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Abstract

We construct a new framework for accelerating Markov chain Monte Carlo in posterior sam-

pling problems where standard methods are limited by the computational cost of the likelihood,

or of numerical models embedded therein. Our approach introduces local approximations of

these models into the Metropolis-Hastings kernel, borrowing ideas from deterministic approxi-

mation theory, optimization, and experimental design. Previous efforts at integrating approx-

imate models into inference typically sacrifice either the sampler’s exactness or efficiency; our

work seeks to address these limitations by exploiting useful convergence characteristics of local

approximations. We prove the ergodicity of our approximate Markov chain, showing that it

samples asymptotically from the exact posterior distribution of interest. We describe variations

of the algorithm that employ either local polynomial approximations or local Gaussian process

regressors. Our theoretical results reinforce the key observation underlying this paper: when

the likelihood has some local regularity, the number of model evaluations per MCMC step can

be greatly reduced without biasing the Monte Carlo average. Numerical experiments demon-

strate multiple order-of-magnitude reductions in the number of forward model evaluations used

in representative ODE and PDE inference problems, with both synthetic and real data.

1

ar
X

iv
:1

40
2.

16
94

v4
  [

st
at

.M
E

] 
 1

5 
Se

p 
20

15



Keywords: approximation theory, computer experiments, emulators, experimental design, local

approximation, Markov chain Monte Carlo

1 Introduction

Bayesian inference for computationally intensive models is often limited by the computational cost of

Markov chain Monte Carlo (MCMC) sampling. For example, scientific models in diverse fields such

as geophysics, chemical kinetics, and biology often invoke ordinary or partial differential equations

to describe the underlying physical or natural phenomena. These differential equations constitute

the forward model which, combined with measurement or model error, yield a likelihood function.

Given a numerical implementation of this physical model, standard MCMC techniques are in prin-

ciple appropriate for sampling from the posterior distribution. However, the cost of running the

forward model anew at each MCMC step can quickly become prohibitive if the forward model is

computationally expensive.

An important strategy for mitigating this cost is to recognize that the forward model may

exhibit regularity in its dependence on the parameters of interest, such that the model outputs

may be approximated with fewer samples than are needed to characterize the posterior via MCMC.

Replacing the forward model with an approximation or “surrogate” decouples the required number

of forward model evaluations from the length of the MCMC chain, and thus can vastly reduce the

overall cost of inference (Sacks et al., 1989; Kennedy and O’Hagan, 2001). Existing approaches

typically create high-order global approximations for either the forward model outputs or the log-

likelihood function using, for example, global polynomials (Marzouk et al., 2007; Marzouk and

Xiu, 2009), radial basis functions (Bliznyuk et al., 2012; Joseph, 2012), or Gaussian processes (Sacks

et al., 1989; Kennedy and O’Hagan, 2001; Rasmussen, 2003; Santner et al., 2003). As in most of these

efforts, we will assume that the forward model is deterministic and available only as a black box, thus

limiting ourselves to “non-intrusive” approximation methods that are based on evaluations of the

forward model at selected input points.1 Since we assume that the exact forward model is available

and computable, but simply too expensive to be run a large number of times, the present setting is

distinct from that of either pseudo-marginal MCMC or approximate Bayesian computation (ABC);

these are important methods for intractable posteriors where the likelihood can only be estimated
1Interesting examples of intrusive techniques exploit multiple spatial resolutions of the forward model (Higdon

et al., 2003; Christen and Fox, 2005; Efendiev et al., 2006), models with tunable accuracy (Korattikara et al., 2013;
Bal et al., 2013), or projection-based reduced order models (Frangos et al., 2010; Lieberman et al., 2010; Cui et al.,
2014).
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or simulated from, respectively (Andrieu and Roberts, 2009; Marin et al., 2011).2

Although current approximation methods can provide significant empirical performance improve-

ments, they tend either to over- or under-utilize the surrogate, sacrificing exact sampling or potential

speedup, respectively. In the first case, many methods produce some fixed approximation, inducing

an approximate posterior. In principle, one might require only that the bias of a posterior expec-

tation computed using samples from this approximate posterior be small relative to the variance

introduced by the finite length of the MCMC chain, but current methods lack a rigorous approach

to controlling this bias (Bliznyuk et al., 2008; Fielding et al., 2011); Cotter et al. (2010) show that

bounding the bias is in principle possible, by proving that the rate of convergence of the forward

model approximation can be transferred to the approximate posterior, but their bounds include

unknown constants and hence do not suggest practical strategies for error control. Conversely, other

methods limit potential performance improvement by failing to “trust” the surrogate even when it

is accurate. Delayed-acceptance schemes, for example, eliminate the need for error analysis of the

surrogate but require at least one full model evaluation for each accepted sample (Rasmussen, 2003;

Christen and Fox, 2005; Cui et al., 2011), which remains a significant computational effort.

Also, analyzing the error of a forward model approximation can be quite challenging for the

global approximation methods used in previous work—in particular for methods that use complex

sequential experimental design heuristics to build surrogates over the posterior (Rasmussen, 2003;

Bliznyuk et al., 2008; Fielding et al., 2011). Even when these design heuristics perform well, it is not

clear how to establish rigorous error bounds for finite samples or even how to establish convergence

for infinite samples, given relatively arbitrary point sets. Polynomial chaos expansions sidestep some

of these issues by designing sample grids (Xiu and Hesthaven, 2005; Nobile et al., 2007; Constantine

et al., 2012; Conrad and Marzouk, 2013) with respect to the prior distribution, which are known to

induce a convergent approximation of the posterior density (Marzouk and Xiu, 2009). However, only

using prior information is likely to be inefficient; whenever the data are informative, the posterior

concentrates on a small fraction of the parameter space relative to the prior (Li and Marzouk, 2014).

Figure 1 illustrates the contrast between a prior-based sparse grid (Conrad and Marzouk, 2013) and

a posterior-adapted, unstructured, sample set. Overall, there is a need for efficient approaches with

provable convergence properties—such that one can achieve exact sampling while making full use of

the surrogate model.
2Typically the computational model itself is an approximation of some underlying governing equations. Though

numerical discretization error can certainly affect the posterior (Kaipio and Somersalo, 2007), we do not address
this issue here; we let a numerical implementation of the forward model, embedded appropriately in the likelihood
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(a) Prior-based sparse grid samples.
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Prior Contours

(b) Posterior-adapted samples.

Figure 1: Schematic of an inference problem with a Gaussian prior and a posterior concentrated
therein, with two experimental design approaches superimposed. Points are locations in the param-
eter space where the forward model is evaluated.

1.1 Our contribution

This work attempts to resolve the above-mentioned issues by proposing a new framework that

integrates local approximations into Metropolis-Hastings kernels, producing a Markov chain that

asymptotically (in the number of MCMC steps) samples from the exact posterior distribution. As

examples of this approach, we will employ approximations of either the log-likelihood function or the

forward model, using local linear, quadratic, or Gaussian process regression. To produce the sample

sets used for these local approximations, we will introduce a sequential experimental design procedure

that interleaves infinite refinement of the approximation with the Markov chain’s exploration of

the posterior. The overall experimental design reflects a combination of guidance from MCMC

(so that samples are focused on the posterior) and local space filling heuristics (to ensure good

quality sample sets for local approximation), triggered both by random refinement and by local error

indicators of approximation quality. The result is a practical approach that also permits rigorous

error analysis. This concept is inspired by the use of local approximations in trust region methods

for derivative-free optimization (Conn et al., 2000, 2009), wherein local models similarly allow the

reuse of model evaluations while enabling refinement until convergence. Local approximations also

function, define the exact posterior of interest.
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have a long history in the statistics literature (Cleveland, 1979; Friedman, 1991) and have recently

been reintroduced as an important strategy for scaling Gaussian processes to large data contexts

(Gramacy and Apley, 2013).

Local approximations are convergent under relatively straightforward conditions (compared to

global approximations), and we use this property to prove that the resulting MCMC algorithm

converges asymptotically to the posterior distribution induced by the exact forward model and

likelihood. Our proof involves demonstrating that the transition kernel converges quickly as the

posterior distribution is explored and as the surrogate is refined; our theoretical analysis focuses on

the specific case of a random-walk Metropolis algorithm coupled with local quadratic approximations

of the log-posterior density. Our arguments are not limited to the random-walk Metropolis algorithm,

however; they apply quite broadly and can be adapted to many other Metropolis-Hastings algorithms

and local approximation schemes. Broadly, our theoretical results reinforce the notion that it is

possible to greatly reduce the number of evaluations of the forward model per MCMC step when

the likelihood has some local regularity. We complement the theory by demonstrating experimental

performance improvements of up to several orders of magnitude on inference problems involving

ordinary differential equation and partial differential equation forward models, with no discernable

loss in accuracy, using several different MCMC algorithms and local approximation schemes.

We note that our theoretical results are asymptotic in nature; in this paper, we do not focus on

finite-time error bounds. While we can comment on such bounds in a few specific settings, obtaining

more general quantitative estimates for the finite-time bias of the algorithm is a significant challenge

and will be tackled elsewhere. Nevertheless, we argue that asymptotic convergence is quite useful for

practitioners, as it supports how the algorithm is actually applied. Since the aim of our approach is

to reduce the use of the forward model, it is natural to ask how many model runs would be necessary

to construct an MCMC chain that yields estimates with a certain error. We cannot a priori answer

this question, just as we cannot (in general) say in advance how long it will take any other MCMC

algorithm to reach stationarity. Yet asymptotic convergence makes our algorithm comparable to

standard MCMC algorithms in practice: iterations continue until MCMC diagnostics suggest that

the chain, and hence the underlying approximation, is sufficiently converged for the application. The

cost of running the forward model is accumulated incrementally as the MCMC chain is extended,

in a way that balances the error of the finite chain with the error introduced by the approximation.

Moreover, this process may be interrupted at any time. This approach to posterior sampling stands

in contrast with existing non-convergent methods, where the cost of constructing the approximation
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is incurred before performing inference, and where the user must carefully balance the error induced

by the approximation with the MCMC sampling error, without any rigorous strategy for doing so.

The remainder of this paper is organized as follows. We describe the new MCMC approach in Sec-

tion 2. Theoretical results on asymptotically exact sampling are provided in Section 3; proofs of these

theorems are deferred to Appendix B. Section 4 then provides empirical assessments of performance

in several examples. We emphasize that, while the examples demonstrate strong computational per-

formance, the present implementation is merely a representative of a class of asymptotically exact

MCMC algorithms. Therefore, Section 5 discusses several variations on the core algorithm that may

be pursued in future work. A reusable implementation of the algorithm described is available as

part of the MIT Uncertainty Quantification Library, https://bitbucket.org/mituq/muq/.

2 Metropolis-Hastings with local approximations

This section describes our framework for Metropolis-Hastings algorithms based on local approxima-

tions, which incrementally and infinitely refine an approximation of the forward model or likelihood

as inference is performed.

2.1 Algorithm overview

Consider a Bayesian inference problem with posterior density

p(θ|d) ∝ L(θ|d, f)p(θ),

for inference parameters θ ∈ Θ ⊆ Rd, data d ∈ Rn, forward model f : Θ → Rn, and probability

densities specifying the prior p(θ) and likelihood function L. The forward model may enter the

likelihood function in various ways. For instance, if d = f(θ) + η, where η ∼ pη represents some

measurement or model error, then L(θ|d, f) = pη(d− f(θ)).

A standard approach is to explore this posterior with a Metropolis-Hastings algorithm using a

suitable proposal kernel L, yielding the Metropolis-Hastings transition kernel K∞(Xt, ·); existing

MCMC theory governs the correctness and performance of this approach (Roberts and Rosenthal,

2004). For simplicity, assume that the kernel L is translation-invariant and symmetric.3 We assume
3Assuming symmetry simplifies our discussion, but the generalization to non-symmetric proposals is straightfor-

ward. Extensions to translation-dependent kernels, e.g., the Metropolis-adjusted Langevin algorithm, are also possible
(Conrad, 2014).
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that the forward model evaluation is computationally expensive—requiring, for example, a high-

resolution numerical solution of a partial differential equation (PDE). Also assume that drawing a

proposal is inexpensive, and that given the proposed parameters and the forward model evaluation,

the prior density and likelihood are similarly inexpensive to evaluate, e.g., Gaussian. In such a

setting, the computational cost of MCMC is dominated by the cost of forward model evaluations

required by K∞(Xt, ·).4

Previous work has explored strategies for replacing the forward model with some cheaper approx-

imation, and a typical scheme works as follows (Rasmussen, 2003; Bliznyuk et al., 2012; Marzouk

et al., 2007). Assume that one has a collection of model evaluations, S := {(θ, f(θ))}, and a method

for constructing an approximation f̃ of f based on those examples. This approximation can be

substituted into the computation of the Metropolis-Hastings acceptance probability. However, S is

difficult to design in advance, so the algorithm is allowed to refine the approximation, as needed, by

computing new forward model evaluations near the sample path and adding them to the growing

sample set St.

Our approach, outlined in Algorithm 1, is in the same spirit as these previous efforts. Indeed,

the sketch in Algorithm 1 is sufficiently general to encompass both the previous efforts mentioned

above and the present work. We write Kt to describe the evolution of the sampling process at time

t in order to suggest the connection of our process with a time-inhomogeneous Markov chain; this

connection is made explicit in Section 3. Intuitively, one can argue that this algorithm will produce

accurate samples if f̃ is close to f , and that the algorithm will be efficient if the size of St is small

and f̃ is cheap to construct.

Our implementation of this framework departs from previous work in two important ways. First,

rather than using global approximations constructed from the entire sample set St, we construct

local approximations that use only a nearby subset of St for each evaluation of f̃ , as in LOESS

(Cleveland, 1979) or derivative-free optimization (Conn et al., 2009). Second, previous efforts usu-

ally halt the growth of St after a fixed number of refinements;5 instead, we allow an infinite number

of refinements to occur as the MCMC chain proceeds. Figure 2 depicts how the sample set might
4Identifying the appropriate target for approximation is critical to the performance of our approach, and depends

upon the relative dimensionality, regularity, and computational cost of the various components of the posterior model.
In most settings, the forward model is a clear choice because it contributes most of the computational cost, while the
prior and likelihood may be computed cheaply without further approximation. The algorithm presented here may
be adjusted to accommodate other choices by merely relabeling the terms. For another discussion of this issue, see
Bliznyuk et al. (2008).

5For example, Rasmussen (2003) and Bliznyuk et al. (2012) only allow refinements until some fixed time Tref < T ,
and polynomial chaos expansions are typically constructed in advance, omitting refinement entirely (Marzouk et al.,
2007).
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Algorithm 1 Sketch of approximate Metropolis-Hastings algorithm
1: procedure RunChain(θ1,S1,L,d, p, f , L, T )
2: for t = 1 . . . T do
3: (θt+1,St+1)← Kt(θt,St,L,d, p, f , L)
4: end for
5: end procedure

6: procedure Kt(θ−,S,L,d, p, f , L)
7: Draw proposal θ+ ∼ L(θ−, ·)
8: Compute approximate models f̃+ and f̃−, valid near θ+ and θ−

9: Compute acceptance probability α← min
(

1, L(θ|d,f̃+)p(θ+)
L(θ|d,f̃−)p(θ−)

)
10: if approximation needs refinement near θ− or θ+ then
11: Select new point θ∗ and grow S ← S ∪ (θ∗, f(θ∗)). Repeat from Line 8.
12: else
13: Draw u ∼ Uniform(0, 1). If u < α, return (θ+,S), else return (θ−,S).
14: end if
15: end procedure

evolve as the algorithm is run, becoming denser in regions of higher posterior probability, allowing

the corresponding local approximations to use ever-smaller neighborhoods and thus to become in-

creasingly accurate. Together, these two changes allow us to construct an MCMC chain that, under

appropriate conditions, asymptotically samples from the exact posterior. Roughly, our theoretical

arguments (in Section 3 and Appendix B) will show that refinements of the sample set St produce

a convergent approximation f̃ and hence that Kt converges to the standard “full model” Metropo-

lis kernel K∞ in such a way that the chain behaves as desired. Obviously, we require that f be

sufficiently regular for local approximations to converge. For example, when using local quadratic

approximations, it is sufficient (but not necessary) for the Hessian of f to be Lipschitz continuous

(Conn et al., 2009).

The remainder of this section expands this outline into a usable algorithm, detailing how to

construct the local approximations, when to perform refinement, and how to select new points to

refine the approximations. Section 2.2 describes how to construct local linear or quadratic models

and outlines the convergence properties that make them useful. Section 2.3 explains when to trigger

refinement, either randomly or based on a cross validation error indicator. Section 2.4 explains how

to refine the approximations by evaluating the full model at a new point chosen using a space filling

experimental design. Finally, Section 2.5 explains the changes required to substitute local Gaussian

process approximations for polynomial approximations.
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(a) Early times. (b) Late times.

Figure 2: Schematic of the behavior of local approximations as the algorithm proceeds on the
example from Figure 1. The balls are centered at locations where local models might be needed
and the radius indicates the size of the sample set; the accuracy of local models generally increases
as this ball size shrinks. At early times the sample set is sparse and the local approximations are
built over relatively large balls, implying that their accuracy is limited. At later times refinements
enrich the sample set near regions of high posterior density, allowing the local models to shrink and
become more accurate.

2.2 Local polynomial approximation

This section describes how to construct local linear or quadratic models. We construct these models

using samples from S drawn from a ball of radiusR centered on θ, B(θ,R) := {(θi, f(θi)) ∈ S : ‖θi − θ‖2 ≤ R}.

If this set contains a sufficient number of samples, local polynomial models may easily be fit using

least squares regression. We write the operators that produce such linear or quadratic approxima-

tions as L∼jB(θ,R) or Q∼jB(θ,R), respectively. The superscript ∼j, if non-empty, indicates that sample j

should be omitted; this option is used to support cross-validation error indicators, described below.

It can be shown that the following error bounds hold independently for linear or quadratic

approximations of each output component i = 1 . . . n, for every point within the ball, θ′ : ‖θ′−θ‖2 ≤

R (Conn et al., 2009), assuming that the gradient or Hessian of f is Lipschitz continuous, respectively:

∣∣∣fi(θ′)− (L∼jB(θ,R)(θ
′)
)
i

∣∣∣ ≤ κl(ν1, λ, d)R2, (1a)∣∣∣fi(θ′)− (Q∼jB(θ,R)(θ
′)
)
i

∣∣∣ ≤ κq(ν2, λ, d)R3. (1b)

where the constants κ are functions of the Lipschitz constants ν1, ν2 <∞ of the gradient or Hessian
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of f , respectively; a “poisedness” constant λ reflecting the geometry of the input sample set; and

the parameter dimension d. Intuitively, λ is small if the points are well separated, fill the ball from

which they are drawn, and do not lie near any linear or quadratic paths (for the linear and quadratic

approximations, respectively). As long as λ is held below some fixed finite value, the model is said

to be λ-poised, and these bounds show that the approximations converge as R → 0.6 These simple

but rigorous local error bounds form the foundation of our theoretical analysis, and are the reason

that we begin with local polynomial approximations. Usefully, they are representative of the general

case, in that most reasonable local models converge in some sense as the ball size falls to zero.

It remains to precisely specify the choice of radius, R, and the weights used in the least squares

regression. The radius R is selected to include a fixed number of points N . A linear model is

fully defined by Ndef = d + 1 points and a quadratic is defined by Ndef = (d + 1)(d + 2)/2 points;

hence, performing a least squares regression requires at least this many samples. Such models

are interpolating, but the associated least squares system is often poorly conditioned unless the

geometry of the sample set is carefully designed. Conn et al. (2009) show that adding additional

samples can only stabilize the regression problem, so we select N =
√
dNdef, which seems to work

well in practice.7

We depart from Conn et al. (2009) by performing a weighted regression using a variation of the

tricube weight function often used with LOESS (Cleveland, 1979). If the radius that contains the

inner Ndef samples is Rdef, then R > Rdef and the weight of each sample is:

wi =



1 ‖θi − θ‖2 ≤ Rdef,

0 ‖θi − θ‖2 > R,(
1−

(
‖θi−θ‖2−Rdef

R−Rdef

)3
)3

else.

(2)

Setting the inner points to have unity weight ensures that the regression is full rank, while subse-

quently decreasing the weights to zero puts less emphasis on more distant samples. An interesting

side effect of using this weight function is that the global approximation f̃ has two continuous

derivatives, even though it is constructed independently at each point (Atkeson et al., 1997).
6Although Conn et al. (2009) explicitly compute and control the value of λ, this step is not necessary in practice

for our algorithm. The geometric quality of our sample sets is generally good because of the experimental design
procedure we use to construct them. Also, we are less sensitive to poor geometry because we perform regression,
rather than interpolation, and because the cross validation procedure described below considers geometric quality and
can trigger refinement as needed.

7In very low dimensions,
√
d provides very few extra samples and hence should be inflated. For d = 6, in the

numerical experiments below, this exact form is used.
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This process is described by the subroutine LocApprox in Algorithm 2, which produces an

approximation at θ, using a fixed set of samples S, optionally omitting sample j. The pseudocode

uses A∼jB(θ,R) to represent either polynomial fitting algorithm. Appendix A describes the regres-

sion procedure and the numerical approach to the corresponding least squares problems in more

detail. Multiple outputs are handled by constructing a separate approximation for each one. Fortu-

nately, the expensive step of the least squares problem is identical for all the outputs, so the cost of

constructing the approximation scales well with the number of observations.

Algorithm 2 Construct local approximation
1: procedure LocApprox(θ,S, j)
2: Select R so that |B(θ,R)| = N , where
B(θ,R) := {(θi, f(θi)) ∈ S : ‖θi − θ‖2 ≤ R} . Select ball of points

3: f̃ ← A∼jB(θ,R) . Local approximation as defined in
Section 2.2, possibly without sample j

4: return f̃
5: end procedure

2.3 Triggering model refinement

We separate the model refinement portion of the algorithm into two stages. This section discusses

when refinement is needed, while Section 2.4 explains how the refinement is performed. The MCMC

step uses local approximations at both θ+ and θ−, and either are candidates for refinement. We

choose a refinement criteria that is symmetric, that is, which behaves identically if the labels of θ+

and θ− are reversed; by treating the two points equally, we aim to avoid adverse coupling with the

decision of whether to accept a move.

Refinement is triggered by either of two criteria. The first is random: with probability βt, the

model refined at either the current point θ− or the proposed point θ+. This process fits naturally into

MCMC and is essential to establishing the theoretical convergence results in the next section. The

second criterion, based on a cross-validation error indicator, is intended to make the approximation

algorithm efficient in practice. For a Metropolis-Hastings algorithm with a symmetric proposal,

recall that the acceptance probability computed using the true forward model is

α = min
(

1, L(θ+|d, f)p(θ+)
L(θ−|d, f)p(θ−)

)
.

Since the acceptance probability is a scalar, and this equation is the only appearance of the forward

model in the sampling algorithm, it is a natural target for an error indicator. We employ a leave-

11



one-out cross validation strategy, computing the sensitivity of the acceptance probability to the

omission of samples from each of the approximate models, producing scalar error indicators ε+ and

ε−. Refinement is performed whenever one of these indicators exceed a threshold γt, at the point

whose error indicator is larger.

To construct the indicators, begin by computing the ratio inside the acceptance probability, using

the full sample sets and variations leaving out each sample, j = 1, . . . , N .

ζ := L(θ+|d,LocApprox(θ+,S, ∅))p(θ+)
L(θ−|d,LocApprox(θ−,S, ∅))p(θ−)

ζ+,∼j := L(θ+|d,LocApprox(θ+,S, j))p(θ+)
L(θ−|d,LocApprox(θ−,S, ∅))p(θ−)

ζ−,∼j := L(θ+|d,LocApprox(θ+,S, ∅))p(θ+)
L(θ−|d,LocApprox(θ−,S, j))p(θ−)

Next, find the maximum difference between the α computed using ζ and that computed using the

leave-one-out variations ζ+,∼j and ζ−,∼j . The error indicators consider the acceptance probability

in both the forward and reverse directions, ensuring equivalent behavior under relabeling of θ+ and

θ−; this prevents the cross validation process from having any impact on the reversibility of the

transition kernel.

ε+ := max
j

(∣∣∣∣min (1, ζ)−min
(
1, ζ+,∼j) ∣∣∣∣+

∣∣∣∣min
(

1, 1
ζ

)
−min

(
1, 1
ζ+,∼j

)∣∣∣∣) (3)

ε− := max
j

(∣∣∣∣min (1, ζ)−min
(
1, ζ−,∼j

) ∣∣∣∣+
∣∣∣∣min

(
1, 1
ζ

)
−min

(
1, 1
ζ−,∼j

)∣∣∣∣) (4)

We emphasize that the acceptance probability is a natural quantity of interest in this context;

it captures the entire impact of the forward model and likelihood on the MH kernel. The cross-

validation error indicator is easily computable, summarizes a variety of error sources, and is easily

interpretable as an additive error in a probability. These features make it possible for the user

to exercise a problem-independent understanding of the threshold to which it is compared, γt. In

contrast, attempting to control the error in either the forward model outputs or log-likelihood at

the current or proposed point is not generically feasible, as their scale and the sensitivity of the MH

kernel to their perturbations cannot be known a priori.

Our two refinement criteria have different purposes, and both are useful to ensure a quick and

accurate run. The cross validation criterion is a natural and efficient way to refine our estimates,

and is the primary source of refinement during most runs. The random criterion is less efficient,
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but some random evaluations may be required for the algorithm to be asymptotically correct for all

starting positions. Thus, we use both in combination. The two parameters βt and γt are allowed to

decrease over time, decreasing the rate of random refinement and increasing the stringency of the

cross validation criterion; theory governing the rates at which they may decrease and guidance on

choosing them in practice are discussed later.

2.4 Refining the local model

If refinement of the local model at a point θ is required, we perform refinement by selecting a single

new nearby point θ∗, computing f(θ∗), and inserting the new pair into S. To be useful, this new

model evaluation should improve the sample set for the local model B(θ,R), either by allowing the

radius R to decrease or by improving the local geometry of the sample set. Consider that MCMC

will revisit much of the parameter space many times, hence our algorithm must ensure that local

refinements maintain the global quality of the sample set, that is, the local quality at every nearby

location.

Intuitively, local polynomial regression becomes ill-conditioned if the points do not fill the whole

ball, or if some points are clustered much more tightly than others. The obvious strategy of simply

adding θ to S is inadvisable because it often introduces tightly clustered points, inducing poorly

conditioned regression problems. Instead, a straightforward and widely used type of experimental

design is to choose points in a space-filling fashion; doing so near θ naturally fulfills our criteria.

Specifically, we select the new point θ∗ by finding a local maximizer of the problem:

θ∗ = arg max
θ′

min
θi∈S
‖θ′ − θi‖2,

subject to ‖θ′ − θ‖2 ≤ R,

where optimization iterations are initialized at θ′ = θ. The constraint ensures that the new sample

lies in the ball and thus can be used to improve the current model, and the inner minimization

operator finds a point well separated from the entire set S in order to ensure the sample’s global

quality. Inspection of the constraints reveals that the inner minimization may be simplified to

θi ∈ B(θ, 3R), as points outside a ball of radius 3R have no impact on the optimization. We seek

a local optimum of the objective because it is both far easier to find than the global optimum, and

is more likely to be useful: the global optimum will often be at radius R, meaning that the revised

model cannot be built over a smaller ball. This strategy is summarized in Algorithm 3.
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Algorithm 3 Refine a local approximation

1: procedure RefineNear(θ,S)
2: Select R so that |B(θ,R)| = N . Select ball of points
3: θ∗ ← arg max‖θ′−θ‖≤R minθi∈S ‖θ′ − θi‖ . Optimize near θ
4: S ← S ∪ {θ∗, f(θ∗)} . Grow the sample set
5: return S
6: end procedure

Although there is a close relationship between the set of samples where the forward model is

evaluated and the posterior samples that are produced by MCMC, they are distinct and in general

the two sets do not overlap. A potential limitation of the space filling approach above is that it

might select points outside the support of the prior. This is problematic only if the model is not

feasible outside the prior, in which case additional constraints can easily be added.

2.5 Local Gaussian process surrogates

Gaussian process (GP) regression underlies an important and widely used class of computer model

surrogates, so it is natural to consider its application in the present local approximation framework

Sacks et al. (1989); Santner et al. (2003). Local Gaussian processes have been previously explored

in (Vecchia, 1988; Cressie, 1991; Stein et al., 2004; Snelson and Ghahramani, 2007; Gramacy and

Apley, 2013). This section explains how local Gaussian process approximations may be substituted

for the polynomial approximations described above.

The adaptation is quite simple: we define a new approximation operator G∼jS that may be

substituted for the abstract operator A∼jB(θ,R) in Algorithm 2. The error indicators are computed

much as before, except that we use the predictive distribution f̃(θ) ∼ N (µ(θ), σ2(θ)) instead of a

leave-one-out procedure. We define G∼jS to be the mean of the local Gaussian process, µ(θ), when

j = ∅, and a draw from the Gaussian predictive distribution otherwise. This definition allows us to

compute ε+ and ε− without further modification, using the posterior distribution naturally produced

by GP regression.

Our implementation of GPs borrows heavily from Gramacy and Apley (2013), using a separable

squared exponential covariance kernel (i.e., with a different correlation length `i for each input

dimension) and an empirical Bayes approach to choosing the kernel hyperparameters, i.e., using

optimization to find the mode of the appropriate posterior marginals. The variance is endowed

with an inverse-gamma hyperprior and a MAP estimate is found analytically, while the correlation

lengths and nugget are endowed with gamma hyperpriors whose product with the marginal likelihood
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is maximized numerically. Instead of constructing the GP only from nearest neighbors B(θ,R),

we use a subset of S that mostly lies near the point of interest but also includes a few samples

further away. This combination is known to improve surrogate quality over a pure nearest-neighbor

strategy (Gramacy and Apley, 2013). We perform a simple approximation of the strategy developed

by Gramacy and Apley: beginning with a small number of the nearest points, we estimate the

hyperparameters and then randomly select more neighbors to introduce into the set, where the

existing samples are weighted by their distance under the norm induced by the current length

scales. This process is repeated in several batches, until the desired number of samples is reached.

We are relatively unconstrained in choosing the number of samples N ; in the numerical examples to

be shown later, we choose N = d5/2, mimicking the choice for quadratic approximations. Multiple

outputs are handled with separate predictive distributions, but the hyperparameters are jointly

optimized.8

2.6 Algorithm summary

Our Metropolis-Hastings approach using local approximations is summarized in Algorithm 4. The

algorithm proceeds in much the same way as the sketch provided in Algorithm 1. It is general enough

to describe both local polynomial and Gaussian process approximations, and calls several routines

developed in previous sections. The chain is constructed by repeatedly constructing a new state with

Kt.9 This function first draws a proposal and forms the approximate acceptance probability. Then

error indicators are computed and refinement is performed as needed, until finally the proposal is

accepted or rejected.

3 Theoretical results

In this section we show that, under appropriate conditions, the following slightly modified version

of Algorithm 4 converges to the target posterior p(θ|d) asymptotically:

1. The sequence of parameters {βt}t∈N used in that algorithm are of the form βt ≡ β > 0.

Our results hold with essentially the same proof if we use any sequence {βt}t∈N that satisfies
8Choosing an optimal number of samples is generally challenging, and we do not claim that this choice of N is

the most efficient. Rather, it is the same scaling that we use for local quadratic approximations, and appears to work
well for GP approximation in the range where we have applied it. For very low d, however, this N may need to be
increased.

9Before MCMC begins, S1 needs to be seeded with a sufficient number of samples for the first run. Two simple
strategies are to draw these samples from the prior, or else near the MCMC starting point, which is often the posterior
mode as found by optimization.
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Algorithm 4 Metropolis-Hastings with local approximations
1: procedure RunChain(f , L, θ1,S1,L,d, p, T, {βt}Tt=1, {γt}Tt=1)
2: for t = 1 . . . T do
3: (θt+1,St+1)← Kt(θt,St,L,d, p, f , L, βt, γt)
4: end for
5: end procedure

6: procedure Kt(θ−,S,L,d, p, f , L, βt, γt)
7: Draw proposal θ+ ∼ L(θ−, ·)
8: f̃+ ← LocApprox(θ+,S, ∅) . Compute nominal approximations
9: f̃− ← LocApprox(θ−,S, ∅)

10: α← min
(

1, L(θ|d,f̃+)p(θ+)
L(θ|d,f̃−)p(θ−)

)
. Compute nominal acceptance ratio

11: Compute ε+ and ε− as in Equations 3-4.
12: if u ∼ Uniform(0, 1) < βt then . Refine with probability βt
13: Randomly, S ← RefineNear(θ+,S) or S ← RefineNear(θ−,S)
14: else if ε+ ≥ ε− and ε+ ≥ γt then . If needed, refine near the larger error
15: S ← RefineNear(θ+,S)
16: else if ε− > ε+ and ε− ≥ γt then
17: S ← RefineNear(θ−,S)
18: end if
19: if refinement occured then repeat from Line 8.
20: else . Evolve chain using approximations
21: Draw u ∼ Uniform(0, 1). If u < α, return (θ+,S), else return (θ−,S).
22: end if
23: end procedure

∑
t βt = ∞. Example B.13 in Appendix B shows that this is sharp: if

∑
t βt < ∞, the

algorithm can have a positive probability of failing to converge asymptotically, regardless of

the sequence {γt}t∈N.

2. The approximation of log p(θ|d) is made via quadratic interpolation on the N = Ndef nearest

points. We believe this to be a representative instantiation of the algorithm; similar results

can be proved for other approximations of the likelihood function.

3. The sub-algorithm RefineNear is replaced with:

RefineNear(θ,S) = return(S ∪ {(θ, f(θ))}).

This assumption substantially simplifies and shortens our argument, without substantially

impacting the algorithm.

4. We fix a constant 0 < λ < 1. In step 14, immediately before the word then, we add ‘or, for

B(θ+, R) as defined in the subalgorithm LocApprox(θ+,S, ∅) used in step 8, the collection

of points B(θ+, R) ∩ S is not λ-poised’. We add the same check, with θ− replacing θ+ and
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‘step 9’ replacing ‘step 8’, in step 16. The concept of poisedness is defined in (Conn et al.,

2009), but the details are not required to read this proof. This additional check is needed for

our approximate algorithm to ‘inherit’ a one-step drift condition from the ‘true’ algorithm.

Empirically, we have found that this check rarely triggers refinement for sensible values of λ.

3.1 Assumptions

We now make some general assumptions and fix notation that will hold throughout this section and

in Appendix B. Denote by {Xt}t∈N a version of the stochastic process on Θ ⊂ Rd defined by this

modified version of Algorithm 4. Let L(x, ·) be the kernel on Rd used to generate new proposals in

Algorithm 4, `(x, y) denote its density, and Lt be the point proposed at time t in Algorithm 4. Let

K∞(x, ·) be the MH kernel associated with proposal kernel L and target distribution p(θ|d). Assume

that, for all measurable A ⊂ Θ, we can write K∞(x,A) = r(x)δx(A) + (1− r(x))
∫
y∈A p(x, y)dy for

some 0 ≤ r(x) ≤ 1 and density p(x, y). Also assume that L(x, ·) satisfies

L(x, S) = L(x+ y, S + y) (5)

for all points x, y ∈ Θ and all measurable sets S ⊂ Θ.

Denote by St the collection of points in S from Algorithm 4 at time t, denote by R = Rt the

value of Rdef at time t, and denote by q1
t , . . . , q

N
t the points in St within distance Rt of Xt.

We define the Gaussian envelope condition:

Assumption 3.1. There exists some positive definite matrix [aij ] and constant 0 < G <∞ so that

the distribution

log p∞(θ1, θ2, . . . , θd) = −
∑

1≤i≤j≤d
aijθiθj

satisfies

lim
r→∞

sup
‖θ‖≥r

| log p(θ|d)− log p∞(θ)| < G. (6)

For θ ∈ Θ, define the Lyapunov function

V (θ) = 1√
p∞(θ)

. (7)
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Assumption 3.2. The proposal kernel L and the density p∞(θ) satisfy the following:

1. For all compact sets A, there exists ε = ε(A) so that infy∈A `(0, y) ≥ ε > 0.

2. There exist constants C, ε0, x0 ≥ 0 so that `(0, x) ≤ Cp∞(x)
1

1+ε0 for all ‖x‖ ≥ x0.

3. The Metropolis-Hastings Markov chain Zt with proposal kernel L and stationary density p∞

satisfies the drift condition

E[V (Zt+1)|Zt = x] ≤ αV (x) + b

for some 0 ≤ α < 1 and some 0 ≤ b <∞.

Before giving the main result, we briefly discuss the assumptions above.

1. Assumption 3.1 is quite strong. It is chosen as a representative sufficient condition for con-

vergence of our algorithm on unbounded state spaces primarily because it is quite easy to

state and to check. The assumption is used only to guarantee that our approximation of the

usual MH chain inherits a drift condition (i.e. so that Lemma B.9 of Appendix B holds), and

may be replaced by other assumptions that provide such a guarantee. We give some relevant

alternative assumptions at the end of Appendix B. In particular, instead of Assumption 3.1,

if we assume that the posterior p(θ|d) has sub-Gaussian tails with bounded first and second

derivatives, our methods can be reworked to show the ergodicity of a slight modification of

Algorithm 4.

Although Assumption 3.1 is very strong, it does hold for one important class of distributions:

mixtures of Gaussians for which one mixture component has the largest variance. That is, the

condition holds if p(θ|d) is of the form
∑k
i=1 αiN (µi,Σi) for some weights

∑k
i=1 αi = 1, some

means {µi}ki=1 ∈ Rd, and some d× d covariance matrices {Σi}ki=1 that satisfy v>Σ1v > v>Σiv

for all 0 6= v ∈ Rd and all i 6= 1.

2. Assumption 3.2 holds for a very large class of commonly used Metropolis-Hastings algorithms

(see, e.g., Roberts and Tweedie (1996) for sufficient conditions for item 3 of Assumption 3.2.)

3.2 Ergodicity

Here we state our main theorems on the convergence of the version of Algorithm 4 introduced in

this section. Proofs are given in Appendix B.
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Theorem 3.3. Suppose Assumption 3.2 holds. There exists some G0 = G0(L, p∞, λ,N) so that if

assumption 3.1 holds with 0 < G < G0 <∞, then for any starting point X0 = x ∈ Θ, we have

lim
t→∞

‖L(Xt)− p(θ|d)‖TV = 0.

If we assume that Θ is compact, the same conclusion holds under much weaker assumptions:

Theorem 3.4. Suppose Θ is compact and that both p(θ|d) and `(x, y) are bounded away from 0 and

infinity. Then

lim
t→∞

‖L(Xt)− p(θ|d)‖TV = 0.

Remark 3.5. We focus only on ergodicity, and in particular, do not obtain rates of convergence,

laws of large numbers, or central limit theorems. We believe that, using results from the adaptive

MCMC literature (see Fort et al. (2012)), the law of large numbers and central limit theorem can be

shown to hold for the Monte Carlo estimator from our algorithm. A significantly more challenging

issue is to quantify the bias-variance tradeoff of our algorithm and its impact on computational effort.

We plan to study this issue in a forthcoming paper.

4 Numerical experiments

Although the results in Section 3 and further related results in Appendix B establish the asymptotic

exactness of our MCMC framework, it remains to demonstrate that it performs well in practice. This

section describes three examples in which local surrogates produce accurate posterior samples using

dramatically fewer evaluations of the forward model than standard MCMC. Additionally, these

examples explore parameter tuning issues and the performance of several algorithmic variations.

Though certain aspects of these examples depart from the assumptions of Theorems 3.3 or 3.4, the

discussion in Appendix B.6 suggests that the theory is extensible to these cases; the success of the

numerical experiments below reinforces this notion.

For each of these examples, we consider the accuracy of the computed chains and the number of

forward model evaluations used to construct them. In the absence of analytical characterizations of

the posterior, the error in each chain is estimated by comparing the posterior covariance estimates

computed from a reference MCMC chain—composed of multiple long chains computed without any

approximation—to posterior covariance estimates computed from chains produced by Algorithm 4.
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The forward models in our examples are chosen to be relatively inexpensive in order to allow the

construction of such chains and hence a thorough comparison with standard samplers. Focusing on

the number of forward model evaluations is a problem-independent proxy for the overall running

time of the algorithm that is representative of the algorithm’s scaling as the model cost becomes

dominant.

The first example uses an exponential-quartic distribution to investigate and select tunings of

the refinement parameters βt and γt. The second and third examples investigate the performance

of different types of local approximations (linear, quadratic, and Gaussian process) when inferring

parameters for an ODE model of a genetic circuit and the diffusivity field in an elliptic PDE, respec-

tively. We conclude with some brief remarks on the performance and scaling of our implementation.

4.1 Exponential-quartic distribution

To investigate tunings of the the refinement parameters βt and γt, we consider a simple two dimen-

sional target distribution, with log-density

log p(θ) = − 1
10θ

4
1 −

1
2(2θ2 − θ2

1)2,

illustrated in Figure 3. Performing MCMC directly on this model is of course very inexpensive,

but we may still consider whether local quadratic approximations can reduce the number of times

the model must be evaluated. For simplicity, we choose the proposal distribution to be a Gaussian

random walk with variance tuned to σ2 = 4.

−3 −2 −1 0 1 2 3

θ1

−2

−1
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1

2

3
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θ 2

Figure 3: The logarithm of the target density in the exponential-quartic example.

As a first step towards understanding the response of our approach to βt and γt, we test several
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constant values, setting only one of βn or γn to be nonzero, choosing from βn ∈ {10−3, 10−2, 10−1}

and γn ∈ {10−2, 10−1, 0.5}. With these settings, we run Algorithm 4, using local quadratic approx-

imations of the log-target density.

The baseline configuration to which we compare Algorithm 4 comprises 30 chains, each run

for 105 MCMC steps using the true forward model (i.e., with no approximation). In all of the

numerical experiments below, we discard the first 10% of a chain as burn-in. The reference runs are

combined to produce a “truth” covariance, to which we compare the experiments. The chains are all

initialized at the same point in the high target density region. Ten independent chains are run for

each parameter setting, with each chain containing 105 MCMC steps. After discarding 104 burn-in

samples for each chain, we consider the evolution of the error as the chain lengthens; we compute a

relative error measure at each step, consisting of the Frobenius norm of the difference in covariance

estimates, divided by the Frobenius norm of the reference covariance.
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Figure 4: The accuracy and cost of sampling the exponential-quartic example using constant refine-
ment parameters.
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This accuracy comparison is summarized in Figure 4a, which shows the evolution of the error with

the number of MCMC steps. The corresponding computational costs are summarized in Figure 4b,

which shows the number of true model evaluations performed for any given number of MCMC steps.

The distribution of errors obtained with the baseline chains, shown in red, reflects both the finite

accuracy of the reference chain and the variance resulting from finite baseline chain lengths. As

expected, the cost of a chain increases when βt is larger or γt is smaller; these values trigger more

frequent random refinements or more strictly constrain the acceptance probability error indicator,

respectively. When β-refinement is set to occur at a very low rate, the resulting chain is inexpensive

but of low accuracy, and in contrast, higher values of β show increased cost and reduced errors.

The theory suggests that any constant βt > 0 should yield eventual convergence, but this difference

in finite time performance is not surprising. Even the βt = 0.01 chains eventually show a steady

improvement in accuracy over the interval of chain lengths considered here, which may reflect the

predicted asymptotic behavior. Our experiments also show the efficacy of cross validation: all

the chains using cross-validation refinement have accuracies comparable to the baseline runs while

making significantly reduced use of the true model. These accuracies seem relatively insensitive to

the value of γ.

In practice, we use the two criteria jointly and set the parameters to decay with t. Allowing

βt to decay is a cost-saving measure, and is theoretically sound as long as
∑
t βt diverges; on the

other hand, setting γt to decay increases the stringency of the cross validation criterion, improving

robustness. Based upon our experimentation, we propose to use parameters βt = 0.01t−0.2 and

γt = 0.1t−0.1; this seems to be a robust choice, and we use it for the remainder of the experiments.

Figure 5 summarizes the accuracy and cost of these parameter settings, and also considers the

impact of a faster decay for the cross validation criterion: γt = 0.1t−0.6. The proposed parameters

yield estimates that are comparable in accuracy to the standard algorithm, but cheaper (shifted

to the left) by nearly two orders of magnitude. Observe that tightening γt more quickly does not

improve accuracy, but does increase the cost of the chains.

Before concluding this example, we explore the behavior of the refinement scheme in more detail.

Figure 6 shows that under the proposed settings, though most refinements are triggered by cross

validation, a modest percentage are triggered randomly; we propose that this is a useful balance

because it primarily relies on the apparent robustness of cross validation, but supplements it with the

random refinements required for theoretical guarantees. Interestingly, even though the probability

of random refinement is decreasing and the stringency of the cross-validation criterion is increasing,
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Figure 5: The accuracy of the inference as compared to the number of forward model evaluations
required using the proposed parameters or a setting with faster γt decay. The plot depicts ten
independent chains of each type, with the first 10% of each chain removed as burn-in.

the proportion of refinements triggered randomly is observed to increase. This behavior suggests

that the local approximations are indeed becoming more accurate as the chains progress.
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Figure 6: The percentage of refinements triggered by the random refinement criterion, for ten
independent chains in the exponential-quartic example, using the proposed parameters.

Finally, it is instructive to directly plot the observed error indicators and compare them to the

threshold used for refinement, as in Figure 7. Refinement occurs whenever the error indicators ε,

denoted by circles, exceed the current γt. Comparing Figures 7a and 7b, we observe that many points

lie just below the differing refinement thresholds, suggesting that choosing γt provides significant

control over the behavior of the algorithm.
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(a) The proposed parameters.
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Figure 7: The cross validation error indicator for the exponential-quartic example, using the proposed
parameters or a faster γt decay. The indicator shown is ε = max(ε+, ε−), computed before any
refinement occurs. The error indicators are often much smaller than 10−11—i.e., some proposals
should obviously be accepted or rejected—but the plots are truncated to focus on behavior near the
γt threshold.

4.2 Genetic toggle switch

Given the refinement parameters chosen in the previous example, we now consider the performance of

several different types of local approximations in an ODE model with a compact parameter domain.

We wish to infer the parameters of a genetic “toggle switch” synthesized in E. coli plasmids by

Gardner et al. (2000), and previously used in an inference problem by Marzouk and Xiu (2009).

Gardner et al. (2000) proposed a differential-algebraic model for the switch, with six unknown

parameters Zθ = {α1, α2, β, γ,K, η} ∈ R6, while the data correspond to observations of the steady-

state concentrations. As in Marzouk and Xiu (2009), the parameters are centered and scaled around

their nominal values so that they can be endowed with uniform priors over the hypercube [−1, 1]6.

The measurement errors are independent and Gaussian, with zero mean and variances that depend
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on the experimental conditions. Further details on the problem setup are given in Appendix C.

Figure 8 shows marginal posterior densities of the normalized parameters θ. These results broadly

agree with Marzouk and Xiu (2009) and indicate that some directions are highly informed by the

data while others are largely defined by the prior, with strong correlations among certain parameters.
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Figure 8: One- and two-dimensional posterior marginals of the six parameters in the genetic toggle
switch.

We investigate the performance of three different local approximations of the forward model:

linear, quadratic, and Gaussian process. The experiment proceeds as in the last section (Section 4.1),

with two differences: first, we adapt the covariance of the Gaussian proposal using the adaptive

Metropolis algorithm of Haario et al. (2001), a more practical choice than a fixed-size Gaussian

random walk. Second, we limit our algorithm to perform at most two refinements per MCMC

step, which is an ad hoc limit to the cost of any particular step. Figure 9 shows that the accuracy is

nearly identical for all the cases, but the approximate chains use fewer evaluations of the true model,

reducing costs by more than an order of magnitude for quadratic or Gaussian process approximations

(Figure 10b). Local linear approximations show only modest improvements in the cost. Note that

when proposals fall outside the support of the prior, the proposal is rejected without running either

the true or approximate models; hence even the reference configuration runs the model less than

once per MCMC step.

It is also instructive to plot the accuracy and cost as a function of the number of MCMC steps,

as in Figure 10. All the accuracy trajectories in Figure 10a lie on top of each other, suggesting

that the approximations do not have any discernable impact on the mixing time of the chain. Yet

Figure 10b shows not only that the approximation strategies yield lower total cost at any given
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Figure 9: Approximate relative covariance errors in the MCMC chains versus their costs, for the
genetic toggle switch problem, using several different local approximation strategies. The plot depicts
ten independent chains of each type, with the first 10% of each chain removed as burn-in.

number of MCMC steps, but also that these costs accumulate at a slower rate than when the true

model is used directly.

4.3 Elliptic PDE inverse problem

We now turn to a canonical inverse problem involving inference of the diffusion coefficient in an ellip-

tic PDE (Dashti and Stuart, 2011). We leave the details of the PDE configuration to Appendix D; it

suffices for our purposes that it is a linear elliptic PDE on a two-dimensional spatial domain, solved

with a finite element algorithm at moderate resolution. The diffusion coefficient is defined by six

parameters, each endowed with a standard normal prior. Noisy pointwise observations are taken

from the solution field of the PDE and are relatively informative, and hence the posterior shifts

and concentrates significantly with respect to the prior, as shown in Figure 11. We also empha-

size that even though the PDE is linear, the forward model—i.e., the map from the parameters to

the observed field—is nonlinear and hence the posterior is not Gaussian. We also note that, while

the design of effective posterior sampling strategies for functional inverse problems is an enormous

and important endeavor (Cotter et al., 2013), our parameterization renders this problem relatively

low-dimensional and the simple adaptive Metropolis sampler used to obtain our results mixes well.

Now we evaluate the performance of the various local approximation schemes, using the same

experiments as in the previous section; results are summarized in Figure 12. As in the genetic

toggle switch example, the accuracies of all the configurations are nearly indistinguishable, yet the

approximate chains demonstrate significantly reduced use of the true forward model. Local linear

approximations of the forward model decrease the cost by over an order of magnitude. Both the
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Figure 10: Approximate relative covariance errors in the MCMC chains and their costs, shown over
the length of the MCMC chain, for the genetic toggle switch problem, using several different local
approximation strategies. The plot depicts ten independent chains of each type, with the first 10%
of each chain removed as burn-in.

local quadratic and local GP regressors yield well over two orders of magnitude reduction in cost.

We suggest that our schemes perform very well in this example both because of the regularity of

the likelihood and because the concentration of the posterior limits the domain over which the

approximation must be accurate.

4.4 Implementation and performance notes

We have now demonstrated how our approximate MCMC framework can dramatically reduce the

use of the forward model, but we have not yet addressed the performance of our implementation in

terms of running time or memory. Although in principle one might worry that the cost of storing the

growing sample set S or of performing the nearest neighbor searches might become challenging, we

find that neither is problematic in practice. Storing a few thousand samples, as required in our tests,
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Figure 12: Approximate relative covariance errors in the MCMC chains versus their costs, for the
elliptic PDE inverse problem, using several different local approximation strategies. The plot depicts
ten independent chains of each type, with the first 10% of each chain removed as burn-in.

is trivial on modern machines. Finding nearest neighbors is a hard problem asymptotically with

respect to the parameter dimension and size of the sample set, but our sample sets are neither high

dimensional nor large. We use an efficient library to perform the nearest neighbor computations,

which implements specialized algorithms that can vastly outperform the asymptotic complexity for

low-dimensional nearest neighbors (Muja and Lowe, 2009), and we observe that its run time is an

insignificant cost. Computing the error indicator is also relatively inexpensive in these settings:

for polynomials, each cross-validation sample only requires a low-rank update of the least squares

solution; and for Gaussian processes, drawing from the posterior predictive distribution is fast once

the GP has been fit.
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To investigate the run-time performance, we measured the average wall-clock time needed to

construct each chain used in the genetic toggle switch and elliptic PDE examples on a typical

desktop: true model (9 and 4 minutes, respectively), linear (4 and 5 minutes), quadratic (5 minutes

and 1 hour), Gaussian process (2.4 and 8.5 hours).10 For quadratic approximations, benchmarking

suggests that around 70% of the run-time was spent computing QR factorizations needed to fit

the quadratic surrogates and < 2% was spent performing nearest neighbor searches or running

the full model. Even though the models take only a small fraction of a second to run, the linear

approximation is already competitive in terms of run-time. For sufficiently expensive forward models,

the fixed cost of constructing approximations will be offset by the cost of the model evaluations, and

real run-times should reflect the strong performance we have demonstrated with problem-invariant

metrics. Although Gaussian process approximations showed slightly superior performance in terms

of model use, the computational effort required to construct them is much higher, suggesting that

they will be most useful for extremely expensive models.

5 Discussion

We have proposed a new class of MCMC algorithms that construct local surrogates to reduce the cost

of Bayesian inference in problems with computationally expensive forward models. These algorithms

introduce local approximations of the forward model or log-likelihood into the Metropolis-Hastings

kernel and refine these approximations incrementally and infinitely. The resulting Markov chain thus

employs a sequence of approximate transition kernels, but asymptotically samples from the exact

posterior distribution. We describe variations of the algorithm that employ either local polynomial

or Gaussian process approximations, thus spanning two widely-used classes of surrogate models.

Gaussian processes appear to provide somewhat superior performance in terms of reducing use of

the forward model, but local quadratic models are cheaper to construct; therefore, both seem to

be useful options, depending on cost of the true model. In either case, numerical experiments

demonstrate significant reductions in the number of forward model evaluations used for posterior

sampling in ODE and PDE model problems.

We do not claim that our algorithm provides minimal error in MCMC estimates given a particular

budget of forward model runs; indeed, we expect that problem-specific methods could outperform

our strategy in many cases. Instead, we argue that the convergence of the algorithm makes it
10The overhead in computing approximations for the elliptic PDE example is more expensive because the forward

model has many more outputs than the genetic toggle switch example.
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straightforward to apply to novel problems and to assess the quality of the results. The essential

reason is that refinement of local approximations is directly tied to the progress of the MCMC chain.

As MCMC expends more effort exploring the target distribution, the quality of the approximations

increases automatically, via refinement criteria that target problem-independent quantities. The

cost of constructing the approximations is incurred incrementally and is tuned to correspond to the

MCMC sampling effort. Although it is not feasible to predict in advance how many MCMC steps

or model runs will be needed, difficulty either in exploring the posterior or in approximating the

model is typically revealed through non-stationary behavior of the chain. Hence, standard MCMC

diagnostics can be used to monitor convergence of the chain and the underlying approximation. This

argument is supported by our numerical results, which produce chains whose convergence is largely

indistinguishable from that of regular MCMC. Moreover, after initial exploration of the refinement

thresholds, numerical results in these examples are obtained without problem-specific tuning.

Our theoretical and numerical results underscore the notion that local regularity in the forward

model or log-likelihood should be harnessed for computational efficiency, and that the number of

model evaluations needed to approach exact sampling from the posterior can be much smaller than

the number of MCMC samples. Although our convergence arguments can be made quantitative,

we believe that doing so in a straightforward manner does not capture the greatest strength of our

algorithm. Looking at the process described in Example B.14, we see that a reasonable start results

in a bias bound that decays almost exponentially in the number of likelihood evaluations and that

the number of likelihood evaluations will grow approximately logarithmically in the running time of

the process. Our general bounds, however, only imply that the bias decays at some rate, which may

potentially be quite slow. The discrepancy between these rates comes from the fact that our cross-

validation approach attempts to evaluate the likelihood primarily in regions where refinement is

important. In situations such as Example B.14, these well-chosen likelihood evaluations give a much

better estimate than would be obtained from points chosen according to the posterior distribution;

in other cases, they seem to be similar. A more general theory would need to avoid the problems

that arise in Example B.13 and similar constructions.

There remains significant room to develop other algorithms within this framework. A wide variety

of local approximations have theoretical convergence properties similar to those exploited here,

offering the opportunity to explore other families of approximations, different weight functions and

bandwidths, or variable model order, cf. (Cleveland and Loader, 1996; Gramacy and Apley, 2013).

Other variations include constructing surrogates by sharing S across parallel MCMC chains; using
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any available derivative information from the forward model to help construct local approximations;

or using local approximations as corrections to global surrogates, creating hybrid strategies that

should combine the fast convergence of global approximations with the asymptotic exactness of

our construction (Chakraborty et al., 2013). It should also be possible to extend our use of local

approximations to other varieties of MCMC; of particular interest are derivative-based methods

such as Metropolis-adjusted Langevin (MALA) or Hybrid Monte Carlo (HMC), where the easy

availability of derivatives from our local approximations can dramatically impact their feasibility

(Rasmussen, 2003). Several of these variations are explored in Conrad (2014). Finally, further work

may reveal connections between the present strategy and other methods for intractable likelihoods,

such as pseudo-marginal MCMC, or with data assimilation techniques for expensive models (Law

et al., 2015).
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A Local polynomial regression

Here we provide additional detail about the polynomial regression scheme described in Section 2.2.

We consider the quadratic case, as the linear case is a simple restriction thereof. For each component

fj of f , the quadratic regressor is of the form

f̃j(θ̂) := aj + bTj θ̂ + 1
2 θ̂

THj θ̂,

where aj ∈ R is a constant term, bj ∈ Rd is a linear term, and Hj ∈ Rd×d is a symmetric Hessian

matrix. Note that aj , bj , and Hj collectively contain M = (d + 2)(d + 1)/2 independent entries

for each j. The coordinates θ̂ ∈ Rd are obtained by shifting and scaling the original parameters

θ as follows. Recall that the local regression scheme uses N samples {θ1, . . . , θN} drawn from the

ball of radius R centered on the point of interest θ, along with the corresponding model evaluations

yij = fj(θi).11 We assume that the components of θ have already been scaled so that they are of

comparable magnitudes, then define θ̂i = (θi − θ)/R, so that the transformed samples are centered

at zero and have maximum radius one. Writing the error bounds as in (1) requires this rescaling

along with the 1/2 in the form of the regressor above (Conn et al., 2009).

Next, construct the diagonal weight matrix W = diag(w1, . . . , wN ) using the sample weights in

(2), where we have R = 1 because of the rescaling. Then compute the N -by-M basis matrix Φ:

Φ =


1 θ̂1

1 · · · θ̂1
d

1
2

(
θ̂1

1

)2
· · · 1

2

(
θ̂1
d

)2
θ̂1

1 θ̂
1
2 · · · θ̂1

d−1θ̂
1
d

...
...

1 θ̂N1 · · · θ̂Nd
1
2

(
θ̂N1

)2
· · · 1

2

(
θ̂Nd

)2
θ̂N1 θ̂

N
2 · · · θ̂Nd−1θ̂

N
d


where we ensure that N > M . Finally, solve the n least squares problems,

ΦTWΦZ = ΦTWY, (8)

where each column of the N -by-n matrix Y contains the samples
(
y1
j , . . . , y

N
j

)T , j = 1, . . . , n. Each

column zj of Z ∈ RM×n contains the desired regression coefficients for output j,

zTj =
(
aj bTj (Hj)1,1 · · · (Hj)d,d (Hj)1,2 · · · (Hj)d−1,d

)
. (9)

11To avoid any ambiguities, this appendix departs from the rest of the narrative by using a superscript to index
samples and a subscript to index coordinates.
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The least squares problem may be solved in a numerically stable fashion using a QR factorization

of WΦZ, which may be computed once and reused for all n least squares problems. The cross-

validation fit omitting sample i simply removes row i from both sides of (8). These least squares

problems can be solved efficiently with a low-rank update of the QR factorization of the full least

squares problem, rather than recomputing the QR factors from scratch (Hammarling and Lucas,

2008).

B Detailed theoretical results and proofs of theorems

B.1 Auxiliary notation

We now define some useful auxillary objects. For a fixed finite set S ⊂ Θ, we consider the stochastic

process defined by Algorithm 4 with S1 = S and lines 11–20 and 22 removed. This process is

essentially the original algorithm with all approximations based on a single set of points S and no

refinements. Since there are no refinements, this process is in fact a Metropolis-Hastings Markov

chain, and we write KS for its transition kernel. For all measurable sets U ⊂ Θ, this kernel can be

written as KS(x, U) = rS(x)δx(U) + (1− rS(x))
∫
y∈U pS(x, y)dy for some 0 ≤ rS(x) ≤ 1 and density

pS(x, y). We denote by αS(x, y) the acceptance probability of KS .

We introduce another important piece of notation before giving our results. Let {Zt}t∈N be a

(generally non-Markovian) stochastic process on some state space Ω. We say that a sequence of

(generally random, dependent) kernels {Qt}t∈N is adapted to {Zt}t∈N if there exists an auxillary

process {At}t∈N so that:

• {(Zt, At)}t∈N is a Markov chain,

• Qt is σ(At)-measurable, and

• P[Zt+1 ∈ ·|Zt, At] = Qt(Zt, ·).

Let {Xt,St}t∈N be a sequence evolving according to the stochastic process defined by Algorithm

4 and define the following associated sequence of kernels:

K̃t(x,A) ≡ P[Xt+1 ∈ A|{Xs}1≤s<t, Xt = x, {Ss}1≤s≤t].

The sequence of kernels {K̃t}t∈N is adapted to {Xt}t∈N, with {S}t∈N as the auxillary process. For

any fixed t, one can sample from K̃t(x, ·) by first drawing a proposal y from L(x, ·) and then accepting
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with probability

α̃t(x, y) ≡ c1αSt(x, y) + c2αSt∪{(x,f(x))}(x, y) + c3αSt∪{(y,f(y))}(x, y), (10)

where c1, c2, c3 are some positive constants that depend on x, y, βt and γt and satisfy the identity

c1 + c2 + c3 = 1.

B.2 Book-keeping result

The following result will be used repeatedly in our ergodicity arguments.

Theorem B.1 (Approximate Ergodicity of Adaptive Chains). Fix a kernel K with stationary dis-

tribution π on state space X and let {Yt}t≥0 evolve according to K. Assume

‖Kt(x, ·)− π‖TV ≤ Cx(1− α)t (11)

for some 0 < α ≤ 1, {Cx}x∈X and all t ∈ N.

Let {Kt}t∈N be a sequence of kernels adapted to some stochastic process {Xt}t∈N, with auxillary

process {At}t∈N. Also fix a Lyapunov function V and constants 0 < a, δ, ε < 1, 0 ≤ b < ∞ and

0 ≤ B < 2b
aε . Assume that there exists a non-random time T = Tε,δ and a σ

(
{(Xs, As)}Ts∈N

)
-

measurable event F so that P[F ] > 1− ε,

E[V (XT )1F ] <∞, (12)

sup
t>T

sup
x :V (x)<B

‖Kt(x, ·)−K(x, ·)‖TV < δ + 1Fc , (13)

and the following inequalities are satisfied for all t > T :

E[V (Xt+1)1F |Xt = x,At] ≤ (1− a)V (x) + b (14)

E[V (Yt+1)|Yt = y] ≤ (1− a)V (y) + b.

Then

lim sup
T→∞

‖L(XT )− π‖TV ≤ 3ε+ δ
log
(

eδ
C log(1−α)

)
log(1− α) + 4b

aB
d

log
(

δ
C log(1−α)

)
log(1− α) + 1e,
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where C = C(ε) ≡ sup{Cx : V (x) ≤ 2b
εa}.

Proof. Assume WLOG that T = 0, fix γ > 0 and fix
log b

a(max(E[V (X0)1F ],π(V ))+1)
log(1−a) ≤ S < T . Let

{Yt}t≥S , {Zt}t≥S be Markov chains evolving according to the kernel K and starting at time S, with

YS = XS and ZS distributed according to π . By inequality (11), it is possible to couple {Yt}S≤t≤T ,

{Zt}S≤t≤T so that

P[YT 6= ZT |XS ] ≤ CXS (1− α)T−S + γ. (15)

By inequality (13) and a union bound over S ≤ t < T , it is possible to couple {Xt}S≤t≤T , {Yt}S≤t≤T

so that

P[XT 6= YT ] ≤ δ(T − S) + P[Fc] + P[ max
S≤t≤T

(max(V (Xt), V (Yt))) > B] + γ. (16)

By inequalities (12) and (14),

E[V (XS)1F |X0, A0] ≤ E[V (X0)1F ](1− a)S + b

a
≤ 2b

a
,

and so by Markov’s inequality,

P
[
{V (XS) > 2b

aε
} ∩ F

]
≤ ε. (17)

By the same calculations,

P[{ max
S≤t≤T

(max(V (Xt), V (Yt))) > B} ∩ F ] ≤ (T − S + 1) 4b
aB

. (18)

Couple {Yt}S≤t≤T to {Xt}S≤t≤T so as to satisfy inequality (16), and then couple {Zt}S≤t≤T to

{Yt}S≤t≤T so as to satisfy inequality (15). It is possible to combine these two couplings of pairs of

processes into a coupling of all three processes by the standard ‘gluing lemma’ (see e.g., Chapter 1

of Villani (2009)). Combining inequalities (15), (16), (17), and (18), we have

‖L(XT )− π‖TV ≤ P[XT 6= YT ] + P[YT 6= ZT ]

≤ P[XT 6= YT ] + E[1YT 6=ZT 1V (XS)>B1F ] + E[1YT 6=ZT 1V (XS)≤B ] + P[Fc]

≤ δ(T − S) + 3ε+ (T − S + 1) 4b
aB

+ 2γ + C(1− α)T−S .
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Approximately optimizing over S < T by choosing S′ = T −d
log
(

δ
C log(1−α)

)
log(1−α) e for T large, we conclude

lim sup
T→∞

‖L(XT )− π‖TV ≤ lim sup
T→∞

(
δ(T − S′) + 3ε+ (T − S + 1) 4b

aB
+ 2γ + C(1− α)T−S

′
)

≤ 3ε+ 2γ + δ
log
(

δ
C log(1−α)

)
log(1− α) + δ

log(1− α) + 4b
aB
d

log
(

δ
C log(1−α)

)
log(1− α) + 1e.

Since this holds for all γ > 0, the proof is finished.

Remark B.2. In the adaptive MCMC literature, similar results are often stated in terms of a

diminishing adaptation condition (this roughly corresponds to inequality (13)) and a containment

condition (this roughly corresponds to inequalities (12) and (14)). These phrases were introduced in

Roberts and Rosenthal (2007), and there is now a large literature with many sophisticated variants;

see, e.g., Fort et al. (2012) for related results that also give LLNs and CLTs under similar conditions.

We included our result because its proof is very short, and because checking these simple conditions

is easier than checking the more general conditions in the existing literature.

B.3 Good sets and monotonicity

We give some notation that will be used in the proofs of Theorems 3.4 and 3.3. Fix 0 ≤ c, r, R ≤ ∞.

For 0 < ` < ∞ and x ∈ Rd, denote by B`(x) the ball of radius ` around x. Say that a finite set

S ⊂ Θ ⊂ Rd is (c, r, R)-good with respect to a set A ⊂ Θ if it satisfies:

1. supx∈A,‖x‖≤r miny∈S ‖x− y‖ ≤ c.

2. For all x ∈ A with ‖x‖ > R, we have that |S ∩ B 1
2‖x‖

(x)| ≥ N .

We say that it is (c, r, R)-good if it is (c, r, R)-good with respect to Θ itself. The first condition will

imply that the approximation pS(x) is quite good for x close to the origin. The second condition gives

an extremely weak notion of ‘locality’; it implies the points we use to construct a ‘local’ polynomial

approximation around x do not remain near the origin when ‖x‖ itself is very far from the origin.

We observe that our definition is monotone in various parameters:

• If S is (c, r, R)-good, then it is also (c′, r′, R′)-good for all c′ ≥ c, r′ ≤ r and R′ ≥ R.

• If S is (c, r, R)-good, then S ∪ S ′ is also (c, r, R)-good for any finite set S ′ ⊂ Θ.

• If S is (∞, 0, R)-good and (c, r,∞)-good, it is also (c, r, R)-good.
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Our arguments will involve showing that, for any finite (c, r, R), the sets {St}t≥0 are eventually

(c, r, R)-good.

B.4 Proof of Theorem 3.4, ergodicity in the compact case

In this section we give the proof of Theorem 3.4. Note that some statements are made in slightly

greater generality than necessary, as they will be reused in the proof of Theorem 3.3.

Lemma B.3 (Convergence of Kernels). Let the assumptions stated in the statement of Theorem 3.4

hold. For all δ > 0, there exists a stopping time τ = τ(δ) with respect to {St}t∈N 12so that

sup
t>τ

sup
x∈Θ
‖K∞(x, ·)− K̃t(x, ·)‖TV < δ (19)

and so that P[τ <∞] = 1.

Proof. Fix R ∈ R so that Θ ⊂ BR(0). By results in (Conn et al., 2009),13 for any λ, α > 0, there

exists a constant c = c(α, λ) > 0 so that supθ∈Θ |pS(θ)− p(θ|d)| < α if S is λ-poised and (c,R,R)-

good. Set c = c(δ, λ) and define τ = inf{t : St is (c,R,R)− good}. By definition, this is a stopping

time with respect to {St}t∈N that satisfies inequality (19); we now check that P[τ <∞] = 1.

By the assumption that `(x, y) is bounded away from 0, there exist ε > 0 and measures µ,

{rx}x∈Θ so that

L(x, ·) = εµ(·) + (1− ε)rx(·). (20)

Let {Ai}i∈N and {Bi}i∈N be two sequences of i.i.d. Bernoulli random variables, with success

probabilities ε and β respectively. Let τ0 = inf{t : Xt ∈ Θ} and define inductively τi+1 = inf{t >

τi + 1 : Xt ∈ Θ}. By equality (20), it is possible to couple the sequences {Xt}t∈N, {Ai}i∈N so that

P[Lτi ∈ ·|τi, Xτi , Ai = 1] = µ(·) (21)

P[Lτi ∈ ·|τi, Xτi , Ai = 0] = rXτi (·).

We can further couple {Bi}i∈N to these sequences by using Bi for the random variable in step

12 of Algorithm 4 at time τi. That is, when running Algorithm 4, we would run the subroutine
12Throughout the note, for any stochastic process {Zt}t≥0, we use the phrase “τ is a stopping time with respect to

{Zt}t≥0” as shorthand for “τ is a stopping time with respect to the filtration Ft given by Ft = σ({Zs}0≤s≤t).”
13The required result is a combination of Theorems 3.14 and 3.16, as discussed in the text after the proof of Theorem

3.16 of (Conn et al., 2009).
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RefineNear in step 13 of the algorithm at time t = τi if Bi = 1, and we would not run that

subroutine in that step at that time if Bi = 0. Define I = {i ∈ N : Ai = Bi = 1}. Under this

coupling of {Ai}i∈N, {Bi}i∈N, and {Xt}t∈N,

{Lτi}i∈I, τi<t ⊂ St.

Furthermore, {Lτi}i∈I, i≤N is an i.i.d sequence of N draws from µ and P[τi < ∞] = 1 for all i. Let

Ej be the event that {Lτi}i≤j is (c,R,R)-good. We have τ ≤ τinf{j : Ej holds}. By independence of

the sequence {Lτi}i∈N, we obtain

P[τ <∞] ≥ lim inf
j→∞

P[Ej ] = 1.

This completes the proof of the Lemma.

Remark B.4. We mention briefly that this lemma can also be used to obtain a quantitative bound

on the asymptotic rate of convergence of the bias of our algorithm.

Observe that τ as defined in the proof of Lemma B.3 is stochastically dominated by an exponential

distribution with mean O(−dc−d log(c)) as long as both `(x, ·) and p(·|d) are bounded below. This

gives a rather poor bound on the amount of time it takes for inequality (29) to hold. Inequality (29),

together with standard ‘perturbation’ bounds relating the distance between transition kernels and the

distance between their stationary distributions, imply a quantitative bound on the asymptotic rate of

convergence of the bias of our algorithm. An example of such a perturbation bound may be found by

applying Theorem 1 of (Korattikara et al., 2013), which does not in fact rely on time-homogeneity,

to a subsequence of the stochastic process generated by our algorithm. Unfortunately, the resulting

bound is rather poor, and does not seem to reflect our algorithm’s actual performance.

We now prove Theorem 3.4:

Proof. It is sufficient to show that, for all ε, δ > 0 sufficiently small, the conditions of Theorem B.1

can be satisfied. We now set the constants and functions associated with Theorem B.1; we begin by

choosing Cx ≡ V (x) ≡ b = a = 1, setting α = infx,y∈Θ `(x,y) infθ∈Θ p(θ|d)
supθ∈Θ p(θ|d) , and setting B =∞.

By the minorization condition, inequality (11) is satisfied for this value of α; by the assumption

that `(x, y), p(θ|d) are bounded away from 0 and infinity, we also have α > 0. Next, for all δ > 0,

Lemma B.3 implies that implies that supx ‖K(x, ·) − K̃(x, ·)‖TV < δ for all times t greater than
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some a.s. finite random time τ = τ(δ) that is a stopping time with respect to {St}t∈N. Choosing

T = Tε,δ to be the smallest integer so that P[τ(δ) > T ] ≤ 1− ε and setting F = {τ ≤ T }, this means

that inequality (13) is satisfied. Inequalities (14) and (12) are trivially satisfied given our choice of

V, a, b. Applying Theorem B.1 with this choice of V, α, a, b, T , we have for all ε, δ > 0 that

lim sup
T→∞

‖L(XT )− π‖TV ≤ 3ε+ δ
log
(

eδ
C log(1−α)

)
log(1− α) .

Letting δ go to 0 and then ε go to 0 completes the proof.

B.5 Proof of Theorem 3.3, ergodicity in the non-compact case

In this section, we prove Theorem 3.3. The argument is similar to that of Theorem 3.4, but we must

show the following to ensure that the sampler does not behave too badly when it is far from the

posterior mode:

1. St is (∞, 0, R)-good after some almost-surely finite random time τ ; see Lemma B.6.

2. The kernel K̃t satisfies a drift condition if St is (∞, 0, R)-good; see Lemmas B.8 and B.9.

3. This drift condition implies that the chain Xt spends most of its time in a compact subset of

Θ; see Lemma B.10.

Remark B.5. The Gaussian envelope condition (see Assumption 3.1) is used only to show the

second step in the above proof strategy, which in turn is used to satisfy condition (14) of Theorem

B.1. It can be replaced by any assumption on the target density for which S being (∞, 0, R)-good for

some R <∞ implies that K̃S satisfies a drift condition of the form given by inequality (14).

We begin by showing, roughly, that for any R > 0, St is eventually (∞, 0, R)-good:

Lemma B.6 (Approximations At Infinity Ignore Compact Sets). Fix any X > 0 and any k ≥ 2

and define

τ
(k)
X = sup

{
t : ‖Lt‖ > kX , ‖Lt‖ −Rt < X

}
.

Then

P[{There exists k <∞, s.t. τ (k)
X <∞}] = 1.
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Proof. Fix N ∈ N, δ > 0 and 0 < r1 < r2 < ∞. For 0 < ` < ∞, denote by ∂B`(0) the sphere of

radius `. Fix a finite covering {Pi} of ∂B r1+r2
2

(0) with the property that, for any x ∈ ∂B r1+r2
2

(0),

there exists at least one i so that Pi ⊂ Bδ(x). For k ∈ N, define a thickening of Pi by:

P(k)
i =

{
x : r1 + r2

2
x

‖x‖
∈ Pi,

r1 + r2

2 + (k − 1)r2 − r1

2 ≤ ‖x‖ ≤ r1 + r2

2 + k
r2 − r1

2

}
.

We will show that, almost surely, for every thickening P(k)
i of an element Pi of the cover, either

|P(k)
i ∩St| is eventually greater than N or |P(k)

i ∩{Lt}t∈N| is finite. Note that it is trivial that either

|P(k)
i ∩ {Lt}t∈N| is eventually greater than N or |P(k)

i ∩ {Lt}t∈N| is finite; the goal is to check that

if {Lt}t∈N visits Pi infinitely often, |P(k)
i ∩ St| must eventually be greater than N .

To see this, we introduce a representation of the random variables used in step 12 of Algorithm

4. Recall that in this step, Lt is added to St with probability β, independently of the rest of the

history of the walk. We will split up the sequence Bt of Bernoulli(β) random variables according to

the covering as follows: for each element P(k)
i of the covering, let {B(i,k)

t }t∈N be an i.i.d. sequence of

Bernoulli random variables with success probability β. At the mth time Lt is in P(k)
i , we use B(i,k)

m

as the indicator function in step 12 of Algorithm 4. This does not affect the distribution of the steps

that the algorithm takes.

By the Borel-Cantelli lemma, we have for each i, k that P[B(i,k)
t = 1, infinitely often] = 1. If

B
(i,k)
t = 1 infinitely often, then |P(k)

i ∩{Lt}t∈N| =∞ implies that for allM <∞, we have |P(k)
i ∩St| >

M eventually. Let Ci,k be the event that |P(k)
i ∩ St| > N eventually and let Di,k be the event that

|P(k)
i ∩ {Lt}t∈N| =∞. Then this argument implies that

P[Ci,k|Di,k] = 1.

Since there are only countably many sets P(k)
i , we have

P[∩i,k
(
Ci,k ∪ Dci,k

)
] = 1. (22)

Thus, conditioned on the almost sure event ∩i,k
(
Ci,k ∪ Dci,k

)
, all sets P(k)

i that Lt visits infinitely

often will also contribute points to St infinitely often.

Let k(i) = min{k : |P(k)
i ∩ {Lt}t∈N| = ∞} when that set is non-empty, and set k(i) = ∞
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otherwise. Let I = {i : k(i) <∞}. Finally, set

τr1,r2 = inf{t : ∀i ∈ I, |P(k(i))
i ∩ St| ≥ N}. (23)

Since |I| is finite, we have shown that, for all N, δ > 0 and 0 < r2 < r1 < ∞, P[τr1,r2 < ∞] = 1.

Finally, we observe that for all δ = δ(X , d) sufficiently small, all N ≥ Ndef and all k ≥ maxi∈I k(i),

τ
(k)
X ≤ τ 2

3X ,
4
3X
. (24)

This completes the proof.

Remark B.7. We will eventually see that, in the notation of the proof of Lemma B.6, k(i) = 1 for

all i.

Next, we show that the approximation pSt(x) of the posterior used at time t is close to p∞(Xt)

when St is (∞, 0, R)-good and ‖Xt‖ is sufficiently large:

Lemma B.8 (Approximation at Infinity). For all ε > 0 and k ≥ 2, there exists a constant X =

X (ε) > 0 so that, if Rt < (‖Lt‖ − (k − 1)X )1‖Lt‖>kX and the set {q(1)
t , . . . , q

(N)
t } is λ-poised, then

| log(pSt(Lt))− log(p∞(Lt))| < ε+ λ(N + 1)G.

Proof. Fix ε > 0. By (6) in Assumption 3.1, there exists some X = X (ε) so that ‖x‖ > X implies

| log(p(x|d))− log(p∞(x))| < G+ ε

(N + 1)λ. (25)

We fix this constant X in the remainder of the proof.

Denote by {fi}N+1
i=1 the Lagrange polynomials associated with the set {q(1)

t , . . . , q
(N)
t }. By Lemma

3.5 of (Conn et al., 2009),

|log(pSt(Lt))− log(p∞(Lt))| = |
∑
i

fi(Lt) log(p(q(i)
t |d))− log(p∞(Lt))|

≤ |
∑
i

log(p∞(q(i)
t ))fi(Lt)− log(p∞(Lt))|

+
∑
i

| log(p(q(i)
t |d))− log(p∞(q(i)

t ))| |fi(Lt)|

≤ 0 + (N + 1)λ sup
i
| log(p(q(i)

t |d))− log(p∞(q(i)
t ))|
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where the last line follows from the definition of Lagrange polynomials and Definition 4.7 of (Conn

et al., 2009). Under the assumption ‖q(i)
t ‖ > X for ‖Lt‖ − Rt > (k − 1)X , the conclusion follows

from inequality (25).

For ε > 0, define Vε(x) = V (x)
1

1+ε , where V is defined in Equation (7). Denote by α∞(x, y) the

acceptance function of a Metropolis-Hastings chain with proposal kernel L and target distribution

p∞, and recall that α̃t(x, y) as given in Equation (10) is the acceptance function for K̃t. We show

that K̃t inherits a drift condition from K∞:

Lemma B.9 (Drift Condition). For 0 < δ < 1
10 and Y, T <∞, let F be the event that

|α̃t(Xt, Lt)− α∞(Xt, Lt)| < δ + 21|Xt|<Y + 21|Lt|<Y (26)

for all t > T . Then, for ε = ε0 as given in item 1 of Assumption 3.2, and all δ < δ0(ε, a, b, V ) < 1
10

sufficiently small and Y sufficiently large, Xt satisfies a drift condition of the form:

E[Vε(Xt+1)1F |Xt,St] ≤ a1Vε(Xt) + b1 (27)

for some 0 ≤ a1 < 1, 0 ≤ b1 <∞ and for all t > T .

Proof. Assume WLOG that T = 0. Let Zt be a Metropolis-Hastings Markov chain with proposal

kernel L and target distribution p∞. By Jensen’s inequality and Assumption 3.2

E[Vε(Zt+1)|Zt = x] ≤ aεVε(x) + bε

for some 0 < aε < 1 and some 0 ≤ bε <∞.

Assume Xt = x and fix δ so that δ < δ0 and (1 + 3δ)aε < aε + 1
2 (1− αε). Then

E[Vε(Xt+1)1F |Xt = x,St] ≤
∫
y∈Rd

(α̃t(x, y)Vε(y) + (1− α̃t(x, y))Vε(x)) `(x, y)dy

≤
∫
Rd\[−Y,Y]d

(
e2δα∞(x, y)Vε(y) +

(
1− e−2δα∞(x, y)

)
Vε(x)

)
`(x, y)dy

+
∫
y∈[−Y,Y]d

(
Vε(x) + sup

‖z‖≤Y
Vε(z)

)
`(x, y)dy

≤ (1 + 3δ)
∫
Rd

(α∞(x, y)Vε(y) + (1− α∞(x, y))Vε(x)) `(x, y)dy

+
(
Vε(x) + sup

‖z‖≤Y
Vε(z)

)
L
(
x, [−Y,Y]d

)
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≤ (1 + 3δ)aεVε(x) + (1 + 3δ)bε +
(
Vε(x) + sup

‖z‖≤Y
Vε(z)

)
L
(
x, [−Y,Y]d

)
.

Since δ < 1
10 and (1 + 3δ)aε < aε + 1

2 (1− αε), we have

E[Vε(Xt+1)1F |Xt = x,St] ≤ (aε + 1
2(1− αε))V (x) + (1 + 3δ)bε +

(
Vε(x) + sup

‖z‖≤Y
Vε(z)

)
L
(
x, [−Y,Y]d

)
.

Since Vε(x)L
(
x, [−Y,Y]d

)
is uniformly bounded in x for all fixed Y by item 2 of Assumption 3.2,

the claim follows with

a1 = aε + 1
2(1− αε) < 1,

b1 = 2bε + sup
x
Vε(x)L

(
x, [−Y,Y]d

)
+ sup
‖z‖≤Y

Vε(z),

finishing the proof.

We use these bounds to show that some compact set is returned to infinitely often:

Lemma B.10 (Infinitely Many Returns). For G < G(L, p∞, λ,N) sufficiently small, there exists a

compact set A that satisfies P[
∑
t∈N 1Xt∈A =∞] = 1.

Proof. Combining Lemmas B.6, B.8 and B.9, there exists some number X > 0 and almost surely

finite random time τX so that Xt satisfies a drift condition of the form

E[V (Xt+1)1t>τX |Xt = x,St] ≤ aV (x) + b

for some function V and constants 0 ≤ a < 1, b < ∞. The existence of a recurrent compact set

follows immediately from this drift condition and Lemma 4 of (Rosenthal, 1995).

This allows us to slightly strengthen Lemma B.9:

Lemma B.11. All times τX ,2X of the form given in Equation (23) satisfy P[τX ,2X < ∞] = 1 and

are stopping times with respect to {St}. Furthermore, for G < G(L, p∞, λ,N) sufficiently small,

there exists a random time τ of the form given in Equation (23) so that

E[Vε(Xt+1)1τ<t|Xt,St] ≤ a1Vε(Xt) + b1 (28)

for some 0 ≤ a1 < 1, 0 ≤ b1 <∞.
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Proof. By inequality (24), there exists a random time τ ≡ τX ,2X of the form (23) that is at least as

large as the random time τX constructed in the proof of Lemma B.10 and that satisfies P[τ <∞] = 1.

As shown in Lemma B.10, an inequality of the form (28) holds for τX , and so the same inequality

must also hold with τX replaced by the larger time τ ≥ τX .

The only detail to check is that all random times τX ,2X of the form (23) are stopping times

with respect to {St}t∈N. Let {Pi} be the partition associated with τX ,2X , as constructed in Lemma

B.6. By Lemma B.10 and part 3 of Assumption 3.2, we have P[|{Lt}t∈N ∩ P(1)
i | =∞] = 1 for all i.

Thus, in the notation of Lemma B.6, Ic = ∅ and k(i) = 1 for all i ∈ I. Thus, we have shown that

τX ,2X = inf{t : ∀i, |P(1)
i ∩ St| ≥ N}, which is clearly a stopping time with respect to {St}t∈N, and

the proof is finished.

We now finish our proof of Theorem 3.3 analogously to our proof of Theorem 3.4.

The following bound is almost identical to Lemma B.3, but now proved under the Gaussian

envelope assumption for the target density.

Lemma B.12 (Convergence of Kernels). Let the assumptions stated in the statement of Theorem

3.3 hold and fix a compact set A ⊂ Θ. For all δ > 0, there exists a stopping time τ = τ(δ) with

respect to {St}t∈N so that

sup
t>τ

sup
x∈A
‖K∞(x, ·)− K̃t(x, ·)‖TV < δ (29)

and so that P[τ <∞] = 1.

Proof. Fix a constant 0 < R < ∞ so that A ⊂ BR(0). By results in (Conn et al., 2009), for any

λ, α > 0, there exists a constant c = c(α, λ) > 0 so that supθ∈A |pS(θ)− p(θ|d)| < α if S is λ-poised

and (c,R,R)-good. Set c = c(ε, λ) and define τ ′ = inf{t : St is (c,R,R) − good}. By definition,

τ ′ is a stopping time with respect to {St}t∈N that satisfies inequality (29). We now check that

P[τ ′ < ∞] = 1. By the assumption that `(x, y) is bounded away from 0, there exist ε > 0 and

measures µ, {rx}x∈Θ so that

L(x, ·) = εµ(·) + (1− ε)rx(·). (30)

Let {Ai}i∈N and {Bi}i∈N be two sequences of i.i.d. Bernoulli random variables, with success

probabilities ε and β respectively. Let τ0 = inf{t : Xt ∈ A} and define inductively τi+1 = inf{t >
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τi + 1 : Xt ∈ A}. By equality (30), it is possible to couple the sequences {Xt}t∈N, {Ai}i∈N so that

P[Lτi ∈ ·|τi, Xτi , Ai = 1] = µ(·) (31)

P[Lτi ∈ ·|τi, Xτi , Ai = 0] = rXτi (·).

We can further couple {Bi}i∈N to these sequences by using Bi for the random variable in step

12 of Algorithm 4 at time τi. That is, when running Algorithm 4, we would run the subroutine

RefineNear in step 13 of the algorithm at time t = τi if Bi = 1, and we would not run that

subroutine in that step at that time if Bi = 0. Define I = {i ∈ N : Ai = Bi = 1}. Under this

coupling of {Ai}i∈N, {Bi}i∈N, and {Xt}t∈N,

{Lτi}i∈I, τi<t ⊂ St.

Furthermore, {Lτi}i∈I, i≤N is an i.i.d sequence of N draws from µ, and by Lemma B.10, P[τi <∞] =

1 for all i. Let Ej be the event that {Lτi}i≤j is (c,R,R)-good. We have τ ′ ≤ inf{τj : Ej holds}. By

independence of the sequence {Lτi}i∈N, we obtain

P[τ ′ <∞] ≥ lim inf
j→∞

P[Ej ] = 1.

This argument shows that, for any compact set A, there exists a stopping time τ ′ with respect

to {St}t∈N so that P[τ ′ <∞] = 1 and so that

sup
t>τ ′

sup
x∈A
‖K̃t(x, ·)−K∞(x, ·)‖TV < δ. (32)

This completes the proof of the Lemma.

We are finally ready to prove Theorem 3.3:

Proof of Theorem 3.3. As with the proof of Theorem 3.4, it is sufficient to show that, for all ε, δ,G >

0 sufficiently small and all B � ε−1 sufficiently large, the conditions of Theorem B.1 can be satisfied

for some time T = Tε,δ with the same drift function V and constants α, a, b.

By Assumption 3.2 and Theorem 12 of Rosenthal (1995), inequality (11) holds for some α > 0

and {Cx}x∈Θ. For any fixed 0 < B < ∞ and all 0 < G, δ sufficiently small, Lemma B.12 implies
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that there exists some almost surely finite stopping time τ1 = τ1(δ) so that inequality (13) holds

for the set F1 = {τ1 > t}. Lemma B.11 implies that, for all G > 0 sufficiently small, there exists

some almost surely finite stopping time τ2 so that inequality (14) holds for the set F2 = {τ2 > t}.

Choose T to be the smallest integer so that P[max(τ1, τ2) > T ] < ε and set F = {min(τ1, τ2) > T }.

We then have that inequalities (13) and (14) are satisfied. Finally, inequality (12) holds by part 2

of Assumption 3.2. We have shown that there exist fixed values of C and α so that the conditions

of Theorem B.1 hold for all ε, δ > 0 sufficiently small. We conclude that, for all ε, δ > 0 sufficiently

small,

lim sup
T→∞

‖L(XT )− π‖TV ≤ 3ε+ δ
log
(

eδ
C log(1−α)

)
log(1− α) + 4b

aB
d

log
(

δ
C log(1−α)

)
log(1− α) + 1e.

Letting B go to infinity, then δ go to 0 and finally ε go to 0 completes the proof.

B.6 Alternative assumptions

In this section, we briefly give other sufficient conditions for ergodicity. We do not give detailed

proofs but highlight the instances at which our current arguments should be modified.

The central difficulty in proving convergence of our algorithm is that, in general, the local poly-

nomial fits we use may be very poor when Rt is large. This difficulty manifests in the fact that,

for most target distributions, making the set S a (c, r, R)-good set does not guarantee that K̃S

inherits a drift condition of the form (14) from K∞, for any value of c, r, R. Indeed, no property

that is monotone in the set S can guarantee that K̃S satisfies a drift condition. In a forthcoming

project focused on theoretical issues, we plan to show convergence based on drift conditions that

only hold ‘on average’ and over long time intervals. There are several other situations under which

it is possible to guarantee the eventual existence of a drift condition, and thus ergodicity:

1. Fix a function δ0 : Θ→ R+ and add the step “If Rt > δ0(θ+), S ← {(θ+, f(θ+)}∪S)” between

steps 7 and 8 of Algorithm 4. If limr→∞ sup‖x‖≥r δ0(x) = 0 and

lim
r→∞

sup
‖x‖≥r

max(‖p′(θ|d)‖, ‖p′′(θ|d)‖) = 0,

then the main condition of Lemma B.9, inequality (26) (with α∞ replaced by the acceptance

function of K), holds by a combination of Theorems 3.14 and 3.16 of (Conn et al., 2009). If

p(θ|d) has sub-Gaussian tails, the proof of Lemma B.9 can then continue largely as written
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if we replace p∞(x) with p(x|d) wherever it appears. Since the Gaussian envelope condition

is only used to prove that the condition in Lemma B.9 holds, Theorem 3.3 holds with the

Gaussian envelope condition replaced by these requirements.

2. Similar results sometimes hold if we only require that δ0(x) ≡ δ0 be a sufficiently small constant.

Theorem 1 of Ferré et al. (2013), combined with Theorems 3.14 and 3.16 of (Conn et al., 2009),

can be used to obtain weaker sufficient conditions under which the condition in Lemma B.9

holds.

3. If d = 1, Ndef = 2, and the approximations in Algorithm 4 are made using linear rather than

quadratic models, we state without proof that a drift condition at infinity proved in Lemma

B.9 can be verified directly. For d ≥ 2, more work needs to be done.

4. Finally, we discuss analogous results that hold for other forms of local approximation, such as

Gaussian processes. When the target distribution is compact, we expect Theorem 3.4 to hold

as stated whenever local approximations to a function based on (c,R,R)-good sets converge to

the true function value as c goes to 0. In our proof of Theorem 3.4, we cite (Conn et al., 2009)

for this fact. The proof of Theorem 3.4 will hold as stated for other local approximations

if all references to (Conn et al., 2009) are replaced by references to appropriate analogous

results. Such results typically hold for reasonably constructed local approximation strategies

(Cleveland and Loader, 1996; Atkeson et al., 1997).

When the target distribution is not compact, modifying our arguments can be more difficult,

though we expect similar conclusions to often hold.

B.7 Examples for parameter choices

Example B.13 (Decay Rate for β). We note that if βt decays too quickly, our sampler may not

converge, even if γt → 0 at any rate. Consider the proposal distribution L that draws i.i.d. uniform

samples from [0, 1]d and let λ(·) denote the Lebesgue measure. Consider a target distribution of

the form p(θ|d) ∝ 1θ∈G for set G with Lebesgue measure 0 < λ(G) < 1. If
∑
t βt < ∞, then by

Bo+rel-Cantelli, the probability p = p ({βt}t∈N) that no points are added to S except during the

initial choice of reference points or failed cross-validation checks is strictly greater than 0. With

probability λ(G)k > 0, the first k reference points are all in G. But if both these events happen, all

cross-validation checks are passed for any γ > 0, and so the walk never converges; it samples from

the measure λ forever.
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Example B.14 (Decay Rate for γ). We note that we have not used the assumption that γ < ∞

anywhere. As pointed out in Example B.13, in a way this is justified—we can certainly find sequences

{βt}t∈N and walks that are not ergodic for any sequence γt > 0 converging to zero at any rate.

In the other direction, there exist examples for which having any reasonable fixed value of γ gives

convergence, even with β = 0. We point out that this depends on the initially selected points; one

could be unlucky and choose points with log-likelihoods that happen to lie exactly on some quadratic

that does not match the true distribution. Consider a target density π(x) ∝ 1 + C1x> 1
2

on [0, 1]

with independent proposal moves from the uniform measure on [0, 1]. To simplify the discussion,

we assume that our approximation of the density at each point is linear and based exactly on the

three nearest sampled points. Denote by St the points which have been evaluated by time t, and let

S0 = { 1
8 ,

2
8 ,

3
8 ,

5
8 ,

6
8 ,

7
8}. Write x1, . . . , xm(t) = St ∩ [0, 1

2 ] and xm(t)+1, . . . , xn(t) = St ∩ [ 1
2 , 1]. It is

easy to check that

‖L(Xt+1)− π‖TV ≤ xm(t)+3 − xm(t)−2. (33)

It is also easy to see that with probability one, for any γ < 1
2 , there will always be a subinterval of

[xm(t)−2, xm(t)+3] with strictly positive measure for which a cross-validation check will fail. Com-

bining this with inequality (33) implies that the algorithm will converge in this situation, even with

β = 0. Furthermore, in this situation choosing β ≡ 0 results in a set St that grows extremely slowly

in t, without substantially increasing bias.

C Genetic toggle switch inference problem

Here we provide additional details about the setup of the genetic toggle switch inference problem from

Section 4.2. This genetic circuit has a bistable response to the concentration of an input chemical,

[IPTG]. Figure 13 illustrates these high and low responses, where the vertical axis corresponds to

the expression level of a particular gene. (Gardner et al., 2000) proposed the following differential-

algebraic model for the switch:

du

dt
= α1

1 + vβ
− u, (34)

dv

dt
= α2

1 + wγ
− v,

w = u

(1 + [IPTG]/K)η .
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The model contains six unknown parameters Zθ = {α1, α2, β, γ,K, η} ∈ R6, while the data cor-

respond to observations of the steady-state values v(t = ∞) for six different input concentrations

of [IPTG], averaged over several trials each. As in (Marzouk and Xiu, 2009), the parameters are

centered and scaled around their nominal values so that they can be endowed with uniform priors

over the hypercube [−1, 1]6. Specifically, the six parameters of interest are normalized around their

nominal values to have the form

Zi = θ̄i(1 + ζiθi), i = 1, . . . , 6,

so that each θi has prior Uniform[−1, 1]. The values of θ̄i and ζi are given in Table 1. The data are

observed at six different values of [IPTG]; the first corresponds to the “low” state of the switch while

the rest are in the “high” state. Multiple experimental observations are averaged without affecting

the posterior by correspondingly lowering the noise; hence, the data comprise one observation of

v/vref at each concentration, where vref = 15.5990. The data are modeled as having independent

Gaussian errors, i.e., as draws from N (di, σ2
i ), where the high- and low-state observations have dif-

ferent standard deviations, specified in Table 2. The forward model may be computed by integrating

the ODE system (35), or more simply by iterating until a fixed point for v is found.
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Figure 13: Response of the pTAK117 genetic toggle switch to the input concentration of IPTG
(Gardner et al., 2000). The plot shows the mean and standard deviation of the experimentally-
observed gene expression levels over a range of input concentrations. Expression levels are normalized
by the mean response at the largest IPTG concentration.
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Table 1: Normalization of the parameters in the genetic toggle switch example.
α1 α2 β γ K η

θ̄i 156.25 15.6 2.5 1 2.0015 2.9618e-5
ζi 0.20 0.15 0.15 0.15 0.30 0.2

Table 2: Data and obervation error variances for the likelihood of the genetic toggle switch example.
[IPTG] 156.25 15.6 2.5 1 2.0015 2.9618e-5

di 0.00798491 1.07691684 1.05514201 0.95429837 1.02147051 1.0
σi 4.0e-5 0.005 0.005 0.005 0.005 0.005

D Elliptic PDE inverse problem

Here we provide details about the elliptic PDE inference problem. The forward model is given by

the solution of an elliptic PDE in two spatial dimensions

∇s · (k(s, θ)∇su(s, θ)) = 0, (35)

where s = (s1, s2) ∈ [0, 1]2 is the spatial coordinate. The boundary conditions are

u(s, θ)|s2=0 = s1,

u(s, θ)|s2=1 = 1− s1,

∂u(s, θ)
∂s1

∣∣∣∣
s1=0

= 0,

∂u(s, θ)
∂s1

∣∣∣∣
s1=1

= 0.

This PDE serves as a simple model of steady-state flow in aquifers and other subsurface systems;

k can represent the permeability of a porous medium while u represents the hydraulic head. Our

numerical solution of (35) uses the standard continuous Galerkin finite element method with bilinear

basis functions on a uniform 30-by-30 quadrilateral mesh.

The log-diffusivity field log k(s) is endowed with a Gaussian process prior, with mean zero and

an isotropic squared-exponential covariance kernel:

C(s1, s2) = σ2 exp
(
−‖s1 − s2‖2

2`2

)
,
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for which we choose variance σ2 = 1 and a length scale ` = 0.2. This prior allows the field to be

easily parameterized with a Karhunen-Loève (K-L) expansion (Adler, 1981):

k(s, θ) ≈ exp
(

d∑
i=1

θi
√
λiki(s)

)
,

where λi and ki(s) are the eigenvalues and eigenfunctions, respectively, of the integral operator

on [0, 1]2 defined by the kernel C, and the parameters θi are endowed with independent standard

normal priors, θi ∼ N (0, 1). These parameters then become the targets of inference. In particular,

we truncate the Karhunen-Loève expansion at d = 6 modes and condition the corresponding mode

weights (θ1, . . . , θ6) on data. Data arise from observations of the solution field on a uniform 11× 11

grid covering the unit square. The observational errors are taken to be additive and Gaussian:

dj = u(sj , θ) + εj ,

with εj ∼ N (0, 0.12).
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