photons. Temporal or spectral filtering could improve the interference, but at an

exponential loss in multi-photon throughput. In TMBS, the lack of control over the

input time of our photons only corresponds to a lack of control over the choice of our

input modes; however, as long as the input modes are known, this does not affect the

ability to perform Boson Sampling [15].

1.2.2 Previous proposals using temporal encoding

Previous proposals have considered temporal modes for Boson Sampling [17, 9] but

they relied on temporarily converting temporal modes to spatial modes and then mix-

ing the modes with beamsplitter operations. Hence, increasing the number of output

modes (m > n) requires a large number of effective beamsplitter operations. They

also require active elements that operate on a picosecond time scale. Furthermore,

since they are based on the interference of narrow photon packets, they suffer from

the same issues with temporal mismatch as SMBS. In TMBS, detector jitter can limit

the accuracy with which the input mode can be heralded but this limitation can be

overcome by using large dispersion.

'See Appendix A
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Chapter 2

Unitary Transformations with

Time-Independent Dispersion

In this chapter we present the simplest scheme for performing unitary transformations

on temporal modes using time-independent dispersion.

In put time
bins

Single S
sourc

Single
Detector

t I t 2 ti n

PDC
e

PBS 4,

tin

Heralding

Ww
Output time

bins

I I
toi to 2

Figure 2-1: Conceptual Schematic of temporal mode Boson Sampling (TMBS)
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2.1 Description of the scheme

Fig. 2-2 shows the setup for the scheme. A single SPDC source is repeatedly pumped

resulting in a chain of entangled photons. The output from the SPDC is sent through

a polarizing beamsplitter to split the signal and idler. Since a heralded source is used,

not all the bins for which the SPDC source is pumped have photons but by heralding

on the idler, it is possible to know which bins have photons and such a system is

sufficient for Boson Sampling 115]. After going through the dispersion, the time of

arrival of the photons at the detector is measured. We show below that such a scheme

is equivalent to implementing a unitary of the form 2.2

If we use an SPDC source with idler photons heralded at times tj and signal

photons used as input photons, the input state is given by I T) (H3 ati) 10) where

10) is the multimode vacuum state and t = f dt dt(t)A(t - tj) represents the

creation operator for the input state centered at tj. at(t) is the creation operator

for time t and wo is the central frequency of the input photons. We assume that the

photon state after heralding of the idler is a pure state of the form A(t - tj). However,

a realistic detector projects the signal photon into a mixed state with tj varying over

the timescale of the detector jitter; the effect of this temporal mismatch can be made

negligible with large dispersion (section 2.3.1).

<t can be expanded in the frequency domain as at3 = fO dwot(w)F{A(t - tj)}

where at(w) is the creation operator for frequency w and F{A(t - tj)} is the Fourier

transform of A(t - tj). After passing through a dispersive element with dispersion

relation 3(w) and length L, frequency components at o are multiplied by a factor

e-i(w) where #(w) = 3(w)L. The wavefunction of the multi-photon system is then

given by IJ'st) = (H 1 ) 10) where b' = f ,' dwdt (w)F{A(t - tj)}eiM(w). Going back

to the time domain, bj = f2a dt at(t)U(t, t,) with

Uij = [VIT'A(t - tj) * F-l{e-i()}] (2.1)

where '*' is the convolution operator.

An arbitrary functional form for the dispersion #(w) can be obtained by using

18
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Figure 2-2: Schematic of TMBS with time-independent dispersion

approaches used in optical functional design [161 and femtosecond pulse-shaping [28].

There are even commercial products for implementing arbitrary dispersion used for

pulse-shaping in telecommunication 2

In conventional linear optics experiments with spatial modes, the modes are gen-

erally defined by waveguides and are discrete. In contrast, in our scheme, photons

have a continuous wavefunction in time. However, in order to draw a parallel with

spatial mode transformations, we show that the result of our experiment can be made

arbitrarily close to a discrete experiment (section 2.3.2).

If dispersion parameters are chosen such that U(t, tj) does not change appreciably

when t varies in a window of width to, the modes can be discretized so that the

transformation is well approximated by d E Uig34t where &et represents the

creation operator at the discretized time step near ti, i.e. &t= f&+ts dtat(t)/V .

We can then write the transformation as - i Uijd' = fe dtU(t, tj)et(ti).

If we assume that U(t, tj) is approximately constant for a small time step t8 , we

can approximate Uiti ~-' U(ti, tj) ftf.t dtdf(t). Hence, we have Uij = v/t"U(tj, t3 ).

2 See https: //www.f inisar. com/optical- instrumentation
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4j -+ E Uiati where

Uij = [VsA(t - tj) * -1{ei(W)}j (2.2)

2.2 Adding pulse-shaping

It is possible to sample from a larger class of unitaries by shaping the temporal form of

the input photons. Methods for shaping single photons with arbitrary amplitude and

phase in time have been proposed [101 and an experimental demonstration of shaping

the spatial waveform of single photons had been reported 113]. With pulse-shaping,

the input waveform A(t - tj) is replaced by a more general set of functions Aj(t) so

that the accessible set of unitaries becomes

U y = Vt-sAj (t) * F- {e-*(W)}] (2.3)

The setup for implementing such an experiment is shown in Fig. 2-3

1Lij P) 1PO (t)

ts

Dispersion

Figure 2-3: Schematic of TMBS with pulse-shaping and time-independent dispersion

If it were possible to choose any set of functions Aj(t), then the unitary could

be chosen column by column using A3 and simply detecting the photons without

any dispersion would be equivalent to Boson Sampling. However, it is experimentally

20



challenging to prepare multiple overlapping photons with a specific waveform. Hence,

for realistic implementation, the photon wave-packets should be separated in time.

This limits the possible unitaries represented by Eq. 2.3.

2.3 Error bounds

We find bounds on the error in the sampling distribution due to detector jitter and

discretization. U is the ideal unitary that we wish to implement, 0 is the unitary with

errors and Du and DC, are the corresponding probability distributions over outcomes.

It has been shown in 12] that if there are n photons in the system,

IIDC, - Dull n||0 - Ullop (2.4)

If the relative error of each matrix element has a upper bound of R i.e. Uij - Uij I

RIUg2l for all i, j,

DC, - Dul n| RU||op

D - DuI 1 nR (2.5)

where we have used the fact that U is unitary.

Hence, in order to have llDu - Dull = o(1), R = o( ).

2.3.1 Error due to detector jitter

We have shown that the in the case of input photons with a fixed shape A(t - tj) sent

through a dispersion 3(w)L, the resulting unitary sampled from is

Uij = V1U(ti, t) (2.6)

= sA(ti - tj ) * B(ti)

21



= vlisA(ti) * B(ti - tj)

where B(t) =Fl{ei( }.

Due to detector jitter, there is an uncertainty in tj. If the maximum timing error

due to detector jitter is te,

R A(ti) * B(ti - tj + te) - A(ti) * B(ti - ti)

A(ti)* B(ti - t,)

A(ti) * b(ti - ty )~ t (2.7)
A(ti) * B(ti - tj) te(27

If we write the dispersion in the form

O(W) = #'(#sw) (2.8)

where 0, is used to scale the dispersion. It can be seen that b(ti - tj)/B(ti - t,) =

o(1/,). Hence, if A(t) is chosen independent of n, R = o(te/#,). Therefore, in order

to limit the error due to detector jitter, te/, o(1/n).

2.3.2 Error due to discretization

In the case of time independent dispersion, the wavefunction generated after disper-

sion is treated discretely in order to draw a parallel with the original formalism for

Boson Sampling [1].

Uij = VTU(ti, tj). The relative error can be written as

R < maxt( U(t, tj) - U(ti, Wy

maxt (ti ) (2.9)
U(ti, t3 )

where t E [ti - ts/2, ti + t,/2]. If we define ( = maxt{O(t, tj)/U(ti, tj)}, we can see

that R = o((t.). As discussed previously, we have ( = o(1/0,). Hence, in order to

22



limit the error, t./#0 = o(1/n).

2.4 HOM-like interference

A central feature in spatial boson collision experiments is the bunching of bosons

in the output modes i.e., Hong-Ou-Mandel interference [7]. An analogous feature

appears in the temporal modes. Consider a heralded input state of two photons,

at (t - t')at (t - t') 10). If this state passes through group velocity dispersion in a fiber

of length L: O(w) = fi + 01(w - wo) + 1/2 2 (w - wO) 2 , qj = O3L,j E {0, 1, 2}. For

simplicity, we have assumed a Gaussian input shape of the form

( 1 1/2 t2l-
A(t) = exp [- t2 exp[iwot], (2.10)

aco , r4, 2 4er

where we have assumed that the correlation time ac, of the photons from the heralded

photon source is much shorter than the biphoton coherence time. SPDC photons are

often approximated as Gaussians in time. However, the two photon interference

effects would be visible with any shape in general. In the frequency domain, the

wavefunction is given by

.F{A(t)} = dtA(t)e-wt (2.11)

dt exp (-t2 /402 2 i(wWO)t

= 23/4 V'71r/ 4 exp[-(w _ WO) 2
0 ,

After passing through this dispersive element, the new wavefunction in the fre-

quency domain is

B(w) = e-(w)F{A(t)} (2.12)

Going back to the time domain, we find that the dispersed wavefunction in time

is given by

23



B (t) = (27r) - 1/4 e-iIoeiwot exp 4(t - 01)2 02 _02 (2.13)
0l,.i2/2 4(g1,4 /4) co 2

Hence, after passing through the dispersion, assuming 0 2 > u,, the two photon

wavefunction for photons input at t' and t' is given by

v|-) =02010 dt' 00dt"&t (t')ef (t"1)
dCao, + i02/2) -oo -o0o

exp i 2/2 . -
x4(0,, +2 #/4){(t 1

+(t"1 -i1)21 eiiwo(t'+t")i24o 0) (2.14)

Every combination of at(ti)at(t2 ) is repeated twice under the integrals. The rep-

etition can be removed by rewriting the expression as

| O) dt' ()dt"6t (t')ef (t"1) w~'t)i0

-foo t' v/7r , + i# 2 /2)

{1 + exp [4o224 {2(ti t) (t' - t") }

exp {2/2 (t' - ti - )2

+(t"- _- t )}_ 10) (2.15)

From this expression, we can see that, assuming 02 > u2 , the probability of

detecting photons at to and to vanishes when

At'Ato = (2m + 1)7r02  (2.16)

In Fig. 2-4, the joint probability of observing a photon at to and to is plotted

when two photons with oc, = 200 fs and a Gaussian temporal waveform centered at

t'= -# and t' = -1 + 100 ps are sent through a dispersive element with a GVD

24



parameter of magnitude DI = 27rc 2 /A 2 = 10000 ps/nm. The assumption q 2 > a,

has not been used. At the time-scale of a few nanoseconds, the output resembles a

Gaussian pulse centered at t' = 0, as would be expected from single photon input

at P = -01. However, at the time scale of hundreds of picoseconds, two-photon

interference effects can be seen in clear dips in the two-photon output probability, as

predicted by Eq. 2.16. The plot has been discretized with t, = 10 ps. We chose a

low value of t, here to clearly show the shape of our interference pattern; such timing

resolution is not necessarily required to resolve the two-photon interference pattern.

Experimentally, these dips would be easily resolved using detectors with a jitter of

100 ps as shown in Fig. 2-4 (c). The increase in the size of each bin also increases the

probability of detecting photons in each time bin by a factor of 100.

2.5 Hardness of sampling from time-independent dis-

persion

Eq. 2.2 shows the class of unitary transformations from which we can sample using

time-independent dispersion without pulse-shaping. The unitary is band-diagonal

because of the time-invariant nature of the system. Classical algorithms exist for

the computation of the permanent of banded matrices with a banded inverse which is

polynomial in the size of the matrix but exponential in the number of bands [25J. The

inverse of a unitary banded matrix is banded. However, because the number of bands

is extremely large and the number of bands/dispersion is increased with the number

of photons in order to limit the effect of jitter (section 2.3.1), a classical simulation

using the algorithm from [25] would be inefficient.

If we add pulse-shaping to the experiment, the class of unitaries is expanded to

Eq. 2.3. Although we don't have any proof of the hardness of sampling from such a

unitary, the class of unitaries is large enough such that the sampling problem is still

expected to be hard. Hence, our scheme provides a realistic path to perform multi-

photon interference experiments with a much larger number of modes than possible

25



with conventional spatial schemes using beam-splitter operations.

2.6 The pulse-shape as part of the unitary

One of the apparently surprising aspects of our scheme is that the shape of the input

pulses A(t) is incorporated into the unitaries in Eq. 2.2 and 2.3. This is because,

unlike conventional unitary implementations, the input states start of in a different

basis than the measurement e.g. the input photons could start off as gaussians but

the measurement is in the time basis. If the input and output basis were both defined

as eigenfunctions of the time basis, the unitary would no longer be dependent on the

shape of the input photons. However, the input states would be unphysical and any

physically realizable input state would start of in a superposition of the input basis.

There is an easy way to see that the results of an experiment will be the same as a

spatial unitary implementing Eq. 2.2 or 2.3. Suppose that in a fictitious experiment,

the photons start of as eigenfunctions of time. They then go through a unitary U1

which puts them in a superposition of the input states of the form A(t) (physically,

this is the state of the photons input to the dispersion). The photons then go through

another unitary U2 which is the dispersion. The unitary implemented by this system

is U1U2 -

It is easy to see that the output of this system will be the same as our scheme.

The only difference is that the photons were never in the input state of the initial

system and instead directly have photons with U1 applied. However, the detector,

which measures in the time basis sees the same output state as if the operator U1 U2

was applied to input photons that were eigenfunctions of time.

26
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Chapter 3

Unitary Transformations with

Time-Dependent Dispersion

In section, we present a method to implement arbitrary unitaries with time dependent

dispersion.

Using the time projection operator p := f dt' t It') (t'| and the frequency projection

operator Cu, = f dw w 1w) (wI which satisfy [4,, cZ,] = i/2 (similar to , and P in [14,

22]), an arbitrary continuous variable unitary on temporal modes can be written as

e-'f where f(i, ,c~) = f dtH(ip, Cp, t). H(ip,c,, t) is the Hamiltonian of the

system. It should be noted that t, is the time projection operator corresponding to

the photon's temporal waveform and not the time over which the system evolves.

Hence, the variable of integration t above is distinct from the operator t,.

Given the ability to realize arbitrary continuous variable single particle unitaries

over ti, any discrete unitary transformation can be implemented by making the trans-

formation constant over the output time bins. Such an experiment with multiple

photons would be equivalent to Boson Sampling and if the discrete unitary is chosen

with Haar measure, the results are believed to be classically intractable [1].
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3.1 Direct implementation

Such a Hamiltonian can be physically realized by making the elements of the disper-

sion time-dependent. In the previous section we discussed methods for implementing

arbitrary dispersion which implements a Hamiltonian of the form #(C2p). Since pho-

tons reaching the dispersive element at different times see a different #(6Z,), the Hamil-

tonian can be written as H(F, Cu, t) where H can be any real function. Hence, we get

the desired unitary e-if (P,"P) with time-dependent elements that allow for changes in

the frequency spectrum of the pulses which was not possible with time-independent

dispersion.

Time Dependent
Dispersion

PBS t v------ ------------ ----

D s Time Dependent
Dispersion Refractive Index

Figure 3-1: Schematic of TMBS with time-dependent dispersion

3.2 Cascading dispersion and phase modulation

Another option for realizing such a unitary would be to cascade elements that im-

plement time-independent dispersion and a time-dependent refractive index. The

Hamiltonians corresponding to dispersion and time dependent refractive index are

O(LQp) and g(Fi) respectively.

Following previous work on realizing arbitrary Hamiltonians for continuous vari-

able systems [14, 221, one can construct Hamiltonians of the form [gi(ip), #1(cp)] +
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[92(ip), [9 3 (ip), 3(wp)]] + ..... using the properties

ie- ibt eiA6t e = e[A,3]6t 2 + O(6t3 ) (3.1)

et A,2/2e B3t/2e 43R12eiA6t/2 = ei(A+B)6t + O(6t3). (3.2)

The following Hamiltonians can be cascaded to generate a Hamiltonian that can

be any polynomial in i, and Jj) [14]: i,, CZ,, t2 + C02 and a Hamiltonian of the form

cp where n > 3. The Hamiltonians cjp and i, are first order dispersion (inverse group

velocity) and a linear varying refractive index. A high order Hamiltonian Zp can be

realized with higher order dispersion. t2 + j2 can be realized with a combination of

second order dispersion and a quadratically varying refractive index using Eq. 3.2.

Although such a decomposition allows us to build arbitrary Hamiltonians with a

number of elements which increase as a small polynomial in the number of photons

[31, more efficient decompositions are often possible with fewer elements [221.

Furthermore, as opposed to the conventional construction of f(, P) [14] which

uses low-order polynomials in i and fi (high order polynomials require a non-linear

medium), a unitary of the form g(ip) or O(cZp) can be of any arbitrary functional form

without requiring an explicit Kerr-type nonlinearity.
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Chapter 4

Conclusion and Outlook

The schemes presented in this paper present an alternative to conventional spatial

implementations of linear optics unitary transformations by moving to a temporal

basis. Unlike implementations of spatial mode unitaries with beam splitters and

phase shifters which mix two modes at a time, each element in our scheme mixes all

the modes together. As a result, a unitary transformation on temporal modes using

dispersion can allow the experimental implementation of a much larger unitary trans-

formation than would be practically possible with an approach using beam splitters

and phase shifters.

However, there are certain unitaries which are harder to implement with our

scheme than with a system of beamsplitters e.g. a unitary which mixes only two

spatial modes and leaves the others untouched can be constructed with a single beam

splitter but in our scheme, such a unitary would require time-dependent dispersion.

With time-independent dispersion, a limited set of unitary transformations can

be implemented. However, to our knowledge, there is no known efficient sampling

algorithm for such unitaries. With time-dependent dispersion, it is possible to sample

from arbitrary unitaries.

Since our scheme could provide a path to a post-classical Boson Sampling ma-

chine, a large part of this thesis is dedicated to the application of unitaries based on

dispersion to Boson Sampling. However, future work could look at other applications

requiring unitary transformations with a large number of modes where this scheme
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could lead to experimental simplification. There has been recent work on quantum

chemistry simulations using Boson Sampling 18] and it would be interesting to study

whether the required unitary for such simulations can be implemented easily with

dispersion.

In this thesis, we have shown that the output of our system, which is continuous,

can approach the output of a discrete system i.e. unitary transformations on spatial

waveguide modes. However, an interesting future direction for this scheme would be

to take advantage of the continuous nature of our system which could be valuable for

quantum simulations of systems with a continuous degree of freedom.
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Appendix A

The Required Number of Detectors

In this section we show that the number of detectors in TMBS can be much smaller

than SMBS

In Fig. 2-4, if photon detection is binned in steps of 100 ps, there are 1934 modes.

The number of modes is defined as the number of time bins within which the absolute

value of the dispersed wavefunction is greater than 90% of the peak value.

We assume that our detectors have a dead time of 1 ns and look at the failure rate

of our boson sampling scheme with 2000 input and output modes and 30 photons

when each photon output is passively and equally split between 30 detectors. We

assume that each time bin on the heralding as well on the output detector bank is

equally likely to receive a photon. We post-select on the cases where there are a total

of 30 photons incident on each detector bank (as in conventional scattershot boson

sampling).

The scheme is considered a failure if two photons are incident on any detector

within the dead time. Based on a Monte-Carlo simulation of the system, we find that

the probability of failure is less than 10%

The assumption of photons being equally likely to arrive at any bin is accurate for

the heralding detector bank. For the detector bank which detects photons after going

through the unitary, the assumption may lead to an underestimated failure rate.

However, we can post-select on the number of photons detected after the unitary

being equal to the number of heralded photons and hence a higher failure rate is
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tolerable. An accurate simulation of the failure rate with a 30 photon, 2000 mode

system is expected to be close to the limit of current computing capabilities.

Hence, TMBS can allow for a 30 photon 2000 mode experiment with 60 detectors,

whereas an equivalent SMBS experiment would require 4000 detectors. It is interest-

ing to observe that for the same number of photons and dead time bins, the number

of detectors required for TMBS goes down with an increase in the number of modes

since there is a smaller chance of detecting multiple photons within a dead time. In

SMBS, the number of detectors is equal to twice the number of modes.
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