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Abstract

In the first part of this work, we introduce a new type of pseudo-random function for which
"aggregate queries" over exponential-sized sets can be efficiently answered. We show how to
use algebraic properties of underlying classical pseudo random functions, to construct such
"aggregate pseudo-random functions" for a number of classes of aggregation queries under
cryptographic hardness assumptions. For example, one aggregate query we achieve is the
product of all function values accepted by a polynomial-sized read-once boolean formula.
On the flip side, we show that certain aggregate queries are impossible to support.

In the second part of this work, we show how various extensions of pseudo-random func-
tions considered recently in the cryptographic literature, yield impossibility results for var-
ious extensions of machine learning models, continuing a line of investigation originated by
Valiant and Kearns in the 1980s. The extended pseudo-random functions we address include
constrained pseudo random functions, aggregatable pseudo random functions, and pseudo
random functions secure under related-key attacks.

In the third part of this work, we demonstrate limitations of the recent notions of con-
strained pseudo-random functions and cryptographic watermarking schemes. Specifically, we
construct pseudorandom function families that can be neither punctured nor watermarked.
This is achieved by constructing new unobfuscatable pseudorandom function families for new
ranges of parameters.
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Title: RSA Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Pseudo-random functions (PRFs), introduced by Goldreich, Goldwasser and Micali [GGM86],

are a family of indexed functions for which there exists a polynomial-time algorithm that,

given an index (which can be viewed as a secret key) for a function, can evaluate it, but

no probabilistic polynomial-time algorithm without the secret key can distinguish the func-

tion from a truly random function - even if allowed oracle query access to the function.

Over the years, pseudo-random functions have been shown to be useful for numerous crypto-

graphic applications. Interestingly, aside from their cryptographic applications, PRFs have

also been used to show impossibility of computational learning in the membership queries

model [Val84], and served as the underpinning of the proof of Razborov and Rudich [RR97]

that natural proofs would not suffice for unrestricted circuit lower bounds.

Since their inception in the mid eighties, various augmented pseudo random functions

with extra properties have been proposed, with both more structure and security against

more sophisticated attacks. This was first done in the work of Goldreich, Goldwasser, and

Nussboim [GGN10 on how to efficiently construct "huge objects" (e.g. a large graph im-

plicitly described by access to its adjacency matrix) which maintain combinatorial proper-

ties expected of a random "huge object." Furthermore, they show several implementations

of varying quality of such objects for which complex global properties can be computed,

such as computing cliques in a random graph, computing random function inverses from
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a point in the range, and computing the parity of a random function's values over huge

sets. More recently, further augmentations of PRFs have been proposed, including: the

works on constrained PRFs' [KPTZ13, BGI14, BW13] which can release auxiliary secret

keys whose knowledge enables computing the PRF in a restricted number of locations with-

out compromising pseudo-randomness elsewhere; key-homomorphic PRFs [BLMR13I which

are homomorphic with respect to the keys; and related-key secure PRFs [BC10, ABPP14].

These constructions yield fundamental objects with often surprising applications to cryptog-

raphy and elsewhere. A case in point is the truly surprising use of constrained PRFs [SW14],

to show that indistinguishability obfuscation can be used to resolve a long-standing problem

of deniable encryption, among many others. Below we describe each of the three parts of

this thesis, exploring different aspects of PRFs augmented to have extra properties. In the

remainder of this chapter we provide an in-depth overview of our results and techniques.

Aggregate PRFs

In the first part of this thesis, we introduce a new type of augmented PRF which we call

aggregate pseudo random functions (AGG-PRF). An AGG-PRF is a family of indexed func-

tions each associated with a secret key, such that given the secret key, one can compute

aggregates of the values of the function over super-polynomially large sets in polynomial

time; and yet without the secret key, a polynomial time adversary (distinguisher) cannot

distinguish the function from random, even when the adversary can make aggregate queries.

The distinguisher can request and receive an aggregate of the function values over sets (of

possibly super-polynomial size) that she can specify. Examples of aggregate queries can be

the sum/product of all function values belonging to an exponential-sized interval, or more

generally, the sum/product of all function values on points for which some polynomial time

predicate holds. Since the sets over which our function values are aggregated are super-

polynomial in size, they cannot be directly computed by simply querying the function on

individual points. AGG-PRFs cast in the framework of [GGN10] are (truthful, pseudo) imple-

'Constrained PRFs are also known as Functional PRFs and as Delegatable PRFs.
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mentations of random functions supporting aggregates as their "complex queries." Indeed,

our first example of an AGG-PRF for computing parities over exponential-sized intervals

comes from [GGN10 under the assumption that one-way functions exist.

We show AGG-PRFs under various cryptographic hardness assumptions (one-way func-

tions and DDH) for a number of types of aggregation operators such as sums and products

and for a number of set systems including intervals, hypercubes, and (the supports of) re-

stricted computational models such as decision trees and read-once Boolean formulas. We

also show negative results: there are no AGG-PRFs for more expressive set systems such as

(the supports of) general CNF formulas.

Connections to Learning

In the second part of this thesis, we embark on a study of the connection between the

augmented PRF constructions of recent years (constrained, related-key, aggregate) and the

theory of computational learning. We recall at the outset that the fields of cryptography and

machine learning share a curious historical relationship. The goals are in complete opposition

and at the same time the aesthetics of the models, definitions, and techniques bear a striking

similarity. For example, a cryptanalyst can attack a cryptosystem using a range of powers

from only seeing ciphertext examples to requesting to see decryptions of ciphertexts of her

choice. Analogously, machine learning allows different powers to the learner such as random

examples versus membership queries, showing that certain powers allow learners to learn

concepts in polynomial time whereas others do not. Even more directly, problems which

pose challenges for machine learning, such as Learning Parity with Noise have been used as

the underpinning for building secure cryptosystems. As mentioned above, [Val84] observes

that the existence of PRFs in a complexity class C implies the existence of concept classes

in C which can not be learned under membership queries, and [KV94] extends this direction

to some public key constructions.

In the decades since the introduction of PAC learning, new computational learning models

have been proposed, such as the recent "restriction access" model [DRWY12 which allows
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the learner to interact with the target concept by asking membership queries, but also to

obtain an entire circuit that computes the concept on a random subset of the inputs. For

example, in one shot, the learner can obtain a circuit that computes the concept class on

all n-bit inputs that start with n/2 zeros. At the same time, the cryptographic research

landscape has been swiftly moving in the direction of augmenting traditional PRFs and

other cryptographic primitives to include higher functionalities. This brings to mind two

natural questions:

" Can one leverage augmented pseudo-random function constructions to establish limits

on what can and cannot be learned in augmented machine learning models?

" Going even further afield, can augmented cryptographic constructs suggest interesting

learning models?

We address these questions in the second part of this thesis.

Unobfuscatable PRFs and Their Implications

In the third part of this thesis, we explore constructions of function families that are pseu-

dorandom, but "learnable" in a non-black-box setting. This line of work was initiated in the

context of program obfuscation by [BGI+12], demonstrating the impossibility of achieving a

natural notion of ideal obfuscation.

Their approach was to construct "unobfuscatable" function families: families of circuits

which are not learnable by efficient black-box algorithms, but which become efficiently learn-

able with non-black-box access. In the latter setting, these functions are learnable in a very

strong sense: given any circuit that equivalently computes the functionality, there is an effi-

cient algorithm that reconstructs the original circuit. Intuitively, this demonstrates that the

family is "unobfuscatable": from any exact implementation, the original circuit is recovered.

That work also shows how to make such families that are pseudorandom.

More recently, Bitansky and Paneth [BP121 extend the techniques to work for any im-

plementation agreeing on only a constant fraction, but weakening other properties of the
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earlier result. Specifically, these families are no longer pseudorandom, and are furthermore

only very weakly non-black-box learnable. That work was motivated by applications to

resettable zero knowledge protocols.

A natural goal is to interpolate between these two results: achieve a notion of obfuscation

stronger than the former, while simultaneously maintaining its strong learnability properties.

In this thesis, we construct new PRF families towards this goal, assuming one-way functions

exist. As corollaries of our construction, we demonstrate that if PRFs exist at all, then:

* There exist families of PRFs that cannot be constrained on all-but-one input (or equiv-

alently, puncturable at one input).

" There exist families of "unwatermarkable' pseudorandom functions, if a marked pro-

gram must agree with the original on random inputs.

The notion of cryptographic watermarking of circuits was recently considered in [CHV15],

which constructs such a scheme for any PRF puncturable at one input. We explore the

limitations of cryptographic watermarking for some notions of non-black-box learnability

(in which the learner gets an implementation of the concept as input) and construct a new

unobfuscatable family that is unwatermarkable.

1.1 Aggregate Pseudorandom Functions

Aggregate Pseudo Random Functions (AGG-PRF) are indexed families of pseudo-random

functions for which a distinguisher (who runs in time polynomial in the security parameter)

can request and receive the value of an aggregate (for example, the sum or the product) of the

function values over certain large sets and yet cannot distinguish oracle access to the function

from oracle access to a truly random function. At the same time, given the function index

(in other words, the secret key), one can compute such aggregates over potentially super-

polynomial size sets in polynomial time. Such an efficent aggregation algorithm cannot

2Cryptographic watermarking schemes are the subject of current, unpublished work of Justin Holmgren,
Vinod Vaikuntanathan, and myself.
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possibly exist for random functions. Thus, this is a PRF family that is very unlike random

functions (in the sense of being able to efficiently aggregate over superpolynomial size sets),

and yet is still computationally indistinguishable from random functions.

To make this notion precise, we need two ingredients. Let F = {FA}x>o where each

FA = {fA D -4 RA}eK is a collection of functions on a domain DA to a range RI,

computable in time poly(A).' The first ingredient is a collection of sets (also called a set

system) S = {S C D} over which the aggregates can be efficiently computed given the index

k of the function. The second ingredient is an aggregation function F : Z* -+ {0, 1}* which

takes as input a tuple of function values {f(x) : x e S} for some set S E S and outputs the

aggregate P(f(x1), ... , f (xIs)).

The sets are typically super-polynomially large, but are efficiently recognizable. That is,

for each set S, there is a corresponding poly(A)-size circuit Cs that takes as input an x E D

and outputs 1 if and only if x E S. 4 Throughout this paper, we will consider relatively

simple aggregate functions: we treat the range of the functions as an Abelian group, and will

let F denote the group operation on its inputs. Note that the input to F is super-polynomially

large (in the security parameter A), making the aggregate computation non-trivial.

This family of functions, equipped with a set system S and an aggregation function F is

called an aggregate PRF family (AGG-PRF) if the following two requirements hold:

1. Aggregatability: There exists a polynomial-time algorithm (in the security parameter

A) that given an index k to the PRF fk E F and a circuit Cs that recognizes a set

S E S, can compute F over the PRF values fk(x) for all x E S. That is, it can compute

AGGfXr(S) := FxCS fk(x)

2. Pseudorandomness: No polynomial-time distinguisher which can specify a set S C S

as a query, receiving as an answer either AGGfk,r(S) for a random function fk E F or

31n this informal exposition, for the sake of brevity, we will sometimes omit the security parameter and
refrain from referring to ensembles.

4All the sets we consider are efficiently recognizable, and we use the corresponding circuit as the repre-
sentation of the set. We occasionally abuse notation and use S and Cs interchangeably.
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AGGh,r(S) for a truly random functions h, can distinguish between the two cases.

We show a number of constructions of AGG-PRF for various set systems under different

cryptographic assumptions. We describe our constructions below, starting from the least

expressive set system.

Interval Sets

We first present AGG-PRFs over interval set systems with respect to aggregation functions

that compute any group operation. The construction can be based on any (standard) PRF

family.

Theorem 1.1.1 (Group summation over intervals, from one-way functions [GGN10]). 5

Assume one-way functions exist. Then, there exists an AGG-PRF over Z 2x, with respect to

a collection of sets defined by intervals [a, b] C_ Z2> and the aggregation function of addition

over Z2\ -

The construction works as follows. Let {Fk : Z2x 4 22\} be a (standard) pseudo-random

function family based on the existence of one-way functions [GGM86, HILL99]. Construct

an AGG-PRF family G supporting efficient computation of group aggregation functions.

Define

Gk(x) = F(x) - Fk(x - 1)

To aggregate G, set

Z Gk(x) = F(b) - F(a - 1)
xE[a,b]

Given k, this can be efficiently evaluated.

Another construction from [GGN10] achieves summation over the integers for PRFs whose

range is {0, 1}. We omit the details of the construction, but state the theorem for complete-

ness.
5Observed even earlier by Reingold and Naor and appeared in [GGI+02] in the context of small space

streaming algorithms
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Theorem 1.1.2 (Integer summation over intervals, from one-way functions [GGN10]). As-

sume one-way functions exist. Then, there exists an AGG-PRF family that maps Z2. to

{0, 1}, with respect to a collection of sets defined by intervals [a, b] C; Z2A and the aggregation

function computing the summation over Z.

Hypercubes

We next construct AGG-PRFs over hypercube set systems. This partially addresses Open

Problem 5.4 posed in [GGN10], whether one can efficiently implement a random function

with range {0, 1} with complex queries that compute parities over the function values on

hypercubes. Assuming DDH hardness, Theorem 1.1.3 answers the question for products

rather than parities for a function whose range is a DDH group.

Throughout this section, we take Dx = {0, 1}' for some polynomial f = f(A). A hypercube

Sy is defined by a vector y C {0, 1,*}e as

Sy = {x c {0, 1}' : Vi,y=* or xi = yi}

We present a construction under the DDH assumption.

Theorem 1.1.3 (Hypercubes from DDH). Let WC = {iCe(x)}x>o where 7Cj = {0, 1,*} be

the set of hypercubes on {0, 1}', for f polynomially bounded in A. Then, there exists an AGG-

PRF family mapping {0, 1}' to a group G, supporting the set system -C with the product

aggregation function, assuming DDH hardness on G.

We sketch the construction from DDH below, using the Naor-Reingold PRF [NR04].

Namely, the function is parametrized by an f-tuple k = (ki, . . . , ke) and is defined as

F (x) = gfli:xi ki

Let us illustrate aggregation over the hypercube y = (1,0,*,*,...,*). To aggregate the
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function F, observe that

fJ F (x) = g :X%=1

{x: X1=1,X2=0} {x: Xl=1,x2=0}

= gZ{x:x1=1,x2=0 Hi:xj=i ki

_ g(kl)(1)(k2+1)(k3+1)---(ke+1)

which can be efficiently computed given k.

Decision Trees

A decision tree T on f variables is a binary tree where each internal node is labeled by a

variable xi, the leaves are labeled by either 0 or 1, one of the two outgoing edges of an internal

node is labeled 0, and the other is labeled 1. Computation of a decision tree on an input

(x1, ... , Xe) starts from the root, and at each internal node n, proceeds by taking either the

0-outgoing edge or 1-outgoing edge depending on whether xn = 0 or x" = 1, respectively.

Finally, the output of the computation is the label of the leaf reached through this process.

The size of a decision tree is the number of nodes in the tree.

A decision tree T defines a set S = ST = {x E {0, 1}e : T(x) = 1}. We show how to

compute product aggregates over sets defined by polynomial size decision trees, under the

DDH assumption.

The construction is simply a result of the observation that the set S = ST can be written

as a disjoint union of polynomially many hypercubes. Computing aggregates over each

hypercube and multiplying the results together gives us the decision tree aggregate.

Theorem 1.1.4 (Decision Rees from DDH). Assuming the hardness of the decisional Diffie-

Hellman problem on group G, there is an AGG-PRF mapping {0, 1}e to G that supports

aggregation over sets recognized by polynomial-size decision trees, for f polynomially bounded

in A.
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Read-Once Boolean Formulas

Finally, we show a construction of AGG-PRF over read-once Boolean formulas, the most

expressive of our set systems, under the subexponential DDH assumption. A read-once

Boolean formula is a Boolean circuit composed of AND, OR and NOT gates with fan-out

1, namely each input literal feeds into at most one gate, and each gate output feeds into

at most one other gate. A read-once formula can be written as a binary tree where each

internal node is labeled with an AND or OR gate, and each literal (a variable or its negation)

appears in at most one leaf.

Theorem 1.1.5 (Read-Once Boolean Formulas from DDH). Under the subexponential de-

cisional Diffie-Hellman assumption on group G, there is an AGG-PRF mapping {o, I} to

G that supports aggregation over sets recognized by read-once Boolean formulas, for f poly-

nomially bounded in A.

We compute aggregates by recursion on the levels of the formula.

Limits of Aggregation

A natural question to ask is whether one can support aggregation over sets defined by general

circuits. It is however easy to see that you cannot support any class of circuits for which

deciding satisfiability is hard (for example, ACO) as follows. Suppose C is a circuit which is

either unsatisfiable or has a unique SAT assignment. Solving satisfiability for such circuits is

known to be sufficient to solve SAT in general [VV86]. The algorithm for SAT simply runs

the aggregator with a random PRF key k, and outputs YES if and only if the aggregator

returns a non-zero value. It is natural to assume that if the formula is unsatisfiable, we

will always get 0 from the aggregator. Otherwise, we get fk(x), where x is the (unique)

satisfying assignment. Now, this might end up being 0 accidentally, but cannot be 0 always

since otherwise, we will turn it into a PRF distinguisher. The distinguisher has the satisfying

assignment hardcoded into it non-uniformly, and it simply checks if PRFk(x) is 0.

Theorem 1.1.6 (Impossibility for General Set Systems). Suppose there is an efficient algo-
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rithm which on an index for f E F, a set system defined by {x : C(x) = 1} for a polynomial

size Boolean circuit C, and an aggregation function F, outputs the Fx:C(x)=lf(x). Suppose

further that if C is unsatisfiable this algorithm returns 0. Then, there is efficient algorithm

that takes circuits C as input and w.h.p. over its coins, decides satisfiability for C.

Open Questions. As discussed in the introduction, augmented pseudo-random functions

often have powerful and surprising applications, perhaps the most recent example being

constrained PRFs [BW13, KPTZ13, BGI14]. Perhaps the most obvious open question that

emerges from this work is to find applications for aggregate PRFs. We remark that a primitive

similar to aggregate PRFs was used in [BGV11I to construct delegation protocols.

In this work we restricted our attention to particular types of aggregation functions and

subsets over which the aggregation takes place, although our definition captures more general

scenarios. We looked at aggregation functions that compute group operations over Abelian

groups. Can we support more general aggregation functions that are not restricted to group

operations, for example the majority function, or even non-symmetric functions? We show

positive results for intervals, hypercubes, and sets recognized by read-once formulas and

decision trees. On the other hand, we show that it is unlikely that we can support general

sets, for example sets recognized by CNF formulas. This almost closes the gap between what

is possible and what is hard. A concrete open question in this direction is to construct an

aggregate PRF computing summation over an Abelian group for sets recognized by DNFs,

or provide evidence that this cannot be done.

Related Work to Aggregate PRFs

As described above, the work of [GGN10] studies the general question of how one can ef-

ficiently construct random, "close-to" random, and "pseudo-random" large objects, such as

functions or graphs, which truthfully obey global combinatorial properties rather simply

appearing to do so to a polynomial time observer.

Formally, using the [GGN10 terminology, a PRF is a pseudo-implementation of a random

function, and an AGG-PRF is a pseudo-implementation of a "random function that also
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answers aggregate queries" (as we defined them). Furthermore, the aggregatability property

of AGG-PRF implies it is a truthful pseudo-implementation of such a function. Whereas in

this work, we restrict our attention to aggregate queries, [GGN10] considers other complex-

queries, such as in the case of a uniformly selected N node graph, providing a clique of size

log 2 N that contains the queried vertex in addition to answering adjacency queries.

Our notion of aggregate PRFs bears resemblance to the notion of algebraic PRFs defined

in the work of Benabbas, Gennaro and Vahlis [BGV11], used for verifiable computation.

There are two main differences. First, algebraic PRFs support efficient aggregation over

very specific subsets, whereas our constructions of aggregate PRFs support expressive subset

classes, such as subsets recognized by hypercubes, decision trees and read-once Boolean

formulas. Secondly, in the security notion for aggregate PRFs, the adversary obtains access

to an oracle that computes the function as well as one that computes the aggregate values

over super-polynomial size sets, whereas in algebraic PRFs, the adversary is restricted to

accessing the function oracle alone. Our constructions from DDH use an algebraic property

of the Naor-Reingold PRF in a similar manner as in [BGV11].

1.2 Augmented PRFs and Computational Learning

As discussed above, connections between PRFs and learning theory date back to the 80's in

the pioneering work of [Val84] showing that PRF in a complexity class C implies the existence

of concept classes in C which can not be learned with membership queries. In the second

part of this work, we study the implications of the slew of augmented PRF constructions

of recent years [BW13, BGI14, KPTZ13, BC10, ABPP14] and our new aggregate PRF to

computational learning.
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1.2.1 Constrained PRFs and Limits on Restriction Access Learn-

ability

Recently, Dvir, Rao, Wigderson, and Yehudayoff [DRWY12] introduced a new learning model

where the learner is allowed non-black-box information on the computational device (such

as circuits, DNFs, or formulas) that decides the concept; their learner receives a simplified

device resulting from partial assignments to input variables (i.e. restrictions). These partial

restrictions lie somewhere in between function evaluation (full restrictions) which correspond

to learning with membership queries and the full description of the original device (the

empty restriction). The work of [DRWY12] studies a PAC version of restriction access,

called PACRA, where the learner receives the circuit restricted with respect to random partial

assignments. They show that both decision trees and DNF formulas can be learned efficiently

in this model. Indeed, the PACRA model is quite a powerful generalization of the traditional

PAC learning model, as it returns to the learner a computational description of the simplified

concept.

Yet, in this section we will show limitations of this computational model under cryp-

tographic assumptions. We show that the constrained pseudo-random function families in-

troduced recently in [BW13, BGI14, KPTZ13] naturally define a concept class which is

not learnable by an even stronger variant of the restriction access learning model which we

define. In the stronger variant, which we name membership queries with restriction access

(MQRA) the learner can adaptively specify any restriction of the circuit from a specified class

of restrictions S and receive the simplified device computing the concept on this restricted

domain in return.

Definition 1.2.1 (Membership queries with restriction access (MQRA)). Let C = {f :X -

{0, 1}} be a class of concepts f, and S = {S C X} be a collection of subsets of the domain.

S is the set of allowable restrictions for concepts f. Let Simp be a simplification rule which,

for a concept f and restriction S, outputs an implementation of f restricted to S.

An algorithm A is an (e, 6, aO)-MQRA learning algorithm for concept class C with respect

to a restrictions in S and simplification rule Simp if, for every f E C, Pr[ASimP(f,.) = h] > 1-6
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where h is an c-approximation to f - and furthermore, A only requests restrictions for an

a-fraction of the whole domain X.

Informally, constrained PRFs are PRFs with two additional properties: 1) for any sub-

set S of the domain in a specified collection S, a constrained key Ks can be computed,

knowledge of which enables efficient evaluation of the PRF on S; and 2) even with knowl-

edge of constrained keys Ks1,... , Ksm for the corresponding subsets, the function retains

pseudo-randomness on all points not covered by any of these sets. Connecting this to re-

striction access, the constrained keys will allow for generation of restriction access examples

(restricted implementations with fixed partial assignments) and the second property implies

that those examples do not aid in the learning of the function.

Theorem 1.2.1 (Informal). Suppose F is a family of constrained PRFs which can be con-

strained to sets in S. If F is computable in circuit complexity class C, then C is hard to

MQRA-learn with restrictions in S.

Corollary 1.2.2 (Informal). Existing constructions of constrained PRFs [BW13] yield the

following corollaries:

" If one-way functions exist, then poly-sized circuits can not be learned with restrictions

on sub-intervals of the input-domain; and

" Assuming the sub-exponential hardness of the multi-linear Diffie-Hellman problem,

NC cannot be learned with restriction on hypercubes.

1.2.2 New Learning Models Inspired by the Study of PRFs

We proceed to define two new learning models inspired by recent directions in cryptography.

The first model is the related concept model inspired by work into related-key attacks in

cryptography. While we have cryptography and lower bounds in mind, we argue that this

model is in some ways natural. The second model, learning with aggregate queries, is directly

inspired by our development of aggregate pseudo-random functions in this work; rather than
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being a natural model in its own right, this model further illustrates how cryptography and

learning are duals in many senses.

The Related Concept Learning Model

The idea that some functions or concepts are related to one another is quite natural. For a

DNF formula, for instance, related concepts may include formulas where a clause has been

added or formulas where the roles of two variables are swapped. For a decision tree, we

could consider removing some accepting leaves and examining the resulting behavior. For a

circuit, a related circuit might alter internal gates or fix the values on some wires. A similar

phenomena occurs in cryptography, where secret keys corresponding to different instances

of the same cryptographic primitive or even secret keys of different cryptographic primitives

are related (if, for example, they were generated by a pseudo random process on the same

seed).

We propose a new computational learning model where the learner is explicitly allowed

to specify membership queries not only for the concept to be learned, but also for "related"

concepts, given by a class of allowed transformations on the concept. We will show both

a general negative result in the new model. Based on recent constructions of related-key

secure PRFs by Bellare and Cash [BClO] and Abdalla et al [ABPP14], we demonstrate

concept classes for which access to these related concepts is of no help.

To formalize the related concept learning model, we will consider indexed concept classes

- wherein each concept is indexed by some key. This will enable the study of related concepts

by considering concepts whose keys are related in some way. Most generally, we think of a

key as a succinct representation of the computational device which decides the concept. This

is a general framework; for example, we may consider the bit representation of a particular

log-depth circuit as a key for a concept in the concept class NC'. For a concept fk in concept

class C, we allow the learner to query a membership oracle for fk and also for related concepts

fO(k) for any <$ in a specified class of allowable functions 4.

Definition 1.2.2 (4-Related-Concept Learning Model (4-RC)). For a concept class CK
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indexed by K, let 4D = {q : K -÷ K} be a set of functions on K containing the identity

function. A related-concept oracle RCk, on query (#, x), responds with fo(k)(x), for all q G 4)

and x E X.

An algorithm A is an (c, 6)-(-RK learning algorithm for a Ck if, for every k E K, when

given access to the oracle RKk(.), the algorithm A outputs with probability at least 1 - 6 a

function h : {0, 1} -+ {0, 1} that E-approximates fk.

Yet again, we are able to demonstrate the limitations of this model using the power of

a strong type of pseudo-random function. We show that related-key secure PRF families

(RKA-PRF) defined and instantiated in [BC10] and [ABPP14] give a natural concept class

which is not learnable with related key queries. RKA-PRFs are defined with respect to a

set 4b of functions on the set of PRF keys. Informally, the security notion guarantees that

for a randomly selected key k, no efficient adversary can distinguish oracle access to fk and

related fo(k) from an random oracles. We leverage this strong pseudo-randomness property

to show hard-to-learn concepts in the related concept model.

Theorem 1.2.3 (Informal). Suppose F is a family of RKA-PRFs with respect to related-key

functions 4D. If F is computable in circuit complexity class C, then C is hard to learn in the

<'-RC model for some V.

Existing constructions of RKA-PRFs [ABPP14] yield the following corollary:

Corollary 1.2.4 (Informal). Assuming the hardness of the DDH problem, and collision-

resistant hash functions, NC is hard to JD-RC-learn for an class of affine functions 1b.

The Aggregate Learning Model

The other learning model we propose is inspired by our aggregate PRFs. Here, we consider

a new extension to the power of the learning algorithm. Whereas membership queries are

of the form "What is the label of an example x?", we grant the learner the power to request

the evaluation of simple functions on tuples of examples (xi, ... , xn) such as "How many

of x 1, .. . , xn are in C?" or "Compute the product of the labels of x1 , ... , xn?". Clearly, if
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n is polynomial then this will result only a polynomial gain in the query complexity of a

learning algorithm in the best case. Instead, we propose to study cases when n may be

super-polynomial, but the description of the tuples is succinct. For example, the learning

algorithm might query the number of x's in a large interval that are positive examples in

the concept.

As with the restriction access and related concept models - and the aggregate PRFs we

define in this work - the Aggregate Queries (AQ) learning model will be considered with

restrictions to both the types of aggregate functions r the learner can query, and the sets S

over which the learner may request these functions to be evaluated on. We now present the

AQ learning model:

Definition 1.2.3 ((F,S)-Aggregate Queries (AQ) Learning). Let C : X - {0, 1} be a

concept class, and let S be a collection of subsets of X. Let F : {0, 1}* -- V be an aggregation

function. For f c C, let AGGf be an "aggregation" oracle, which for S e S, returns FEsf (x).

Let MEMf be the membership oracle, which for input x returns f(x).

An algorithm A is an (e, 6)-(F, S)-AQ learning algorithm for C if for every f E C,

Pr[AMEM(-),AGGf() h] > I -

where h is an -approximation to f.

Initially, AQ learning is reminiscent of learning with statistical queries (SQ). In fact,

this apparent connection inspired this portion of our work. But the AQ setting is in fact

incomparable to SQ learning, or even the weaker correlational SQ model as defined in [BF02I.

On the one hand, AQ queries provide a sort of noiseless variant of SQ, giving more power to

the AQ learner; on the other hand, the AQ learner is restricted to aggregating over sets in

S, whereas the SQ learner is not restricted in this way, thereby limiting the power of the AQ

learner. The AQ setting where S contains every subset of the domain is indeed a noiseless

version of correlational SQ. This does raise the natural question of a noiseless version of SQ

and its variants; hardness results in such models would be interesting in that they would
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suggest that the hardness comes not from the noise but from an inherent loss of information

in statistics/aggregates.

We will show under cryptographic assumptions, a general lower bound on the power of

learning with aggregate queries. The negative examples will use the results in Section 1.1.

Theorem 1.2.5. Let F be a boolean-valued aggregate PRF with respect to set system S and

aggregation function F. If F is computable in complexity class C, then C is hard to (F, S)-AQ

learn.

Corollary 1.2.6. Using the results from Chapter 2, we get the following corollaries:

" The existence of one-way functions implies that P/poly is hard to (E, S[a,b])-AQ learn,

with S[a,b] the set of sub-intervals of the domain as defined in section 2.2 [GGM86].

" The DDH Assumption implies that NC' is hard to (E, DT)-AQ learn, with S[a,b] the

set of polynomial-sized decision trees as defined in section 2.4 [NR04].

* The subexponential DDH Assumption implies that NC is hard to (fl, R)-AQ learn,

with R the set of read-once boolean formulas defined in section 2.5 [NR04].

1.3 New Negative Results from Unobfuscatable PRFs

In the past few years the field of cryptographic program obfuscation has experienced rapid

growth. The work focuses primarily on applications of indistinguishability obfuscation, a

notion introduced in the foundational work of [BGI+12]. The main focus of that work,

though, was to formulate rigorous definitions of obfuscation and to demonstrate that some

families of circuits cannot be ideally obfuscated by constructing "unobfuscatable" function

families as discussed below. The subsequent work of [BP12] refined the original techniques

to demonstrate impossibility of a very strong notion of approximate VBB obfuscation, in

which the obfuscated circuit must only agree with the original on a constant fraction of

the domain. In the third part of this thesis, we consider further possible variants of these

unobfuscatable families and establish a connection between such families and limitations
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for both constrained PRFs [BW13, BGI14, KPTZ13] and watermarking schemes [CHV15].

Below we describe the negative results, followed by an introduction of our techniques.

Unpuncturable PRFs

Informally, (point) puncturable PRFs are PRFs with two additional properties: (1) for any

element x of the domain, a punctured key kx can be computed, knowledge of which enables

efficient evaluation of the PRF on all x' # x; (2) even with knowledge of the punctured key

kX, the function retains pseudo-randomness on x.6 The classical GGM PRF is puncturable,

implying that if PRFs exist at all, then puncturable PRFs exist [BW13, BGI14, KPTZ13,

GGM86]. These objects have received much attention as they underly essentially all current

applications of obfuscation. Many constructions exist for different settings, but no negative

results are known.

Are all PRFs puncturable, or do there exist "unpuncturable" PRFs? For a family F

{Fk} to not be puncturable, it suffices to show that for any x, there is an efficient algorithm

that can output k given any circuit that computes Fk(x') for all x' # x. We construct such

a family in Chapter 4.

Theorem 1.3.1 (Informal). There exist families of PRFs that are not point puncturable.

Unwatermarkable PRFs

The notion of watermarking of circuits has received only sporadic attention in the cryptog-

raphy literature. Recently the notion was revisited in [CHV15], which put forth refined defi-

nitions for cryptographic watermarking of circuit families. At a high level, a 3-watermarking

scheme for a class of circuits C is a triple of algorithms (Setup, Mark, Verify) with the following

properties, with respect to the keys (mk,vk) <- Setup(1A): 7

6 Puncturable PRFs are simply a reframing of the constrained PRFs previously discussed. A constrained
key for a set S enables computation only on S, while a punctured key for a point x enables computation
everywhere except for x. That is, the puncturable PRF key kx is exactly the constrained PRF key kx\{x}.
In this section and the corresponding chapter we refer to puncturable PRFs rather than constrained PRFs.

7 1n this work we consider a simplified definition than presented in [CHV151, thereby strengthening our
impossibility result.
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* Completeness: Verify on the marked version of C should return 1. That is, for every

circuit C in the family C, Verify(vk, Mark(mk, C)) = 1 with high probability.

* Functionality preserving: the marked circuit and the original circuit should agree al-

most everywhere. That is, for every circuit C in the family C and for random x in the

domain of C, Mark(mk, C)(x) = C(x) with high probability.

* 6- Unremovability: Given a random marked circuit, it should be infeasible to output a

similar circuit on which Verify returns 0. That is, for all efficient algorithms A, and

for random C <- C, if C = A(Mark(mk, C)) is a circuit that agrees with 0 on at least

1 - 6 fraction of the domain, then Verify(vk, C) = 1 with high probability.

* Unforgeability: without access to any marked circuits, it should be infeasible to output a

circuit on which Verify returns 1. That is, for all efficient algorithms A, Verify(vk, A(1A))

0 with high probability.

Given a few minutes of consideration, it should be immediately clear that some families C

cannot be watermarked under this definition. As a simple example, consider the family of all

constant functions Cy indexed by a constant y. By functionality preservation, Mark(Cy)(x) =

y almost everywhere, so y and thus Cy can be trivially recovered. At this point, either

Verify(Cy) = 0 or Verify(Cy) = 1, in which case either unremovability or unforgeability is

violated, respectively. This example suggests that some learnability notion should suffice

for unwatermarkability, and [CHV15] makes this intuition concrete. The exact learnability

condition that suffices is quite similar to the condition needed for PRFs to be not puncturable:

namely that given any approximate (agrees almost everywhere) implementation of a circuit

CK in the family, some "canonical version" of CK can be efficiently extracted.

Pseudorandom families are far from learnable in the traditional sense, suggesting that

the prior attack fails. Indeed, [CHV15] constructs a watermarking scheme for any family of

puncturable PRFs, under some strong cryptographic assumptions. Perhaps all PRF families

can be watermarked? In this thesis, we demonstrate that that there are PRF families that

are unwatermarkable by constructing families that are learnable in the sense above.
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Corollary 1.3.2. Assuming one-way functions, for any non-negligible function 6(A), there

is a family of pseudorandom functions that is not 6-watermarkable.

Techniques - Unobfuscatable families

The main technical hurdle in [BGI+121 was the construction of so called "totally unobfus-

catable" pseudorandom families of circuits. These circuits have the property that given any

implementation of a circuit Ck from the family, the index k is efficiently recoverable. The

impossibility of the VBB obfuscation definition for this family follows directly: given an

obfuscated circuit Ck, an adversary is able to output the index k, while a simulator with

oracle access cannot.

A natural question is whether unobfuscatable families can be constructed to rule out

approximate VBB. This would correspond to strengthening the above property to hold given

any approximate implementation of the circuit. A weak notion of approximation is considered

in [BGI+12], and [BP12] strengthens the notion of approximation considerably - handling

approximations that agree on only a constant fraction of the domain.

For the goal of constructing PRF families that are not puncturable nor watermarkable, the

result in [BP12] suffers from two shortcomings. First, the function families they construct

are very far from pseudorandom. Second, they only require that given an approximate

implementation of CK, a single hard-core bit of CK can be recovered, rather than CK itself.

Furthermore, these limitations are integral to their approach.

Our aim is to remedy these deficits, recovering the pseudorandomness and the ability to

recover CK. 8 We realize this gain by sacrificing on the notion of approximation: from any

constant-fraction implementation to any almost-everywhere implementation.

8 More precisely, we recover some canonical CA that agrees with CK on 1 - 6 fraction of the domain,
which suffices.
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Chapter 2

Aggregate Pseudorandom Functions

In this chapter, we introduce the notion of aggregate pseudorandom functions. We show

several constructions of aggregate PRFs. In Section 2.2, we show as a warm-up a generic

construction of aggregate PRFs for intervals (where the aggregation is any group operation).

This construction is black-box: given any PRF with the appropriate domain and range, we

construct a related family of aggregate PRFs and with no loss in security. In Section 2.3, we

show a construction of aggregate PRFs for products over bit-fixing sets (hypercubes), from

the decisional Diffie-Hellman assumption. We then generalize the DDH construction: in Sec-

tion 2.4, to the class of sets recognized by polynomial-size decision trees; and in Section 2.5,

to sets recognized by read-once Boolean formulas (from a subexponential DDH assumption).

In the last of these constructions, we make use of Lemma 2.1.1 to argue security.

2.1 Definition and Generic Security

We will let A denote the security parameter throughout this paper.

Let F = {F}y>o be a function family where each function f G F, maps a domain D,

to a range 'Z,\. An aggregate function family is associated with two objects:

1. an ensemble of sets S = {SA}A>O where each S, is a collection of subsets of the domain

S C D,; and
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2. an "aggregation function" Ix : (Rl\)* -+ Vx that takes a tuple of values from the range

R,\ of the function family and "aggregates" them to produce a value in an output set

VA .

Let us now make this notion formal. To do so, we will impose restrictions on the set

ensembles and the aggregation function. First, we require set ensemble S\ to be efficiently

recognizable. That is, there is a polynomial-size Boolean circuit family C = {CA}x>o such

that for any set S E Si, there is a circuit C = Cs E CX such that x E S if and only if

C(x) = 1. Second, we require our aggregation functions F to be efficient in the length of

its inputs, and symmetric; namely the output of the function does not depend on the order

in which the inputs are fed into it. Summation over an Abelian group is an example of a

possible aggregation function. Third and finally, elements in our sets D,, R\, and Vx are all

representable in poly(A) bits, and the functions f E F are computable in poly(A) time.

Define the aggregate function AGG = AGG ,S,,F that is indexed by a function f E FA,

takes as input a set S E S, and "aggregates" the values of f(x) for all x E Sx. That is,

AGG(S) outputs

F(f (xi), f (X2), ... , f (XIsI))

where S = {x1,... xIs }. More precisely, we have

AGG,sarA :S, - V,\

S -+FXies(f(x1),...,f(xsi))

We will furthermore require that the AGG can be computed in poly(A) time. We require

this in spite of the fact that the sets over which the aggregation is done can be exponentially

large! Clearly, such a thing is impossible for a random function f but yet, we will show how

to construct pseudo-random function families that support efficient aggregate evaluation. We

will call such a pseudo-random function (PRF) family an aggregate PRF family. In other

words, our objective is two fold:

1. Allow anyone who knows the (polynomial size) function description to efficiently com-
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pute the aggregate function values over exponentially large sets; but at the same time,

2. Ensure that the function family is indistinguishable from a truly random function, even

given an oracle that computes aggregate values.

A simple example of aggregates is that of computing the summation of function values

over sub-intervals of the domain. That is, let domain and range be Z for some p = p(A), let

the family of subsets be S = {[a, b] C Z : a, b E Zp; a < b}, and the aggregation function

be FA(yi,.. ., Yk) = Ek 1 yi (mod p). In this case, we are interested in computing

AGf~ ,,sum ([a, ] z
a<x<b

We will, in due course, show both constructions and impossibility results for aggregate PRFs,

but first let us start with the formal definition.

Definition 2.1.1 (Aggregate PRF). Let F = {Fx}x>o be a function family where each

function f E Fx maps a domain D,\ to a range lZ,\, S be an efficiently recognizable ensemble

of sets {S.}>0, and F, : (7Z,\)* -+ V,\ be an aggregation function. We say that F is an (S, F)-

aggregate pseudorandom function family (also denoted (S, F)-AGG-PRF) if there exists an

efficient algorithm Aggregateks,r(S): On input a subset S E S of the domain, outputs v G V,

such that

" Efficient aggregation: For every S E S, Aggregatek,S,r(S) = AGGk,s,r(S) where

AGGk,s,r(S) : X ks Fa(X).12

" Pseudorandomness: For all probabilistic polynomial-time (in security parameter A)

algorithms A, and for randomly selected key k E K:

Pr [AfAGG f,s,r(1\ - Pr [A h,AGGhs,r(A)] negl(A)
f <-h h+-' W,

'We omit subscripts on AGG and Aggregate when clear from context.
2AGG is defined to be the correct aggregate value, while Aggregate is the algorithm by which we compute

the value AGG. We make this distinction because while a random function cannot be efficiently aggregated,
the aggregate value is still well-defined.
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where 7i,\ is the set of all functions DX -* RX.

Remark. In this work, we restrict our attention to aggregation functions that treat the range

VA = RX as an Abelian group and compute the group sum (or product) of its inputs. We

denote this setting by F = _ (or fl, respectively). Supporting other types of aggregation

functions (ex: max, a hash) is a direction for future work.

2.1.1 A General Security Theorem for Aggregate PRFs

How does the security of a function family in the AGG-PRF game relate to security in the

normal PRF game (in which A uses only the oracle f and not AGGf)? While we have tailored

security reductions for some of our schemes, can we say something more general?

In this section, we show a general security theorem for aggregate pseudo-random func-

tions. Namely, we show that any "sufficiently secure" PRF is also aggregation-secure (for any

collection of efficiently recognizable sets and any group-aggregation operation), in the sense

of Definition 2.1.1, by way of an inefficient reduction (with overhead polynomial in the size of

the domain). In Section 2.5, we will use this to construct AGG-PRFs from a subexponential-

time hardness assumption on the DDH problem. We also show that no such general reduction

can be efficient, by demonstrating a PRF family that is not aggregation-secure. As a general

security theorem cannot be shown without the use of complexity leveraging, this suggests a

natural direction for future study: to devise constructions for similarly expressive aggregate

PRFs from polynomial assumptions.

Lemma 2.1.1. Let F = {F},0o be a pseudo-random function family where each function

f E F, maps a domain D,\ to a range R,\. Suppose there is an adversary A that runs in time

tA = tA(A) and achieves an advantage of CA = EA(A) in the aggregate PRF security game for

the family F with an efficiently recognizable set system Sx and an aggregation function r"\

that is computable in time polynomial in its input length. Then, there is an adversary B that

runs in time tB = tA + polY(A, D,,D and achieves an advantage of EB = CA in the standard

PRF game for the family F.
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Proof. Let fK - FA be a random function from the family F\. We construct the adversary

B which is given access to an oracle 0 which is either fK or a uniformly random function

h : DA --+ 7Z\.

B works as follows: It queries the PRF on all inputs x E DA, builds the function table

TK of fK and runs the adversary A, responding to its queries as follows:

1. Respond to its PRF query x E D, by returning TK[x]; and

2. Respond to its aggregate query (F, S) by (a) going through the table to look up all x

such that x E S; and (b) applying the aggregation function honestly to these values.

Finally, when A halts and returns a bit b, B outputs the bit b and halts.

B takes O(1D,\) time to build the truth table of the oracle. For each aggregate query (F, S),

B first checks for each x c DA whether x E S. This takes IDAl - poly(A) time, since S is

efficiently recognizable. It then computes the aggregation function F over f(x) such that

x E S, taking poly(IDA,) time, since F is computable in time polynomial in its input length.

The total time, therefore, is

tB = tA + poly(A, D))

Clearly, when 0 is the pseudo-random function fK, B simulates an aggregatable PRF

oracle to A, and when 0 is a random function, B simulates an aggregate random oracle

to A. Thus, B has the same advantage in the PRF game as A does in the aggregate PRF

game. E

The above gives an inefficient reduction from the PRF security of a function family F

to the AGG-PRF security of the same family running in time polynomial in the size of the

domain. Can this reduction be made efficient; that is, can we replace tB = tA + poly(A) into

the Lemma 2.1.1?

This is not possible. Such a reduction would imply that every PRF family that supports

efficient aggregate functionality AGG is AGG-PRF secure; this is clearly false. Take for

example a pseudorandom function family Fo = {f : Z2p -+ Zi} such that for all f, there

is no x with f(x) = 0. It is possible to construct such a pseudorandom function family
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.Fo (under the standard definition). While 0 is not in the image of any f E Fo, a random

function with the same domain and range will, with high probability, have 0 in the image.

For an aggregation oracle AGGf computing products over Z,: AGGf(Z2p) # 0 if f E FO,

while AGGf(Z 2p) = 0 with high probability for random f.

Thus, access to aggregates for products over Zp3 would allow an adversary to trivially

distinguish f C F from a truly random map.

2.1.2 Impossibility of Aggregate PRF for General Sets

It is natural to ask whether whether an aggregate PRF might be constructed for more general

sets than we present. There we constructed aggregate PRF for the sets of all satisfying

assignments for read-once boolean formula and decision trees. As we show in the following,

it is impossible to extend this to support the set of satisfying assignmnets for more general

circuits.

Theorem 2.1.2. Suppose there is an algorithm that has a PRF description K, a circuit C,

and a fixed aggregation rule (sum over a finite field, say), and outputs the aggregate value

Z fK(X)
x:C(x)=1

Then, there is an algorithm that takes circuits C as input and w.h.p. over it coins, decides

the satisfiability of C.

Proof. The algorithm for SAT simply runs the aggregator with a randomly chosen K, and

outputs YES if and only if the aggregator returns 1. The rationale is that if the formula

is unsatisfiable, you will always get 0 from the aggregator.4 Otherwise, you will get fK(x),

where x is the satisfying assignment. (More generally, Ex:C(x)=1 fK(x)). Now, this might end

3Taken with respect to a set ensemble S containing, as an element, the whole domain Z2p. While this is

not necessary (a sufficiently large subset would suffice), it is the case for the ensembles S we consider in this

work.
4This proof may be extended to the case when the algorithm's output is not restricted to be 0 when the

input circuit C is unsatisfiable, and even arbitrary outputs for sufficiently expressive classes of circuits.
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up being 0 accidentally, but cannot be 0 always since otherwise, you will get a PRF distin-

guisher. The distinguisher has the satisfying assignment hardcoded into it non-uniformly,5

and it simply checks if fK(x) = 0. 

This impossibility result can be generalized for efficient aggregation of functions that

are not pseudo-random. For instance, if f(x) =1 was the constant function 1, the same

computing the aggregate over f satisfying inputs to C would not only reveal the satisfiability

of C, but even the number of satisfying assignments! In the PRF setting though, it seems that

aggregates only reveal the (un)satisfiability of a circuit C, but not the number of satisfying

assignments. Further studying the relationship between the (not necessarily pseudo-random)

function f, the circuit representation of C, and the tractability of computing aggregates is an

interesting direction. A negative result for a class for which satisfiability (or even counting

assignments) is tractable would be very interesting.

2.2 Generic Construction for Interval Sets

Our first construction is from [GGN10] 6 . The construction is entirely black-box: from any

appropriate PRF family g, we construct a related AGG-PRF family F. Unlike the proofs

in the sequel, this reduction exactly preserves the security of the starting PRF.

Let !x = {gK : 7 /in(\) - RAX}KEprC be a PRF family, with R = RA being a group where

the group operation is denoted by ED'. We construct an aggregatable PRF FA = {fKKEKA

for which we can efficiently compute summation of fK(x) for all x in an interval [a, b], for

any a < b E Z,. Let S[ab = {[a, b] ; Z, : a, b E Z,; a < b} be the set of all interval subsets

of Zn, [a, b] = {x E Z, : a < x < b}. Define F = {fK : Z -4 R}KEk as follows:

'As pointed out by one reviewer, for sufficiently expressive classes of circuits C, this argument can be
made uniform. Specifically, we use distinguish the challenge y from a pseudo-random generator from random
by choosing C := C, that is satisfiable if and only if y is in the PRG image, and modify the remainder of
the argument accordingly.

6See Example 3.1 and Footnote 18
7The only structure of Z,4 we us is the total order. Our construction directly applies to any finite,

totally-ordered domain D by first mapping D to Z,, preserving order.
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gK(X K(O) : x=O
fKE)={

9K(X) gK(x-l) :X-O

Lemma 2.2.1. Assuming that 9 is a pseudo-random function family, F is a (S[a,b], ()-

aggregate pseudo-random function family.

Proof. It follows immediately from the definition of fK that one can compute the summation

of fK(x) over any interval [a, b]. Indeed, rearranging the definition yields

Z fK(x) ~ gK(b) and fK(x) = gK(b) E-gK(a-1)
xE[0,b] xE[a,b]

We reduce the pseudo-randomness of F to that of g. The key observation is that each

query to the fK oracle as well as the aggregation oracle for fK can be answered using at most

two black-box calls to the underlying function gK. By assumption on 9, replacing the oracle

for gK with a uniformly random function h : Z, -+ R is computationally indistinguishable.

Furthermore, the function f defined by replacing g by h, namely

h(O) : x = 0

h(x) e h(x - 1) : x # 0

is a truly random function. Thus, the simulated oracle with gK replaced by h implements

a uniformly random function that supports aggregate queries. Security according to Defini-

tion 2.1.1 follows immediately. E

Another construction from the same work achieves summation over the integers for PRFs

whose range is {0, 1}. We omit the details of the construction, but state the theorem for

completeness.

Theorem 2.2.2 (Integer summation over intervals, from one-way functions [GGN10]). As-

sume one-way functions exist. Then, there exists an (S[a,b], Z)-AGG-PRF family that maps

Z2 to {0, 1}, where Z denotes summation over Z.
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2.3 Bit-Fixing Aggregate PRF from DDH

We now construct an aggregate PRF computing products for bit-fixing sets. Informally, our

PRF will have domain {, 1}POIY(A), and support aggregation over sets like {x : x, = 0 A x2 =

1 A X7 = 0}. We will naturally represent such sets by a string in {0, 1, *}P lY(A) with 0 and

1 indicating a fixed bit location, and * indicating a free bit location. We call each such set

a 'hypercube.' The PRF will have a multiplicative group g as its range, and the aggregate

functionality will compute group products.

Our PRF is exactly the Naor-Reingold PRF [NR04], for which we demonstrate efficient

aggregation and security. We begin by stating the decisional Diffie-Hellman assumption.

Let g = {g,}>xo be a family of groups of order p = p(A). The decisional Diffie-Hellman

assumption for g says that the following two ensembles are computationally indistinguish-

able:

{(g, g ga ggb) : G <- 9,; g - G; a, b - Zp}>o

~ {(G, g,1g, gg) : G - ; g <- G; a, b, c - Zp} A>O

We say that the (t(A), 6(A))-DDH assumption holds if for every adversary running in time

t(A), the advantage in distinguishing between the two distributions above is at most c(A).

2.3.1 Construction

Let g = {g}>o be a family of groups of order p = p(A), each with a canonical generator g,

for which the decisional Diffie Hellman (DDH) problem is hard. Let f = f(A) be a polynomial

function. We will construct a PRF family TF = {f2 e,x}x>o where each function f E Te,A maps

{0, 1}4) to 9A. Our PRF family is exactly the Naor-Reingold PRF [NR04]. Namely, each

function f is parametrized by f + 1 numbers K := (Ko, K1 , ... , Ke), where each Ki E Zp.

fg(Xi,... Ix) = gKoH K _ K o Hj:xi Ki E g
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The aggregation algorithm Aggregate for bit-fixing functions gets as input the PRF key R

and a bit-fixing string y c {0, 1, *}e and does the following:

. Define the strings Kf as follows:

1

Ki

1+Ki

if yj = 0

if y, = 1

otherwise

* Output gKo l= Ki as the answer to the aggregate query.

Letting WC = {7-tCe()}x o where WCj = {0, 1,*}' is the set of hypercubes on {0, i}e, we

now prove the following:

Theorem 2.3.1. The collection of functions F defined above is a secure aggregate PRF

with respect to the subsets 'HC and the product aggregation function over g under the DDH

assumption on the group g.

Correctness.

We show that the answer we computed for an aggregate query y E {0, 1, *}e is correct. Define

the sets

Match(y) := {c E {, } : Vi,yj = * or xi = yi} and Fixed(y) := {i E [f] : yj E {0, 1}}

Thus, Match(y) is the set of all 0-1 strings x that match all the fixed locations of y, but can

take any value on the wildcard locations of y. Fixed(y) is the set of all locations i where the
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bit yj is fixed. Note that:

AGG(K, y) = HxEMatch(y) fg(x) (by definition of AGG)

- HxEMatch(y) gKol 1 Kj= (by definition of fg)
SgKo ExEMatch(y) fl= KZ

- gKO(HiE ixed(y) Kfi (HjE (e]\Fixed() (1+Ki)) (inverting sums and products)

= gKo f' 1 KI (by definition of Kj)

= Aggregate(K, y) (by definition of Aggregate)

2.3.2 Security

The security proof is adapted from [CH15], which proves a stronger generalization of this the-

orem. We let a string y C {0, 1, *} denote all of: a string, the hypercube that it corresponds

to, and the characteristic vector for that hypercube. We use one additional representation:

the characteristic product of an f-dimensional hypercube yi ... yj E {0, 1, *} can be written

as (9 1 --y where

(1 0) if y = 0

= (0 1) if y = 1 (2.1)

(1 1) if y =*

Definition 2.1.1 requires that for all p.p.t algorithms A and random K:

Pr [A 'f CWC, -( - hAGGh,WCrQ1')]- negl(A)
K,A h,A

To prove the theorem, we must prove the adversary's views in the two cases (ie: the

pseudorandom fg and the random h) are indistinguishable. We already know what the view

in the pseudorandom case is: A's queries are answered according to fg(-) and Aggregate(K, .).

But how can we simulate the view in the random case?

In the setting of classical pseudorandom functions, a challenger simulates access to a

random function by answering new query with a fresh random value and each repeated

query consistently. To do so, the challenger must keep state - all the previous queries -
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and check for dependencies - whether a query is a repeat. We can use the same approach:

keep track of all of A's previous queries yi E {0, 1, *}e and answer queries consistently with

the history. But what does "consistently with the history" mean exactly in the setting of

aggregates, and can consistent responses be computed efficiently?

Let Xs be the characteristic vector of a set S. For a set S and any function h: AGG(h, S) =

HLCS h(x). If S = Si U S2 is the disjoint union of two sets, then AGG(h, S) = AGG(h, Si)-

AGG(h, S2). Moreover, if X(S) = Ei aiXs,, then

AGG(h, S) = fl AGG(h, Si)i

In this case, we say that S is a linear combination of the sets {SiJ. On the other hand, for

a random function h, if S is linearly independent of a collection of sets {Si}, the aggregate

value AGG(h, S) over S is independent of the aggregate values AGG(h, Si) over the sets Si.

Thus, to answer "consistently with the history", we must be able to compute linear-

dependencies between hypercube sets represented by strings y C {0, 1, *}. Note that Gaus-

sian elimination does not suffice, as the vectors in question are characteristic vectors of

length 2e. This problem can efficiently solved, as in [CH15] and [BW04]. We therefore take

for granted an efficient algorithm Span that takes as input a collection of hypercubes of the

form yi, . . . , yq E {0, 1, *}' such that:

Eq-1 iy

Span(yi,.. . ,yq) = ,. q_1 if yq = i

_ otherwise

We also define Spanj to be Span computed on the first J indices of the inputs y. That is,

Spanj computes linear combinations over y,. ., YJ where y' C {0, 1, *}J is y restricted to

the first J locations. More intuitively, Spanj computes linear dependencies over the first J

dimensions of the corresponding hypercubes.
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To simulate the random hybrid, we answer the qth query Yq as:

Sgq - G if Span(yi,..., y) =I

9q = flq_ gfi if Span(yi, ... ,) = ali, aq_1

This exactly simulates the oracle AGG(h,.) for a truly random function h.

Hybrids

Now we must show that the views of the adversary in the pseudorandom and random cases

are indistinguishable. We do so by considering a series of f + 1 hybrid views Hi for which

each pair of hybrids will be indistinguishable. In the Jth hybrid we sample a partial key

(Kj+,,... , Kj) +- Z-. We answer the qth query Yq as:

9qJ+ K for

gq G if Span(y,..., y) =
9q =

9q = l - g _ 9 i if Spanj(yi, . ..,yq) = cel, ... , aq_1

It is easy to see that hybrid Hj is exactly the random hybrid defined above, as Spanj =

Span. If we interpret Spano to always return 1 (all empty strings are equal), then it is easy

to see that HO is exactly the aggregate pseudorandom function oracle. The base gq of the

exponentiation will always be the same gi = gKO for some uniform KO.

Reduction to Matrix DDH

It remains to show that adjacent hybrids are indistinguishable. We reduce the problem

of distinguishing adjacent hybrids to the Matrix DDH problem, which is as hard as the

DDH problem [BHHO08]. The below is adapted from [CH15]; a more general and complete

exposition is included in that work.

Let G be a group of order p with generator g, and C E Z)qX, and let g' denote element-
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wise exponentiation. An instance of the Matrix DDH problem is a tuple (g, gC), where C is

either a uniform matrix in Z 4 or a uniformly random rank 1 matrix C = (a,, a2)T (bi,... , bq)

for uniform aj, bi E Zp. The Matrix DDH assumption states that the uniform and rank 1 cases

are computationally indistinguishable. Our goal, then, is to devise a method for answering

the AGG-PRF adversary's queries such that the answers come from hybrids Hj and Hj+1

depending on the type of Matrix DDH challenge received.

Given a Matrix DDH challenge (g, gC), our reduction samples a partial key (Kj+2 , ... , Kj) +

Z J+1, and answer the qth query Yq as:
p

9q +' where

9q = 9 i ((c, 2,i),+) if Spanj(y , .. ., yq) = a,, ... , aq_1

9q = g9((C,q C2 ,q), '+ 1 ) otherwise

where J+' is defined in Equation 2.1. In the first case

In the case when C = (a, a2)T(b, ... bq), this exponent factors into:

((ci,i , = bi((a1 a2 ), V+ 1) (2.2)

(albi)K' where Kj := a2  (2.3)
a,

Since each bi is uniform and independent of the other b's, the queries are answered precisely

as in hybrid Hj; the base gq is chosen either independent of the previous gi or as a lin-

ear combination of them according to Spa nj(yi, ... yq) and exponentiated with partial key

Kj+i = !, Kj+2, ... , K.

In the case when C is a uniform matrix, the exponenet does not factor as above. The

way in which the exponent defining gq is computed essentially implements a truly random

bilinear map on inputs ( 1 g ... 9 gf x gJ+1). This can be equivalently viewed as a truly

random linear map on inputs (p. 0 ... 0 g 0 #"+1). This is exactly equal to hybrid Hj+1-
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2.4 Decision Trees

We generalize the previous construction from DDH to support sets specified by polynomial-

sized decision trees by observing that such decision trees can be written as disjoint unions

of hypercubes.

A decision tree family T, of size p(A) over f(A) variables consists of binary trees with at

most p(A) nodes, where each internal node is labeled with a variable xi for i C [f], the two

outgoing edges of an internal node are labeled 0 and 1, and the leaves are labeled with 0 or

1. On input an x E {0, 1} , the computation of the decision tree starts from the root, and

upon reaching an internal node n labeled by a variable xi, takes either the 0-outgoing edge

or the 1-outgoing edge out of the node n, depending on whether xi is 0 or 1, respectively.

We now show how to construct a PRF family Fe = {JFe,A}Xo where each Fe,x consists

of functions that map DA := {0, 1}' to a group 9x, that supports aggregation over sets

recognized by decision trees. That is, let SA = {S C {0, 1}' : a decision tree Ts E

TX that recognizes S}.

Our construction uses a hypercube-aggregate PRF family TF as a sub-routine. First, we

need the following simple lemma.

Lemma 2.4.1 (Decision Trees as Disjoint Unions of Hypercubes). Let S C {0, 1}' be rec-

ognized by a decision tree Ts of size p = p(A). Then, S is a disjoint union of at most p

hybercubes Hyl,..., Hy,, where each yi E {0, 1,*}Y and H., = Match(yi). Furthermore, given

Ts, one can in polynomial time compute these hypercubes.

Given the lemma, Aggregate is simple: on input a set S represented by a decision tree Ts,

compute the disjoint hypercubes Hy, ... , Hy,. Run the hypercube aggregation algorithm to

compute

gi <- Aggregatey(K, yi)

and outputs g := 1 gi.

Basing the construction on the hypercube-aggregate PRF scheme from Section 2.3, we get

a decision tree-aggregate PRF based on the sub-exponential DDH assumption. The security
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of this PRF follows from Lemma 2.1.1 by an argument identical to the one in Section 2.3.

2.5 Read-once formulas

Read-once boolean formula provide a different generalization of hypercubes and they too

admit an efficient aggregation algorithm for the Naor-Reingold PRF, with a similar security

guarantee.

A boolean formula on variables is a circuit on x = (Xi,... , Xe) c {0, 1}' composed of

only AND, OR, and NOT gates. A read-once boolean formula is a boolean formula with

fan-out 1, namely each input literal feeds into at most one gate, and each gate output feeds

into at most one other gate.8 Let Rx be the family of all read-once boolean formulas over

t(A) variables. Without loss of generality, we restrict these circuits to be in a standard

form: namely, composed of fan-in 2 and fan-out 1 AND and OR gates, and any NOT gates

occurring at the inputs.

In this form, the circuit for any read-once boolean formula can be identified with a labelled

binary tree; we identify a formula by the label of its root Co. Nodes with zero children are

variables or their negation, labelled by xi or zi, while all other nodes have 2 children and

represent gates with fan-in 2. For such a node with label C, its children have labels CL and

CR. Note that each child is itself a read-once boolean formula on fewer inputs, and their

inputs are disjoint Let the gate type of a node C be type(C) E {AND, OR}.

We describe a recursive aggregation algorithm for computing products of PRF values

over all accepting inputs for a given read-once boolean formula CO. Looking forward, we

require the formula to be read-once in order for the recursion to be correct. The algorithm

described reduces to that of Section 2.3 in the case where # describes a hypercube.

Construction

The aggregation algorithm for read-once Boolean formulas takes as input the PRF key

K= (Ko,..., Ke) and a formula C4 c Rx where C, only reads the variables x1 ,..., x,,

8We allow a formula to ignore some inputs variables; this enables the model to express hypercubes directly.
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for some m < f. We abuse notation and interpret CO to be a formula on both {0, i}e and

{0, 1}' in the natural way.

AGGk,H (CO) = f J gKO M E VI K X%

X:Co(x)=1

gKo x:co(x)=1 Hie K xi

= Ko-A(Co,1)-* (l+Ki)

(2.4)

(2.5)

(2.6)

where we define A(C, 1) := {XE{Oi}m:C(x)=i} i[m] K If A(C, 1) is efficiently computable,

then Aggregate will simply compute it and return (3). To this end, we provide a recursive

procedure for computing A(C, 1).

Generalizing the definition for any sub-formula C with variables named x1 to xm, define

the values A(C, 0) and A(C, 1):

A(C,b) : E{xE{O,1}m: C(x)=b}

fJ Ki.
ic[m]

Recursively compute A(C, b) as follows:

e If C is a literal for variable xi, then by definition:

A(C,0) =
1 ifC=xi

A(C, 1) =
Ki if C = xi

1 if C = ti

* Else, if type(C) = AND: Let CL and CR be the children of C. By hypothesis, we can

recursively compute A(CL, b) and A(CR, b) for b E {0, 1}. Compute A(C, b) as:

A(C, 1) = A(CL,1) -A(CR,1)

A(C, 0) = A(CL, 0) A(CR, 0) + A(CL, 1) -A(CR, 0) + A(CL, 0) -A(CR, 1)
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* Else, type(C) = OR: Let CL and CR be the children of C. By hypothesis, we can

recursively compute A(CL, b) and A(CR, b) for b E {0, 1}. Compute A(C, b) as:

A(C,1) = A(CL, 1) 'A(CR,) +A(CL, 1) - A(CR, 0) + A(CL, 0) -A(CR, 1)

A(C, 0) = A(CL, 0) A(CR, 0))

Lemma 2.5.1. A(C, b) as computed above is equal to T{XE{Oi}i: C(x)=b} Hi[m] K

Proof. For C a literal, the correctness is immediate. We must check the recursion for each

type(C) E {AND, OR} and b E {0, 1}. We only show the case for b = 1 when C is an OR

gate; the other three cases can be shown similarly.

Let SbL,bR = {x = (XL, XR) : (CL(xL), CR(XR) = (bL, bR)} be the set of inputs (XL, XR) to

C such that CL(XL) = bL and CR(XR) = bR. The set {x : C(x) = 1} can be decomposed into

the disjoint union So,, Li Si,o Li S1,1. Furthermore,

A(C, 1) = E 1 Kii + E Kf+FJ Ki
XES0,1 iE [m] XE 31,0 iEIM [mxES1,1 iE [m]

Because C is read-once, the sets of inputs on which CL and CR depend are disjoint; this

implies that A(CL, bL) -A(CR, bR) = ZXESbL,bR Hi[m] Ki yielding the desired recursion. E

Theorem 2.5.2. Let c > 0 be a constant, choose the security parameter A = Q(1/6), and

assume (2 ', 2 -A,) -hardness of the DDH assumption. Then, the collection of functions T X

defined above is a secure aggregate PRF with respect to the subsets R, and the product

aggregation function over the group g.

Proof. Correctness is immediate from Lemma 2.5.1, and Equation (3). Security follows from

the decisional Diffie-Hellman assumption in much the same way it did in the case of bit-fixing

functions.

D
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Chapter 3

Connection to Learning

3.1 Preliminaries

Notation: For a probability distribution D over a set X, we denote by x <- D to mean

that x is sampled according to D, and x - X to denote uniform sampling form X. For an

algorithm A and a function 0, we denote that A has oracle access to 0 by A'0.

We recall the definition of a "concept class". In this section, we will often need to explicitly

reason about the representations of the concept classes discussed. Therefore we make use of

the notion of a "representation class" as defined by [KV94] alongside that of concept classes.

This formalization enables us to discuss both these traditional learning models (namely, PAC

and learning with membership queries) as well as the new models we present below. Our

definitions are parametrized by A C N. 1

Definition 3.1.1 (Representation class [KV94]). Let K = {Kx})IEN be a family of sets, where

each k E K, has description in {o, 1}k(A) for some polynomial sk). Let X = {XA}XEN be

a set, where each Xx is called a domain and each x E X\ has description in {O, 1}Sx(A) for

some polynomial sx(.). With each A and each k G K,, we associate a Boolean function fk :

X _+ {0, 1}.2 We call each such function fk a concept, and k its index or its description.

'When clear from the context, we will omit the subscript A.
2This association is an efficient procedure for evaluating fk. Concretely, we might consider that there is

a universal circuit F\ such that for each A, fk(-) = F,(k, .).
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For each A, we define the concept class CA = {fk : k E KA} to be the set of all concepts with

index in KA. We define the representation class C = {C,} to be the union of all concept

classes C\.

This formalization allows us to easily associate complexity classes with concepts in learn-

ing theory. For example, to capture the set of all DNF formulas on A inputs with size at most

p(A) for a polynomial p, we will let X\ = {0, 1}/, and KP(A) be the set of descriptions of all

DNF formulas on A variables with size at most p(A) under some reasonable representation.

Then a concept fk(x) evaluates the formula k on input x. Finally, DNF,(A) = {fk : k E Kp() }

is the concept class, and DN FP(A) = {DNFP(}AeN. DNFPA) is the representation class that

computes all DNF formulas on A variables with description of size at most p(A) in the given

representation.

As a final observation, note that a Boolean-valued PRF family F = {Fx} where FA =

{fk : X, - {0, 1}} with keyspace K = {KA} and domain X = {X,} satisfies the syntax

of a representation class as defined above. This formalization is useful precisely because it

captures both PRF families and complexity classes, enabling lower bounds in various learning

models.

In proving lower bounds for learning representation classes, it will be convenient to have

a notion of containment for two representation classes.

Definition 3.1.2 (C). For two representation classes F = {F} and g {A} on the same

domain X = {XA}, and with indexing sets I = {Ix} and K = {KA} respectively, we say

F C 9 if for all sufficiently large A, for all i C IA, there exists k E K such that g fi.

Informally, if a representation class contains a PRF family, then this class is hard to

MQ-learn (as in [Val84I). We apply similar reasoning to more powerful learning models. For

example, if g is the representation class DNFPA) as defined above, then F C DNFPA) is

equivalent to saying that for all sufficiently large A, the concept class F can be decided by

a DNF on A inputs of p(A) size.

We now recall some standard definitions.
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Definition 3.1.3 (c-approximation). Let f, h : X -+ {0, 1} be arbitrary functions. We say

h E-approximates f if Prxx[h(x) f f (x)] < E.

In general, c-approximation may be considered under a general distribution on X, but

we will consider only the uniform distribution in this work.

Definition 3.1.4 (PAC learning). For a concept f : Xx - {0, 1}, and a probability distri-

bution Dx over Xx, the example oracle EX(f, D.) takes no input and returns (x, f(x)) for

x <- Dx. An algorithm A is an (E, 6)-PAC learning algorithm for representation class C if

for all sufficiently large A, c = c(A) > 0, 6 = 6(A) > 0 and f E Cx,

Pr[A EX(f,D A) = h : h is an c-approximation to f] > 1 - 6

Definition 3.1.5 (MQ learning). For a concept f : Xx - {0, 1}, the membership oracle

MEM(f) takes as input a point x G Xx and returns f(x). An algorithm A is an (c, 6)-MQ

learning algorithm for representation class C if for all sufficiently large A, c = 6(A\) > 0,6 =

6(A) > 0, and f c Cx,

Pr[AMEM(f) = h : h is an E-approximation to f] > 1 - 6

We consider only PAC learning with uniform examples, where Dx is the uniform distri-

bution over Xx. In this case, MQ is strictly stronger than PAC: everything that is PAC

learnable is MQ learnable.

Observe that for any f : Xx -+ {0, 1}, either h(x) = 0 or h(x) = 1 will -approximate

f. Furthermore, if A is inefficient, f may be learned exactly. For a learning algorithm to be

non-trivial, we require that it is efficient in A, and that it at least weakly learns C.

Definition 3.1.6 (Efficient- and weak- learning).

* A is said to be efficient if the time complexity of A and h are polynomial in 1/c, 1/6,

and A.
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" A is said to weakly learn C if there exist some polynomials pE(A),ps(A) for which

6 <1 _ 1 and 6<1I- 1
-2 p, (A) p6 (A)~

" We say a representation class is learnable if it is both efficiently and weakly learnable.

Otherwise, it is hard to learn.

Lastly, we recall the efficiently recognizable ensembles of sets as defined in Chapter 2. We

occasionally call such ensembles indexed, or succinct. Throughout this section, we require

this property of our set ensembles S. Both the MQp and AQ learning models that we

present are defined with respect to S = {S,}, an efficiently recognizable ensemble of subsets

of the domain XA.

3.2 Membership Queries with Restriction Access

In the PAC-with-Restriction Access model of learning of Dvir, et al [DRWY12], a powerful

generalization of PAC learning is studied: rather than receiving random examples of the form

(x, f(x)) for the concept f, the learning algorithm receives a random "restriction" of f - an

implementation of the concept for a subset of the domain. Given this implementation of the

restricted concept, the learning algorithm can both evaluate f on many related inputs, and

study the properties of the restricted implementation itself. We consider an even stronger

setting: instead of receiving random restrictions, the learner can adaptively request any

restriction from a specified class S. We call this model membership queries with restriction

access (MQRA).

As a concrete example to help motivate and understand the definitions, we consider

DNF formulas. For a DNF formula #, a natural restriction might set the values of some

of the variables. Consequently, some literals and clauses may have their values determined,

yielding a simpler DNF formula #' which agrees with # on this restricted domain. This is

the 'restricted concept' that the learner receives.

This model is quite powerful; indeed, decision trees and DNFs are efficiently learnable in

the PAC-with-restriction-access learning model whereas neither is known to be learnable in
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plain PAC model [DRWY12]. Might this access model be too powerful or are there concepts

that cannot be learned?

Looking forward, we will show that constrained PRFs correspond to hard-to-learn con-

cepts in the MQRA learning model. In the remainder, we will formally define the learning

model, define constrained PRFs, and prove the main lower bound of this section.

3.2.1 MQRA Learning

While the original restriction access model only discusses restrictions fixing individual input

bits for a circuit, we consider more general notions of restrictions.

Definition 3.2.1 (Restriction). For a concept f XA -+ {0, 1}, a restriction S C XA is a

subset of the domain. The restricted concept fIs S -+ {0, 1} is equal to f on S.

While general restrictions can be studied, we consider the setting in which all restrictions

S are in a specified set of restrictions S. For a DNF formula q, a restriction might be

S = {x : x1 = 1Ax 4 = 0}. This restriction is contained in the set of 'bit-fixing' restrictions in

which individual input bits are fixed. In fact, this class of restrictions is all that is considered

in [DRWY12I; we generalize their model by allowing more general classes of restrictions.

In the previous example, a restricted DNF can be naturally represented as another DNF.

More generally, we allow a learning algorithm to receive representations of restricted con-

cepts. These representations are computed according to a Simplification Rule. 3

Definition 3.2.2 (Simplification Rule). For each A, let C,\ {fk : XX -4 {0, 1}}kEK, be

a concept class, S, an efficiently recognizable ensemble of subsets of X,, and S E S\ be

a restriction. A simplification of fk c C\ according to S is the description ks c K\ of a

concept fKs such that fks = fk s. A simplification rule for C = {Cx} and S = {S,} is a

mapping Simp, : (k, S) + ks for all k E K, S c S,.

3 Whereas a DNF with some fixed input bits is naturally represented by a smaller DNF, when considering
general representation classes and general restrictions, this is not always the case. Indeed, the simplification
of f according to S may be in fact more complex. We use the term "Simplification Rule" for compatibility
with [DRWY12].
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In the PAC-learning with restriction access (PACRA) learning model considered in [DRWY12],

the learner only receives random restrictions. Instead, we consider the setting where the

learner can adaptively request any restriction from a specified class S. This model - which

we call membership queries learning with restriction access (MQRA) - is a strict general-

ization of PACRA for efficiently samplable distributions over restrictions (including all the

positive results in [DRWY12]). Further observe that this strictly generalizes the membership

oracle of MQ learning if S is such that for each x, it is easy to find a restriction S covering

x.

In traditional learning models (PAC, MQ) it is trivial to output a hypothesis that -

approximates any concept f; a successful learning algorithm is required to learn substantially

more than half of the concept. With restriction queries, the learning algorithm is explicitly

given the power to compute on some fraction a of the domain. Consequently, outputting

an e > (1)-approximation to f is trivial; we require a successful learning algorithm to

do substantially better. This reasoning is reflected in the definition of weak MQRAlearning

below.

Definition 3.2.3 (Membership queries with restriction access (MQRA))- In a given execution

of an oracle algorithm A with access to a restriction oracle Simp, let Xs C Xx be the union

of all restrictions S E Sx, queried by A. S is an efficiently recognizable ensemble of subsets

of the domain Xx.

An algorithm A is an (e, 6, a)-MQRAlearning algorithm for representation class C with

respect to a restrictions in S and simplification rule Simp if, for all sufficiently large A,

for every fk E Cx, Pr[Asimp(k,.) = h] > 1 - 6 where h is an 6-approximation to f, - and

furthermore - Xs| < a|Xx|.

A is said to weakly MQRA-learn if a I 1- ,< E (1 -a)(1 - ,r 6 1- o

some polynomials pa, pe, p.
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3.2.2 Constrained PRFs

We look to constrained pseudorandom functions for hard-to-learn concepts in the restriction

access model. To support the extra power of the restriction access model, our PRFs will need

to allow efficient evaluation on restrictions of the domain while maintaining some hardness

on the remainder. Constrained PRFs [KPTZ13, BGI14, BW13] provide just this power.

For showing hardness of restriction access learning, the constrained keys will correspond to

restricted concepts; the strong pseudorandomness property will give the hardness result.

Syntax A family of functions f= {Fx : K, x X\ -÷ YA} is said to be constrained with

respect to a set system S, if it supports the additional efficient algorithms:

* Constrainx(k, S): A randomized algorithm, on input (k, S) E K\ x S,\, outputs a

constrained key ks. We kA A Support(Constrain(k, S)) the set of all constrained

keys.

* EvalA(ks, x): A deterministic algorithms taking input (ks, x) E k, x XA, and satisfying

the following correctness guarantee:

Eval(Constrain(k, S), x) = (k,x) if x ES
I V Y otherwise.

Security Game

" C picks a random key k E KX and initializes two empty subsets of the domain: C, V = 0.

C and V are subsets of X, which must satisfy the invariant that C n V = 0. C will

keep track the inputs x E X, to the Challenge oracle, and V will be the union of all

sets S queries to Constrain plus all points x E X, to the Eval oracle.

" C picks b E {0, 1} to run EXP(b), and exposes the following three oracles to A:

Eval(x): On input x E X,, outputs F(k, x). V <- V U {x}.

Constrain(S): On input S E Sx, outputs ks. V +- W U S.
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Challenge(x): On input x E Xx, outputs:

F(k, x) in EXP(0)

y +- Y in EXP(1)

In EXP(1), the responses to Challenge are selected uniformly at random from the

range, with the requirement that the responses be consistent for identical inputs x.

9 The adversary queries the oracles with the requirement that C n V = 0, and outputs

a bit b' E {, 1}.

Definition 3.2.4. The advantage is defined as ADVPRF(A) := Pr[b' = b] in the above

security game.

Definition 3.2.5 (Constrained PRF (cPRF)). A family of functions F = {F, : KA x X, -+

YA} constrained with respect to S is a constrained PRF if for all probabilistic polynomial-time

adversaries A and for all sufficiently large A and all polynomials p(n):

1 1
ADVcPRF(A) < +

2 p(n)

over the randomness of C and A.

3.2.3 Hardness of Restriction Access Learning

We will now prove that if a constrained PRF F with respect to set system S is computable in

representation class C, then C hard to MQRA-learn with respect to S and some simplification

rule.

Theorem 3.2.1. Let F = {F} be a Boolean-valued constrained PRF (also interpreted as a

representation class) with respect to sets S and key-space K. Let EVAL = {EVALA} be a

representation class where each EVALA is defined as:

EVALA = {gk,(-) : g,(x) = PRF.Eva(ks,x)}.
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Namely, each concept in the class EVALX is indexed by ks e K,\ and has Xx as its domain.

For any representation class C = {CA} such that T C C and. EVAL C C, there exists

a simplification rule Simp such that C is hard to MQRA-learn with respect to the set of

restrictions S and the simplification rule Simp.

Existing constructions of constrained PRFs [BW13] yield the following corollaries:

Corollary 3.2.2. Let n = n(A) be a polynomial, and assume that for the n + 1-MDDH

problem, every adversary time poly(A) the advantage is at most e(A)/2n. Then there is a

simplification rule such that NC is hard to MQRA-learn with respect to restrictions in7-C4 .

Corollary 3.2.3. Assuming the existence of one-way functions, there is a simplification rule

such that P/poly is hard to MQRA-learn with respect to restrictions in S[a,b -

Remarks: The Simplification Rule here is really the crux of the issue. In our theorem,

there exists a simplification rule under which we get a hardness result. This may seem

somewhat artificial. On the other hand, this implies that the restriction-access learnability

(whether PAC- or MQ-RA) of a concept class crucially depends on the simplification rule, as

the trivial simplification rule of Simp(k, S) = k admits a trivial learning-algorithm in either

setting. This work reinforces that the choice simplification rule can affect the learnability

of a given representation class. Positive results for restriction access learning that were

independent of the representation would be interesting.

Proof of Theorem 3.2.1. We interpret YF = {>F.} as a representation class. For each A, the

concepts fk E F, are indexed by K), and have domain X,\. Let EVAL = {EVAL} be a

representation class defined as in the theorem statement. The indexing set for EVAL. is

AZX, the set of constrained keys ks for k E K,\, S E S,.

Let C = {Cx} be a representation class, with domain X,\ and indexing set Ix. For i E IA,

ci is a concept in C\.

4as defined in Chapter 2.
5 as defined in Chapter 2.
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By hypothesis, F C C: for sufficiently large A, for all k E KA there exists i E 1x such

that ci = fk. Similarly, for all ks E kA there exists i E Ix such that ci = EvalA(ks, .). For

concreteness, let MA be this map from KA U kA to IA.6

We can now specify the simplification rule Simp\ : IA x SA -+ IA. Letting MA(K) I'X

be the image of KA under MA:

SimpA(i, S) f MA(Constrainx(M7-1 (i), S)) if i E MA(KA)

i otherwise.

For example, i may be a circuit computing the PRF fk for some k = M-'(i). The simplifi-

cation computes the circuit corresponding to a constrained PRF key, if the starting circuit

already computes a member of the PRF family TA. 7

Reduction: Suppose, for contradiction, that there exists an such an efficient learning

algorithm A for C as in the statement of the theorem. We construct algorithm B breaking

the constrained PRF security. In the PRF security game, B is presented with the oracles

fkG(), Constrain(k, .), and Challenge,(.), for some k +- K,. Run A, and answer queries

S E SA to the restriction oracle by querying Constrainx(k, S), receiving ks, and returning

MA(ks). Once A terminates, it outputs hypothesis h. By assumption on A, with probability

at least 1 -6> 1 the hypothesis h is an -approximation of CM(k) =f k with 6 < 1-< and

a < I -- .

After receiving hypothesis h, B estimates the probability Pr.,_x\xs[h(x) = Challenge,(x)].

In EXP(O), this probability is at least 1 - c with probability at least 1 - 6; in EXP(1), it

is exactly 1/2. To sample uniform x E X \ Xs, we simply take a uniform x E X: with

probability 1 - a ; 1/pa(n), x E X \ Xs. Thus, B runs in expected polynomial time. If

the estimate is close to E, guess EXP(0); otherwise, flip an fair coin b' E {0, 1} and guess

EXP(b'). The advantage ADVacPRF of B in the PRF security game is at least for all

6 This is a non-uniform reduction.
7Note that while the inverse map W-1 may be inefficient, in our reduction, the concept in question is

represented by a PRF key k. Thus B must only compute the forward map MA.
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sufficiently large A (see Analysis for details), directly violating the security of F.

Analysis: Let PA PrXEx\xs[h(x) # ChallengeA(x) EXP(b)] be the probability taken

with respect to experiment EXP(b). In EXP(1), ChallengeX is a uniformly random function.

Thus, Pi = . With high probability, B will output a random bit b' E {0, 1}, guessing

correctly with probability 1/2.

In EXP(0), h is an E-approximation to fk, and thus to Challenge,, with probability at

least 1 - 6. In this case, po > I - 6> - + 1. By a Hoeffding bound, B will guess b' = 0

with high probability by estimating p using only polynomial in A, pE(A) samples. On the

other hand, if h is not an E-approximation, B will b' = 0 with probability at least 1/2.

Let negl(A) be the error probability from the Hoeffding bound, which can be made

exponentially small in A. The success probability is: Pr[b = b'b = 0] > (1-6)(1-negl(A)) + A

which, for I - 6 > is at least + for sufficiently large A. Thus B a non-negligible

advantage of 1/ 3 p6pX in the constrained PRF security game. E

3.3 Learning with Related Concepts

The idea that some functions or concepts are related to one another is very natural. For a

DNF formula, for instance, related concepts may include formulas where a clause has been

added or formulas where the roles of two variables are swapped. For a decision tree, we could

consider removing some accepting leaves and examining the resulting behavior. We might

consider a circuit; related circuits might alter internal gates or fix the values of specific input

or internal wires.

Formally, we consider indexed representation classes. As discussed in the preliminaries,

general classes of functions are easily represented as a indexed family. For example, we may

consider the bit representation of a function (say, a log-depth circuit) as an index into a whole

class (NC'). This formalism enables the study of related concepts by instead considering

concepts whose keys are related in some way. The related concept setting shares an important

property with the restriction access setting: different representations of the same functions
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might have very different properties. Exploring the properties of different representations -

and perhaps their RC learnability as defined below - is a direction for future work.

In our model of learning with related concepts, we allow the learner to query a mem-

bership oracle for the concept fk E C,\ and also for some 'related' concepts fO(k) E Cx for

some functions #. The related-concept deriving (RCD) function # is restricted to be from a

specified class, 1>.. For each q E (DX, a learner can access the membership oracle for f,(k).

For example: let K = {0, 1}>. and let

(*= {# : k - kG) A aEJO (3.1)

Definition 3.3.1 (D-Related-Concept Learning Model). For C a representation class indexed

by { K,}, let 4) {= >.}, with each % = { : K -- K>.} a set of functions on K> containing

the identity function id.. The related-concept oracle RCk, on query (q, x), responds with

f(k)(x), for all 4 E 1D,\ and x G X,.

An algorithm A is an (e, 6)--RC learning algorithm for a C if, for all sufficiently large

A, for every k E K>., Pr[ARKk(,) = h] > 1 - 6 where h is an -approximation fk.

Studying the related-concept learnability of standard representation classes (ex: DNFs

and decision trees) under different RCD classes 4 is an interesting direction for future study.

3.3.1 Related-Key Secure PRFs

Again we look to pseudorandom functions for hard-to-learn concepts. To support the extra

power of the related concept model, our PRFs will need to maintain their pseudorandom-

ness even when the PRF adversary has access to the function computed with related keys.

Related-key secure PRFs [BC10, ABPP14] provide just this guarantee. As in the definition

of RC learning, the security of related-key PRFs is given with respect to a class 1 of related-

key deriving functions. As we describe in the remainder of the section, related-key secure

PRFs prove hard to weakly G-RC learn.
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Security Game Let Dx C Fun(KA, KX) be a subset of functions on KX. The set ( = {4x}

is called the Related-Key Deriving (RKD) class and each function 0 E 4% is an RKD function.

" C picks a random key k E KA, a bit b E {0, 1}, and exposes the oracle according to

EXP(b):

RKFnx(q(, x): On input (#, x) C 4A x X\, outputs:

F(#(k), x) in EXP(O)

y <- Y), in EXP(1)

In EXP(1), the responses to RKFn are selected uniformly at random from the range,

with the requirement that the responses be consistent for identical inputs (#, x).

" The adversary interacts with the oracle, and outputs a bit b' E {0, 1}.

Definition 3.3.2. The advantage is defined as ADVI-1RKA(A) := Pr[b' = b] in the

above security game.

Definition 3.3.3 (D Related-key attack PRF (D-RKA-PRF)). Let F = {F): KA x Xx -

YA} be family of functions and let 1 = {Ax} with each 4%, C Fun(Kx, KX) be a set of

functions on K,. F is a 1 related-key attack PRF family if for all probabilistic polynomial-

time adversaries A and for all sufficiently large A and all polynomials p(n):

1 1
ADV-RKA (A)<-+ ,

2 p(n)'

over the randomness of C and A.

3.3.2 Hardness of Related Concept Learning

In the Appendix C, we present a concept that can be RC-learned under &B (Equation 3.1),

but is hard to weakly learn with access to membership queries. We construct the concept F

from a PRF g and a PRP P. Informally, the construction works by hardcoding the the PRF
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key in the function values on a related PRF. With the appropriate related-concept access, a

learner can learn the PRF key.

We now present a general theorem relating RKA-PRFs to hardness of RC learning. This

connection yields hardness for a class C with respect to restricted classes of relation functions

4. More general hardness results will require new techniques.

Theorem 3.3.1. Let F be a boolean-valued Jb-RKA-PRF with respect to related-key deriving

class (J and keyspace K. For a representation class C, if F C C, then there exists an related-

concept deriving class T such that C is hard to I-RC.

As a corollary, we get a lower bound coming from the RKA-PRF literature. For a group

(G, +), and K = G m, define the the element-wise addition RKD functions as

+bm = {#a : k[1], ... , k[m] k[] + k1], k[mi + A[mI}ACGm (3.2)

Notice that <b' directly generalizes VD with G = 2. For this natural RKD function family,

we are able to provide a strong lower bound based on the hardness of DDH and the existence

of collision-resistant hash functions using the RKA-PRF constructions from [ABPP14].

Corollary 3.3.2 (Negative Result from RKA-PRF). If the DDH assumption holds and

collision-resistant hash functions exist, NC' is hard to 41-RKA-learn.

Proof of Theorem 3.3.1. We interpret F = {Fx} as a representation class. For each A, the

concepts fk E F\ are indexed by KA and have domain XA. Let C = {CA} be a representation

class, with domain XA and indexing set I,\. For i e I,\, ci is a concept in CA.

By hypothesis, F C C: for sufficiently large A, for all k E K, there exists i E Ix such that

ci = fk. For concreteness, let M be this map from K to I'X.8

We can now specify the RCD class T\ : IX -- IA. Let MA(K) C I, be the image of KA

8 This is a non-uniform reduction in general, but in most cases, the map M is known. That is, MA is the
map that takes a key and outputs a circuit computing the function.
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under MA. We define IFx = {4 : 0 E (x}:

MA 0 ) 0 M-'(i) if i E M(KX)

z otherwise.

Reduction Suppose, for contradiction, that there exists an efficient '-RC learning al-

gorithm A for C as in the statement of the theorem. We construct algorithm B break-

ing the <D-RKA-PRF security of T. In the PRF security game, B is presented with the

oracle RKFn(., .); A is presented with the oracle RC(., .). Run A, and answer queries

(O4, x) E TA x X, to RC by querying RKFn on (#, x) and passing the response along

to A. Let XA = {x c X, : A queried (0, x) for some }. Once A terminates, it outputs

hypothesis h. In EXP(O), RKFn() responds according to fk for some k E KA; in this case,

B simulates the RC oracle for the concept cM(k).

After receiving hypothesis h, B estimates the probability Prxx\xA[h(x) = RKFn\(x)].

In EXP(0), this probability is at least 1 - c with probability at least 1 - 6; in EXP(1), it is

exactly 1/2. To sample uniform x E X \ XA, we simply take a uniform x E X: with high

probability x E X \ XA. If the estimate is close to c, guess EXP(0); otherwise, flip an fair

coin b' E {O,1} and guess EXP(b'). The advantage ADV<DRKA of B in the PRF security

game is at least 3p6(n) (see Analysis for details) for all sufficiently large A, directly violating

the security of F.

Analysis Let Pb A Prxex\x,[h(x) -f RKFn(idx, x)IEXP(b)] be the probability taken with

respect to experiment EXP(b). In EXP(1), RKFn is a uniformly random function. Thus,

Pi = 2. With high probability, B will output a random bit b' E {0, 1}, guessing correctly

with probability 1/2.

In EXP(O), h is an -approximation to RKFn(id, -) with probability at least 1 - 6. In

this case, po ;> - c > 1 + 1  . By a Hoeffding bound, B will guess b' = 0 with high

probability by estimating p using only polynomial in A, pE(A) samples. On the other hand,

if h is not an &-approximation, B will b'= 0 with probability at least 1/2.
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Let negl(A) be the error probability from the Hoeffding bound, which can be made

exponentially small in A. The success probability is: Pr[b = b'jb = 0] > (1-6)(1-negl(A)) + 2

which, for I - > is at least + for sufficiently large A. Thus B a non-negligible
p5 (A) 

3p6(),) 2

advantage of 1/ 3p6(,) in the <D-RKA-PRF security game. D

Proof. For n E N let G = (g) be a group of prime order p = p(n), Xn = {0, 1}(n) \ {0n},

K,= Z1m(n), and define Fk(x) as in Theorem 4.5 of [Abdalla (). Let < be as above over

K. E

3.4 Learning with Aggregate Queries

This computational learning model is inspired by our aggregate PRFs. Rather than being a

natural model in its own right, this model further illustrates how cryptography and learning

are in some senses duals. Here, we consider a new extension to the power of the learning

algorithm. Whereas membership queries are of the form "What is the label of an example

X?", we grant the learner the power to request the evaluation of simple functions on tuples of

examples (x 1, ..., Xk) such as "How many of (x 1 ...Xk) are in C?" or "Compute the product of

the labels of (x 1 , ..., Xk)?". Clearly, if k is polynomial then this will result only a polynomial

gain in the query complexity of a learning algorithm in the best case. Instead, we propose to

study cases when k may be super polynomial, but the description of the tuples is succinct.

For example, the learning algorithm might query the number of x's in a large interval that

are positive examples in the concept.

As with the restriction access and related concept models - and the aggregate PRFs we

define in this work - the Aggregate Queries (AQ) learning model will be considered with

restrictions to both the types of aggregate functions F the learner can query, and the sets S

over which the learner may request these functions to be evaluated on. We now present the

AQ learning model informally:

Definition 3.4.1 ((F, S)-Aggregate Queries (AQ) Learning). Let C be a representation class

with domains X = {Xx}, and S = {SA} where each S,\ is a collection of efficiently recog-
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nizeable subsets of the X,. F : {0, 1}* -4 V be an aggregation function [as in def:]. Let

AGG- - AGG\s r be the aggregation oracle for fk C CA, for S G Sx and Px.

An algorithm A is an (c, 6)-(1F,S)-AQ learning algorithm for C if, for all sufficiently large

A, for every fk c CA, Pr[AMEMk()AGG) W) = h] > 1 - 6 where h is an c-approximation to fk.

3.4.1 Hardness of Aggregate Query Learning

Theorem 3.4.1. Let F be a boolean-valued aggregate PRF with respect to set system S

{Sx} and accumulation function F = {IF}. For a representation class C, if F C C, then C

is hard to (F, S)-AQ learn.

Looking back to our constructions of aggregate pseudorandom function families from the

prequel, we have the following corollaries.

Corollary 3.4.2. The existence of one-way functions implies that P/poly is hard to (E, S[a,b])-

AQ learn, with S[a,b] the set of sub-intervals of the domain as defined in section 2.2 [GGM86].

Corollary 3.4.3. The DDH Assumption implies that NC' is hard to (1, DT)-AQ learn,

with S[a,b the set of polynomial-sized decision trees as defined in section 2.4 [NR04].

Corollary 3.4.4. The subexponential DDH Assumption implies that NC' is hard to (1, R)-

AQ learn, with R the set of read-once boolean formulas defined in section 2.5 [NR04].

Proof of Theorem 3.4.1. Interpreting F itself as a concept class, we will show an efficient

reduction from violating the pseudorandomness property of F to weakly (F, S)-AQ learning

F. By assumption, F C C, implying that C is hard to learn as well.

Reduction Suppose for contradiction that there exists an efficient weak learning algorithm

A for F. We define algorithm B violating the aggregate PRF security of F. In the PRF secu-

rity game, B is presented with two oracles: F(.) and AGG' for a function F chosen according

to the secret bit b E {0, 1}. In EXP(0), F = fk for random k E KA; by assumption fk E CA.

In EXP(1), F is a uniformly random function from X to {0, 1}. The learning algorithm A
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is presented with precisely the same oracles. B runs A, simulating its oracles by passing

queries and responses to its own oracles. XA = {x E X\ : A queried (/, x) for some 0}.

Once A terminates, it outputs hypothesis h.

Analysis After receiving hypothesis h, B estimates the probability

p = Pr [h(x) = F(x)]
X<-X\XA

(using polynomial in A,pE(A) samples). In EXP(0), this probability is at least 1 - E with

probability at least 1 - 6; in EXP(1), it is exactly 1/2. To sample uniform x C X \ XA, we

simply take a uniform x C X: with high probability x E X \ XA. If the estimate is close to

E, guess EXP(0); otherwise, flip an fair coin b' c {0, 1} and guess EXP(b'). The advantage

ADVAPRF of B in the PRF security game is at least 1 for all sufficiently large A (as

shown below), directly violating the security of F.

Let

Pb Pr [h(x) # F(x)|EXP(b)]
XCX\XA

be the probability taken with respect to experiment EXP(b). In EXP(1), F is a uniformly

random function. Thus, Pi = 1. With high probability, B will output a random bit b' E

{0, 1}, guessing correctly with probability 1/2.

In EXP(0), h is an E-approximation to F with probability at least 1 - 6. In this case,

Po > 1  - > 1 + . By a Hoeffding bound, B will guess b' = 0 with high probability by

estimating p using only polynomial in A,pE(A) samples. On the other hand, if h is not an

E-approximation, B will b' = 0 with probability at least 1/2.

Let negl(A) be the error probability from the Hoeffding bound, which can be made ex-

ponentially small in A. The success probability is:

Pr[b = b'lb = 0] (1 - 6)(1 - negl(A)) +
2

which, for 1 - 6 > is at least 1 +1 for sufficiently large A. Thus B a non-negligible
P6 3p(,\ 2
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advantage of 1/3p6s) in the (1F, S)-aggregate-PRF security game. E
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Chapter 4

Unobfuscatable PRFs and Their

Implications

In the third part of this thesis, we explore constructions of function families that are pseu-

dorandom, but "learnable" in a non-black-box setting, and as a result show negative results

for puncturing and watermarking of PRFs. We begin by exploring the simpler setting of

puncturing, then define watermarking schemes and finally demonstrate the construction of

unwatermarkable PRFs.

4.1 Unpuncturable Pseudorandom Functions

In this section, we construct a family of PRFs that is not point-puncturable by proving the

following theorem.

Theorem 4.1.1. Assuming the existence of one-way functions, there exists a family of pseu-

dorandom functions F = {FA}AEN with F, = {fk { i1n(A) - {O 1}e(A)}kE{O,}A for some

polynomials n and f, and an efficient algorithm L such that for any k E K\ and any circuit

gA that agrees with fk everywhere except on at most a single point:

L(gk) = k.
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Corollary 4.1.2 (Unpuncturable PRF). If pseudorandom function families exist, then there

exist pseudorandom function families that are not point-puncturable.

Since the proof of Theorem 4.1.1 is only a slight modification of the construction in

[BGI+12], and the construction of unwatermarkable PRFs in the sequel is significantly more

complex, we here present only a the main idea of the construction.

Proof idea. The constructions presented in [BGI+12] guarantee a PRF family for which

access to any exact implementation enables recovery of the PRF key k. They extend the

result to cover a very restricted form of approximate implementations: the implementation

agrees with the original on any specific input x with high probability over some distribution

of implementations. The circuit families they construct are formed from a number of sub-

functionalities: Ck, Dk, and Ck.

In their approximate-functionality setting, the sub-functionality Dk is robust to point-

errors, but the sub-functionalities C and C' are not. The function Ck (respectively Ck)

returns some key-recovery information when evaluated at specific single hidden input and

behaves pseudorandomly everywhere else; if the point-error occurs at this point, the key k

cannot be recovered. The simple fix is to duplicate this trapdoor information. Replace Ck

(resp. Ck) with Ck,1, Ck,2, and Ck,3; on the hidden input these new functionalities will agree,

but they will behave pseudorandomly on all other inputs. Then run the recovery algorithm

using each pair of Ck,i and Ck, , and output the majority.

Because errors are restricted to a single input, the majority will be the true PRF key

k. E

4.2 Watermarking Schemes

Preliminaries. We will let {CX}AEN be the family of all circuits with domain DT and range

lZA. We will let {CA}AEN be a particular family of circuits; that is CA C CA for all A E N.
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Let p: N -* [0, 1] be a function. For circuits C, C' e CA, we say that C -, C' if

Pr [C(x) # C'(x)] < p(A)

We call such circuits "p-close". When p is not made explicit (ex: "a function 'approximates'

or 'is close to' another"), we mean that there is some negligible function p for which the

functions are p-close.

We refer to probabilistic polynomial time algorithms simply as "p.p.t. algorithms".

The definitions presented in this work are significantly weaker versions of those in [CHV15].

4.2.1 Definition

Software watermarking is the process of embedding a "mark" in a program so that the

marked program preserves functionality, and furthermore, it is impossible to remove the

mark without destroying functionality.

Roughly speaking, in a watermarking scheme, there is a marking algorithm Mark that

takes as input a circuit C and uses the mk to produce a marked program #C2 while the

verification algorithm Verify uses the verification key vk to recognize legally marked programs.

A watermarking scheme should satisfy three properties:

* Approximately Functionality Preserving: The program #C should agree with C on

random inputs.

* Unremovability: We say that a watermark remover R succeeds given #C if she produces

as program C that is approximately (functionally) equivalent to #C and yet, Verify

fails to recognize C as a marked program. Unremovability says that this should be

hard for polynomial-time removers R.

'Specifically, we restrict our attention to negligible p and y 1. Furthermore, we consider a setting with
no public verification, verification oracles, or mark oracle. The adversary can receive only a single challenge,
nothing more.

2Marked programs are denoted as #C (in the case of circuits) in this paper.
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* Unforgeability: The other side of the coin is unforgeability which requires that a forger

F cannot succeed in producing a new marked programs.

A watermarking scheme W for a family of circuits C = {CA}XCN is a tuple of p.p.t. algorithms

(Setup, Mark, Extract), where:

" (mk, vk) +- Setup(1A) is a p.p.t. key generation algorithm takes as input a security

parameter A c N and outputs a marking key mk and a verification key vk.

" C# <- Mark(mk, C) is a p.p.t. marking algorithm that takes as input the marking key

mk and a circuit C E C), and outputs a circuit C#.

* b +- Verify(vk, C) is a p.p.t. algorithm which takes as input the (public) verification

key vk and a (possibly marked) circuit C E C, and outputs either accept (1) or reject

(0).

Note that while Mark and Verify take any circuit as input, we only require the correctness

and security properties that follow to hold when the input to Mark is a circuit from the class

C C C.

Correctness Properties. Having defined the syntax of a watermarking scheme, we now

define the desired correctness properties. First, it is functionality preserving, namely marking

a circuit C does not change its functionality too much. We formalize this by requiring that

the marked and unmarked circuits agree on a 1 - negl(A) fraction of the domain. Secondly,

we require that the verification algorithm almost always accepts a marked circuit.

Definition 4.2.1 (Functionality Preserving). We say that a watermarking scheme (Setup, Mark, Verify)

is functionality preserving if there exists some negligible function p such that for all C E C:

Mark(mk, C) -, C

Definition 4.2.2 (Completeness). A watermarking scheme (Setup, Mark, Verify) is said to
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be complete if

Pr Verify(vk, Mark(mk, C)) = 1 ;i> vk - Setup(1A) - negl(A)
C (E C

Security Properties. We turn to the desired security properties of the watermarking

scheme. We define a scheme's "uremovability" with respect to the following security game.

Game 4.2.1 (Unremovability). First, the challenger generates (mk, vk) +- Setup(1A). The

challenger then samples a circuit C* uniformly from C and gives #C* Mark(mk, C*) to

the adversary, A. Finally, A outputs a circuit 0.

Our notion of unremovability is that no adversary can - with better than negligible

probability - output a program that is 6-close to the challenge program but on which Verify

returns zero with any noticeable probability.

Definition 4.2.3 (6-Unremovable). In the security game, we say that the adversary 6-

removes if Pr[(O ~6 #C*) A (Verify(vk, C) = 0)] is non-negligible. A 's 6-removing advantage

is the probability that A 6-removes. The scheme is 6-unremovable if all p.p.t. A have

negligible 6-removing advantage.

We say a scheme is unforgeable if no adversary can - with better than negligible proba-

bility - output a circuit on which Verify returns 1 with non-negligible probability. Note that

in this setting, the adversary gets only the security parameter as input.

Definition 4.2.4 (Unforgeable). The scheme is unforgeable if all p.p.t. A:

mk, vk <- Setup(1A),
Pr Verify(vk, C) = 1 ^ < negl(A)

L C +-- A(PA)

4.3 Unwatermarkable Families

A natural question is whether there are families of functions that for which there does not

exist any watermarking scheme (waterproof). Barak et al [BGI+12] observed that general-
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purpose indistinguishability obfuscation rules out a notion of watermarking that exactly

preserves functionality, but watermarking schemes that change functionality on even a neg-

ligible fraction of the domain are not.

In this section, we discuss a number of conditions sufficient to prove that a family of

circuits cannot be watermarked. In this context, if a family is non-black-box learnable given

access to an approximation of a circuit in the family, then the family is not watermarkable.

Because it suffices to learn the family with an approximate implementation, we focus on

non-black-box learnability. For such a family, from a challenge marked program the learning

algorithm is able to recover the original (unmarked) program. This violates unremovability

of a watermarking scheme.

We construct waterproof PRFs using techniques closely related to the unobfuscatable

function families of [BGI+12] and [BP12].

Consider an indexed family of functions F = {fK} where each function is indexed by

the key K. In our setting, the learning algorithm will be given any circuit g agrees almost

everywhere with fK, a uniformly sampled function from the family. The (randomized) learner

will then output some hypothesis function h. If h is sufficiently close to fK, then we can

conclude that the family F cannot be watermarked.

As a warm up, we begin with a very strong notion of learnability, in which the learning

algorithm - here called an extractor - can not only output a hypothesis h which agrees with

fK on all inputs, but output the circuit fK itself.

Definition 4.3.1 (Robustly Extractable Families). Let F = {Fx}XEN be a circuit ensemble

where Tx is a collection { fk}kCo,1}x. We say that F is robustly extractable if there exists

an efficient extractor E such that for all large enough A G N and random k - {0, 1}, E

extracts k from any circuit g such that g ~neg1(A) fK:

Pr[k +- E(g, 1')] is non-negligible.

Theorem 4.3.1. If F is robustly extractable, then there does not exist a 6-watermarking
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scheme (Setup, Mark, Verify).

Proof. For a functionality-preserving watermarking scheme for the family F, for all circuits

fk E F, the marked program #fk = Mark(mk, fk) is negl-close to the original. If F is negl-

robustly extractable, then given a challenge marked program, the extractor E outputs fk

with noticeable probability. Unless Verify(vk, fk) = 1 with high probability, the extractor

E violates even 0-unremovability. Otherwise we may trivially violate 1-unforgeability by

simply outputting a random fk <- F (without ever receiving a marked program). E

Towards proving the main theorems of this section, we weaken Definition 4.3.1 in two

ways. Combined together in Definition 4.3.2, these weaker notions of learnability will capture

richer functiontionalities and allow us to construct a PRF family that cannot be watermarked

(Theorem 4.3.3). The following discussion motivates the stronger definition and outlines the

proof of the corresponding Theorem 4.3.2

Learnable versus extractable. What if the family is only "learnable," but not "ex-

tractable:" instead of outputting fk itself, the learning algorithm L(C) can only output

a circuit h that was functionally equivalent to fk? One might think that this is indeed

sufficient to prove Theorem 4.3.1, but the proof encounters a difficulty.

As before, we run the learner on the challenge program to get h = L(#fk); if Verify(vk, h) =

0 with noticeable probability, then unremovability is violated. On the other hand, if Verify(vk, h) =

1 with high probability, is unforgeability violated? In the extractable setting, it was possible

to sample a program which verifies without ever seeing a marked version, simply by picking

fk <- F. In the weaker learnable setting, we only know how to sample from this verifying

distribution by evaulating L(#fk) marked circuit. But the forger is not given access to

marked circuits.

To get around this issue, we consider families that are learnable with implementation

independence; that is, for any g and g' which are both approximations of fK E F, the

distributions L(g) and L(g') are statistically indistinguishable.3 To complete the above

3Computational indistinguishability would also suffice. If indistinguishability obfuscation exists, then
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proof, a forger will simply evaluate h +- L(fk) for random (unmarked) fk (rather than on

the marked #fk). Implementation independence of L guarantees that Verify(vk, h) = 1 with

high probability.

Approximate versus exact learning. In Definition 4.3.1 (and the discussion above), we

required that an algorithm learning a family F is able to exactly recover the functionality

fK, when given g that approximates fk. What can we prove if h = L(g) is only required to

6-approximate the original function fk?

Though we cannot violate 0-unremovability, we might hope to violate 6-unremovability.

For a functionality preserving watermarking scheme, when given a marked program #fk,

the learning algorithm returns h = L(#fk) which is a 6-approximation (with noticeable

probability). By similar reasoning to Theorem 4.3.1, it must be that either Verify(vk, h) = 1

with high probability or 6-unremovability is violated. If L is implementation independent as

above, we contradict unforgeability.

Definition 4.3.2 (Robustly, 6-Approximately Implementation Independent Learnable Fam-

ilies). Let F = {FA}\cN be a circuit ensemble where each family Tn = {fk}kcfO,1yx. We say

that F is robustly, 6-approximately learnable if there exists an efficient learner L such that

for all large enough A E N, random k -- {0, 1} , and any circuit g such that g ~neg1(A) fK:

Pr[h 6 fk : h <- L(g, 1A)] is non-negligible.

We say that L is implementation independent if for all gi and 92 that are both negligibly

close to fk, the distributions L(g, 1,A) and L(g2 , 1A) are statistically close.

Theorem 4.3.2. If F is robustly, 6-approximately learnable with implementation indepen-

dence, then there does not exist a 6-watermarking scheme for F.

Already, this rules out watermarking a large array of families. For instance, any family that

is improperly PAC learnable cannot be watermarked. The main result of this section is that

an learning exact improper learning algorithm can be transformed into an computationally implementation

independent one.
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there exists a PRF family is learnable according to Definition 4.3.2.

Theorem 4.3.3. Assuming one-way functions, there exists a pseudorandom function family

F6 that is robustly, 6-approximately learnable with implementation independence, for any

poly(A)

Corollary 4.3.4. Assuming one-way functions, for any non-negligible function 6(A), there

is a family of pseudorandom functions that is not 6-watermarkable.

4.4 Construction of Unwatermarkable PRFs

Our starting point is the constructions of unobfuscatable function families in [BGI+12] and

[BP12], and an understanding of those constructions will prove helpful towards understand-

ing ours. The former work presents a construction of 0-robustly extractable PRF families;

from any exact implementation, the key can be recovered. They extend this notion to a

very weak form of approximate functionality. The latter work handles a very strong form of

approximation: the approximate implementation must only agree on some constant fraction

of the domain. They achieve this, they sacrifice the total learnability of the earlier con-

struction, learning only a predicate of the PRF key instead of the key itself. We require a

notion of approximation stronger than [BGI+12] but weaker than [BP12], and a notion of

learnability weaker than [BGI+12] but stronger than [BP12], and achieve this by adapting

techniques from both works.

4.4.1 Preliminaries

The construction requires an invoker randomizable pseudorandom function [BGI+12] and a

decomposable encryption scheme [BP12]. The following definitions and discussion are taken

almost verbatim from the respective works.

Definition 4.4.1 (Invoker-Randomizable Pseudorandom Functions [BGI+12]). A function

ensemble {f}kefo,11 such that fk : {0, 1}n+m {f0,1 }m, where n and m are polynomially
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related to IkI, is called an invoker-randomizable pseudorandom function ensemble if the

following holds:

1. { fk}sCo,1J. is a PRF family.

2. For every k and x E {o, 1}, the mapping r - fk(x,r) is a permutation over {0, 1}".

Property 2 implies that, for every fixed k and x E {0, 1}, if r is chosen uniformly in {0, 1}',

then the value fk(x, r) is distributed uniformly (and independently of x) in {0, 1}'.

Lemma 4.4.1 ([BGI+ 12]). If pseudorandom functions exist, then there exist invoker-randomizable

pseudorandom functions.

Definition 4.4.2 (Decomposable Encryption [BP12]). An encryption scheme (Gen, Enc, Dec)

is decomposable if there exists an efficient algorithm pub that operates on ciphertexts and

satisfies the following conditions:

1. For a ciphertext c, pub(c) is independent of the plaintext and samplable; that is, there

exists an efficient sampler PubSamp such that, for any secret key sk G {0, 1}:

PubSamp(1") = pub(EncSk(O))) - pub(Encek(1))

2. A ciphertext c is deterministically defined by pub(c) and the plaintext; that is, for

every secret key sk and two distinct ciphertexts c and c', if pub(c) = pub(c'), then

Decek(c) # Decek(c').

We use as our decomposable encryption scheme a specific symmetric-key encryption

scheme which enjoys a number of other necessary properties. Given a PRF {fk}keko,1*

with one-bit output, for security parameter n, the secret key is a random sk C {0, 1}fn, and

the encryption of a bit b is computed by sampling a random r <- {0, 1} and outputting

(r, Fak(r) e b). We encrypt multi-bit strings by encrypting each bit in turn. Besides being

decomposable, this encryption scheme satisfies a number of necessary properties [BP121:
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e It is CCA-1 secure.

* It is decomposable.

" The support of (Enc~k(O)) and (EncO(1)) are each a non-negligible fraction (in reality,

at least - - negl) of the cipher-text space.

* For a fixed secret key sk, random samples from (b, Encsk(b))b,{o,1 are indistinguishable

from uniformly random strings.

4.4.2 Construction

The key k for the PRF is given by a tuple k = (a, 3, sk, s, s2, Se, Sh, Sb, s*). For security

parameter A, a and # are uniformly random A-bit strings, sk is a secret key for the de-

composable encryption scheme described above, Sh is a key for an invoker-randomizable

pseudorandom function, and si, S2, Se, sb, and s* are independent keys for a family of PRFs.

We denote by F, a PRF with key s.

The domain of the PRF will be of the form (i, q) for i E {1, . . ,9}, and q E {0, i}e, for

some polynomial f. The range is similarly bit strings of length polynomial in f. The function

will be defined in terms of 9 auxiliary functions, and the index i will select among them. We

use a combination of ideas from [BGI+12 and [BP12] to construct a PRF family for which

s* can be recovered from any (negligibly-close) approximation to fk, which will enable us to

compute fk restricted to i = 9. This allows us to recover a 1/9-close approximation of fk

that is implementation independent (simply by returning 0 whenever i -f 9). To achieve a

6-close approximation for any 6 = , we simply augment the index i with an additional

log(6) bits: if all these bits are 0, then we index as before; otherwise, use index i = 9. Instead

of recovering 1/9th of the function, we now recover 1 - 6 of the function. This establishes

the theorem.4

4Note that the result is a PRF family that depends on the choice of 6. The argument would fail if 6 was a
negligible function, because an approximation for could "erase" all the structure of the PRF family, thwarting
learnability. Removing this dependence (ie: constructing a family that works for all inverse polynomial 6
simultaneously) would be interesting.
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We now define the auxiliary functionalities we will use in the construction.

" R,: The function R, is parameterized by a PRF key s. It takes as input q and returns

Rs(q) = F,(q), the PRF evaluated at q. That is, Rs simply evaluates a PRF.

" Ca,b,s: The function Ca,b,s is parameterized by two bit strings a and b, and a PRF key

s. It takes as input q and returns Ca,b,s(q) = b 9 F,(q D a), where F, is the PRF

given by key s. That is, C evaluates a PRF on a point related to the queried point,

then uses the value to mask the bitstring b.

* Esk,a,se: The function Esk,a,s, is parameterized by a secret key sk for the encryp-

tion scheme, a bitstring a, and a PRF key SE. It takes as input q and returns

Esk,a,s,(q) = Encok(a;r) with randomness r = Fs,(q). That is, E returns an en-

cryption of oz using randomness derived by evaluating the PRF on the query.

" HIsk,S: The function Hsk,s, is parameterized by a secret key sk for the encryption

scheme, and a invoker-randomizable PRF key Sh. It takes as input two cipher-

texts of bits c and d, the description of a two-bit gate 0, and some additional input

q, and returns HIk,Sh (c, d, 0, q) = Encsk(Decsk(c) 0 Decsk(d); r) with randomness

r = FSh(c, d, 0, q). That is, H implements a homomorphic evaluation of 0 on the

ciphertexts c and d by decrypting and re-encrypting, with randomness derived by

applying a PRF to the whole input.

* Bsk,a,3,sb: The function Bsk,a,,3,Sb is parameterized by a secret key sk for the symmetric-

key encryption scheme, bitstrings a and 3, and a PRF key sb. It takes as input n

ciphertexts cl,... , cA and additional input q, and returns

Esk,a,8,S (c1 .. .., cA, ) = a @ FSb(ml @ /1, . . ., mA e x, pub(ci), . .. , pub(cA), g)

where mi = Decsk(ci).

Having defined the auxiliary functions, our pseudorandom function fk for k = (ce, /, sk, Si, S2, Se, Sh, Sb,

is a combination of these functions. The argument (i, q) selects which function is evaluated,
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and q is parsed appropriately by each of the functionalities. For example, B parses q as A

ciphertexts cl, . . . , c\, and all remaining bits as q.

fk(i, q) =

C1(q) :=Cc,,,s, (q)

E(q) :=Esk,a,s,(q)

H(q) := Hsk,s,(q)

B(q) := sk,a,O,Sb (q)

R 1 R, (q)

R2 :=RS2(q)

RbI:= Rs,(q)

R* := Rs. (q)

if i = 1

if i = 2

if i = 3

if i = 4

if i = 5

if i = 6

if i = 7

if i = 8

if i = 9

While this construction may appear daunting, each subfunction serves a very concrete

purpose in the argument; understanding the proof ideas will help clarify the construction.

We must now argue two properties of this family: learnability as in Definition 4.3.2, and

pseudorandomness.

Learnability

We must show that F = {fk} is robustly, j-approximately learnable by an implementation-

independent algorithm, L.5 It suffices to show that, given any close implementation g of fA

for random key k, s* can be recovered, because R* = R,. comprises 1/9th of the functionality.

To begin, consider the case the when the implementation is perfect: g -- fk. In this

case, recovery of s* is straightforward. Given a, C1, and R1 it is easy to find 3: for any q,

# = C 1(q) (D Rj(q D a). That is, it is easy to construct a circuit that, on input a, outputs /

'As discussed earlier, it suffices to prove learnability for 6 = 1/9. We may then change the how the
subfunctions are indexed to achieve any inverse polynomial.
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(by fixing some uniformly random q in the above). 6 But we don't know a, only encryptions

of a (coming from E), so how might we recover 0?

Using H, it is easy to homomorphically evaluate the circuit on such an encryption, yielding

an encryption c = (ci, . . . , c,) of / = (#1,... , /7). For any q, evaluating B1(c, q) will yield

a e Fsb(O, c, ). Evaluating Rb(O, pub(ci),..., pub(c,), q) immediately yields a in the clear.

Now we can directly recover s* = C(q) e R2 (q G a), for any q.

How does this argument change when g and fk may disagree on an (arbitrary) negligible

fraction of the domain? The first observation is that in the above algorithm, each of C1,

C2, E, R1, and R2 , can each evaluated (homomorphically in the case of C1) at a single point

that is distributed uniformly at random. With high probability, g will agree with fk on these

random inputs.

It remains to consider robustness to error in H, B, and Rb. The same idea does not

immediately work, because the queries to these circuits are not uniformly distributed.

For H, we leverage the invoker-randomizability of the PRF Fs,, using the argument pre-

sented in [BGI+12] 7 . In every query to H(c, d, 0, D), the input q only effects the randomness

used in the final encrypted output. For each such query, pick q uniformly and indepen-

dently at random. Now H returns a uniformly random encryption of Decsk(c) 0 Decok(d).

This is because the randomness used for the encryption is now uniformly sampled by Fs,.

The distribution over the output induced by the random choice of q depends only on

(Decek(c), Decek(d), o) E {O, 1}2 x {O, 1}2 x (0, 1}4. As in [BGI+12], the probability of

returning an incorrect answer on such a query is at most 64-times that of a random query,

which is still negligible.

For B and Rb, we leverage the properties of the decomposable symmetric-key encryption

scheme, using the argument presented in [BP12].' We modify the procedure of using B and

Rb to recover a given an encryption c of /. Instead of querying B on (c, q), sample a fresh

random m, and using H, compute an encryption c' of / (D m. Note that c' is a uniformly

6This is ability is what enables the learnability; the black-box learner cannot construct such a circuit and
thus cannot continue with the homomorphic evaluation in the next step.

7Proof of Theorem 4.3
8 Proof of Claim 3.8
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random encryption (by invoker-pseudorandomness) of the uniformly random string 3 G M,

and is thus a uniformly-distributed string of the appropriate length. Independently sample

a random q and query a' := B(c', q). This query to B is now distributed uniformly, and will

therefore be answered correctly with high probability.

To recover a, we evaluate a = a'E Rb(m, pub(ci), ... , pub(cx), q). This query to Rb is also

distributed uniformly at random (for random q), and will therefore be answered correctly

with high probability.

Pseudorandomness

Our proof that the family {fk} is pseudorandom follows that of [BP12]; the main technical

change comes from the fact that B depends on a. We consider a polynomial-time adversary

A with oracle access to fk. For simplicity, we ignore the indexing of the subfunctions of fA

and assume that A has direct oracle access to each of the constituent functions, showing

that they are simultaneously pseudorandom.

Let E1 be the the event that A produces distinct queries q = (c, q), q' = (c', q') such that:

(m e /, pub(c1 ), ... , pub(cA), q) = (m' D /, pub(c'), ... , pub(c'), ')

where m, m' E {0, 1}/ are the decryptions under sk of c and c' respectively.

Claim 4.4.1.1. Prk,A[E1I] = 0

Proof. Recall that for any ciphertext c, pub(c) and the plaintext m uniquely determine the

ciphertext. If m e / = m' D /, and pub(ci) = pub(cj)' for all i, then c = c'. Therefore

q = q'. E

We consider two "bad" events, and argue that if A is to distinguish fk from a random function,

(at least) one of the events must occur.

. Let E, be the event that A produces queries q and q' such that q B a = q'.
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* Let Eg be the event that A produces queries q = (c, q) and q' such that q' = (m 

#, pub(ci),... , pub(c ), ), where m E {0, 1}/ is the decryption under sk of c.

Claim 4.4.1.2. If Prk,A[Ea] negl(A) and Prk,A[E6] < negl(n), then A cannot distinguish

between fk and a random oracle.

Proof. Because fk depends on the PRF keys si, 82,e, Sh, and sb (but not s*) only by black-

box application of the respective PRFs, we can indistinguishably replace all applications of

these PRFs by (independent) truly random functions. If E, never occurs, than the responses

from C1 and R1 (respectively C2 and R2) are uncorrelated; thus we can indistinguishably

replace C1 (respectively, C2) by a independent random function. At this point, A's oracle

only depends on s* through calls to the PRF F,*; we can now replace R* with a independent

random function. By similar reasoning, if E3 never occurs, then the responses from B and Rb

are uncorrelated; thus we can indistinguishably replace B with another independent random

oracle. The above holds with high probability, conditioning on -'E and EE.

Now A is left with oracles of E and H in which the PRFs F,, and F,, have been replaced

by random (along with 7 additional independent random oracles). The ciphertexts of the

encyption scheme we use are pseudorandom. Thus, access to these two oracles may be

replaced with random without noticeably affecting the output distribution of A. l

All that remains is to bound the probabilities of E, and E3. We consider two cases sepa-

rately: when E, occurs before E and vice-versa, arguing that the probability of either event

occurring first is negligible. Let EQ,i (respectively, Ea,) be the event that E, (respectively

EO) occurs in the first i queries.

Claim 4.4.1.3. For all i, Prk,A[EO,i -Ea,i-1] < negl(A)

Proof. It suffices to show that for all i:

Pr[E,,-Ea,ji -1 EO,j_1] < negl(A).
k,A

Furthermore, because the events are efficiently testable given only a, /, and sk, it is enough
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to prove the claim when all the underlying PRFs (corresponding to s1 , S21 8 ,, h, Sb, and s*

are replaced by (independent) truly random functions.

As in Claim 4.4.1.2, if E, doesn't occur in the first i - 1 queries, than the responses

from C1 and R, (respectively C2 and R2) are uncorrelated on these queries; thus we can

indistinguishably replace C1 (respectively, C2) by a independent random function. By similar

reasoning, if E,3 doesn't occur in the first i - 1 queries, then the responses from B and Rb

are uncorrelated on these queries; thus we can indistinguishably replace B with another

independent random oracle. The above holds with high probability, conditioning on ,Eai-1

and -,,i_1.

The view of A after the first i - 1 queries is now independent of /. Now E3 amounts to

outputting a ciphertext c and string q such that Decok(c) ® q = /, for / <- {0, 1}' drawn

independently of the view of the adversary. This occurs with vanishingly small probability.

Claim 4.4.1.4. Prk,A[EQ,i-E3,i_1] < negl(A)

Proof. It suffices to show that for all i:

Pr[Ece,iJEO,i_1,,Eiac,i_1] < negl(A).
k,A

Again, because the events are efficiently testable given only a, /, and sk, it is enough to

prove the claim when all the underlying PRFs (corresponding to si, S2, Se, Sh, sb, and s*

are replaced by (independent) truly random functions. As in the previous claim, we may

indistinguishably replace the first i- responses of C1, C2, B, Rb, R1, and R2 by independent

random functions. The above holds with high probability, conditioning on -E,1 and

The view of the adversary is depends on a only by way of E, the circuit that outputs ran-

dom encryptions of a. Furthermore, besides the oracles E and H, all of the oracle responses

A receives are uniformly random (and independent of a). But just as in [BGI+12]9 and

9 Claim 3.6.1
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[BP12J' 0, with only these two oracles, any CCA-1 encryption scheme is semantically secure.

Thus we can indistinguishably replace Ek,a,,,e with 'Eska,se, - returning only encryptions of 0.

Finally, the view of A is information theoretically independent of a; as before, we conclude

that E,,i occurs with vanishingly small probability. D

'0 Claim 3.3
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