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Michaël Gharbi
MIT CSAIL

YiChang Shih
MIT CSAIL

Gaurav Chaurasia
MIT CSAIL

Jonathan Ragan-Kelley
Stanford

Sylvain Paris
Adobe
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Figure 1: Cloud computing is often thought as an ideal solution to enable complex algorithms on mobile devices; by exploiting remote
resources, one expects to reduce running time and energy consumption. However, this ignores the cost of transferring data over the network,
the overhead of which often negates the benefits of the cloud, especially for data-heavy image processing applications. We introduce a new
image processing pipeline that reduces the amount of transmitted data. The core of our approach is the transform recipe, a representation of
the image transformation applied to a photograph that is compact and can be accurately estimated from an aggressively compressed input
photograph. These properties make cloud computing more efficient in situations where transferring standard JPEG-compressed images would
be too costly in terms of energy and/or time. In the example above, where we used an aggressive setting, our approach reduces the amount of
transmitted data up to 80× compared to standard JPEG compressed images. It produces an output visually similar to the ground-truth result
computed directly from the original uncompressed photograph. Photograph from the MIT 5k dataset [2011].

Abstract

Cloud image processing is often proposed as a solution to the limited
computing power and battery life of mobile devices: it allows com-
plex algorithms to run on powerful servers with virtually unlimited
energy supply. Unfortunately, this overlooks the time and energy
cost of uploading the input and downloading the output images.
When transfer overhead is accounted for, processing images on a
remote server becomes less attractive and many applications do not
benefit from cloud offloading. We aim to change this in the case of
image enhancements that preserve the overall content of an image.
Our key insight is that, in this case, the server can compute and
transmit a description of the transformation from input to output,
which we call a transform recipe. At equivalent quality, our recipes
are much more compact than JPEG images: this reduces the client’s
download. Furthermore, recipes can be computed from highly com-
pressed inputs which significantly reduces the data uploaded to the
server. The client reconstructs a high-fidelity approximation of the
output by applying the recipe to its local high-quality input. We
demonstrate our results on 168 images and 10 image processing ap-
plications, showing that our recipes form a compact representation
for a diverse set of image filters. With an equivalent transmission
budget, they provide higher-quality results than JPEG-compressed
input/output images, with a gain of the order of 10 dB in many cases.
We demonstrate the utility of recipes on a mobile phone by profiling
the energy consumption and latency for both local and cloud compu-
tation: a transform recipe-based pipeline runs 2-4× faster and uses
2-7× less energy than local or naive cloud computation.

CR Categories: I.4.2 [Image Processing]: Compression; I.4.10
[Image Processing]: Applications; I.4.10 [Image Processing]: Image
Representation;

Keywords: mobile image processing, energy-efficient cloud com-
puting, image filter approximation

1 Introduction

Mobile devices such as cell phones and cameras are exciting plat-
forms for computational photography, but their limited computing
power, memory, and battery life can make it challenging to imple-
ment advanced algorithms. Cloud computing is often hailed as a
solution allowing connected devices to benefit from the speed and
power supply of remote servers. Cloud processing is also impera-



tive for algorithms that require large databases, e.g. [Laffont et al.
2014; Shih et al. 2013], and can simplify application development,
especially in the face of the mobile platform fragmentation. Un-
fortunately, the cost of transmitting the input and output images
can exceed that of local computation, making cloud solutions sur-
prisingly expensive both in time and energy [Barr and Asanović
2006; Huang et al. 2012]. For instance, a 6-second computation on
a 16-megapixel image captured by a Samsung Galaxy S5 consumes
20J. Processing the same image in the cloud would take 14 seconds
and consume 54J due to the network communication overhead1.
Efficient cloud photo enhancement requires a reduction of the data
transferred that is beyond what lossy image compression can achieve
while keeping image quality high.

In this work, we focus on photographic enhancements that preserve
the overall content of an image (in the sense of style vs. content)
and do not spatially warp it. This includes content-aware photo
enhancement [Kaufman et al. 2012], dehazing [Kim et al. 2013],
edge-preserving enhancements [Paris et al. 2011; Farbman et al.
2008], colorization [Levin et al. 2004], style transfer [Shih et al.
2014; Aubry et al. 2014], time-of-day hallucination [Shih et al. 2013]
but excludes dramatic changes such as inpainting. For this class
of enhancements, the input and output images are usually highly
correlated. We exploit this observation to construct a representation
of the transformation from input to output that we call a transform
recipe. By design, recipes are much more compact than images. And
because they capture the transformation applied to an image, they
are forgiving to a lower input quality. These are the key properties
that allow us to cut down data transfers. With our method, the mobile
client uploads a downsampled and highly compressed image instead
of the original input, thus reducing the upload cost. The server
upsamples this image back to its original resolution and computes
the enhancement. From this low quality input–output pair, the server
fits the recipe and sends it back to the client instead of the output,
incurring a reduced download cost. In turn, the client combines the
recipe with the original high quality input to reconstruct the output
(Fig. 1). While our recipes are lossy, they provide high-fidelity
approximations for full image enhancement, while being 2 to 3
orders of magnitude more compact than the raw bitmap data and 1
to 2 orders of magnitude smaller than JPEG-compressed images.

Transform recipes use a combination of local affine transformations
of the YUV channels of a shallow Laplacian stack as well as local
tone curves. This makes them flexible and expressive, so as to adapt
to a variety of enhancements, and impose only a moderate compu-
tational footprint on the mobile device. We evaluate the quality of
our reconstruction on several standard photo editing tasks including
detail enhancement, general tonal and color adjustment, and recol-
orization. We demonstrate our results on 168 images spanning 10
image processing applications that in practice, our approach trans-
lates into shorter processing times and lower energy consumption
with a proof-of-concept implementation running on a smartphone
instrumented to measure its power usage.

2 Related Work

Image compression Image compression has been a long stand-
ing problem in image processing [Rabbani and Jones 1991]. The
data used to represent digital images is reduced by exploiting their
structure and redundancy. Lossless image compression methods and
formats rely on general purpose compression techniques such as run-
length encoding (BMP format), adaptive dictionary algorithm [Ziv

1Transferring the JPEG images with their default compression settings
(4MB each way), over a 4G network at 4Mbits/s, according to our mea-
surement of the average power draw and modeling like in [Kumar et al.
2013]

and Lempel 1977; Welch 1984], entropy coding [Huffman 1952;
Witten et al. 1987] or a combination thereof [Deutsch 1996]. These
methods lower the data size of natural images to around 50% to
70% that of an uncompressed bitmap, which in practice is not suffi-
cient for cloud image processing tasks. Alternatively, lossy image
compression methods offer more aggressive compression ratios at
the expense of some visible degradation. They minimize the loss
of information relevant to the human visual system based on heuris-
tics (e.g. using chroma sub-sampling). The most widespread lossy
compression methods build on transform coding techniques: the
image is transformed to a different basis, and the transform co-
efficients are quantized. Popular transforms include the Discrete
Cosine Transform (JPEG [Wallace 1992]) and the Wavelet Trans-
form (JPEG2000 [Skodras et al. 2001]). Images compressed using
these methods can reach 10% to 20% of their original size with
little visible degradation but often, this is still not sufficient for
cloud photo applications. More recently, methods that exploit the
intra-frame predictive components of video codecs have emerged
(WebP, BPG). While they do improve the compression/quality trade-
off, the improvements at very low bit-rates are marginal, and these
methods remain uncommon. Unlike traditional image compression
techniques, we seek to compress the description of a transforma-
tion from the input of an image enhancement to the output. We
build upon, and use traditional image compression techniques as
building blocks in our strategy: any lossy compression technique
can be used to compress the input image before sending it to the
cloud. JPEG is a natural candidate since it is ubiquitous and often
implemented in hardware on mobile devices. We also use lossless
image compression to further compress our recipes.

In the context of video games, Lee et al. [2014] describe a data com-
pression scheme to minimize network transfers. While the overall
objective is related to ours, the targeted application and the asso-
ciated constraints are different, and the proposed method does not
apply in our context. Levoy [1995] proposes a collaborative strategy
for high-quality image rendering on the cloud. The server generates
a high and a low-quality renderings. It sends the compressed differ-
ence image to a client who combines it with its own local low-quality
rendering to produce the final output. We similarly re-distribute the
workload between client and server but our goal is to reduce data
transfer.

Recipes as a regression on image data Using the input image
to predict the output is inspired from shape recipes [Freeman and
Torralba 2002; Torralba and Freeman 2003]. In the context of
stereo shape estimation, shape recipes are regression coefficients
that predict band-passed shape information from an observed image
of this shape. They form a low-dimensional representation of the
high-dimensional shape data. Shape recipes describe the shape in
relation to the image, and constitute a set of rules to reconstruct the
shape from the image. These recipes are simple as they let the image
bear much of the complexity of the representation. Similarly, our
transform recipes capture the transformation between the input and
output images, factoring out their structural complexity. Since our
goal is to reduce data transfers, our model needs to remain simple
whereas shape recipes do not have this constraint and use many more
parameters. Our recipes also differ from shape recipes in that we
have a notion of spatially varying transformation: we fit different
models for each block in a grid subdivision of the image. In contrast,
shape recipes are applied globally to an image sub-band. Finally,
our recipes are computed from low quality images and applied back
to the high quality input whereas shape recipes have to be computed
from and applied to high quality data.

Other methods also share similar ideas to our recipes although in
a different context. For instance, Bychkovsky et al. [2011] and
Berthouzoz et al. [2011] use a generic representation of photo-



(a) original full-quality
input on the client

(b) downsampled and
jpeg-compressed input
received by the server
along with histograms
of (a). The data uploaded
is around 0.1% of the
raw bitmap image.

(c) proxy input built on the
server by upsampling (b)
and matching histograms
from (a).

(d) proxy output obtained
by applying the filter to the
proxy input (c)

(e) reconstruction on the
client using the recipe
and (a). Downloading
the recipe costs 0.1% of
the raw bitmap data, or
around 1% of the original
JPEG. PSNR = 31.4dB

(f) reference output com-
puted from the original
full-quality input (a)

Figure 2: A major advantage of our transform recipes is that we can compute them from a severely degraded input-output pair. (a) shows a
crop from the high quality input of Fig. 1 on the client. The server receives a downsampled and compressed version of this image (b) along
with histograms from (a). It upsamples it and matches the histograms (c). Processing such a strongly compressed image generates a result
with numerous artifacts (d). We can nevertheless use this pair of proxy images to build a recipe that, when applied on the original artifact-free
photo (a) produces a high quality output (e) that closely approximates the reference output (f) directly computed from the original photo. These
close-ups show the region with the highest error for our method.

graphic edits that they use in conjunction with machine learning
to assist users with adjusting their pictures whereas we focus on
speed and compactness in the context of cloud applications. Farb-
man et al. [2011] introduce convolution pyramids as a means to
accelerate linear translation-invariant image filters. Mantiuk and
Seidel [2008] use a generic representation of tone mapping oper-
ators to speed them up and analyze them. In comparison, we are
interested in a wider range of possibly spatially varying edits such as
stylization and detail enhancement, and we specifically study their
latency and energy consumption when computed in the cloud.

Energy saving LiKamWa et al. [2013] describe an approach to
reduce the energy consumption when taking a picture with a mobile
device. Our work is complementary and seeks to reduce the energy
consumption and latency when editing photographs.

3 Reducing Data Transfers

We process an input image I with a filter f to produce an output
image O = f(I). We are interested in the regime where computing
f is costly enough to justify using a remote server. As we previously
discussed, network communications introduce a significant overhead
in this case, more so when the bandwidth is low. We alleviate this
issue by reducing data transfer.

Overview To lower the upstream cost, we generate a low-
resolution jpeg-compressed version Ī of the input image I on the
client. Then we upload this image Ī to the server along with the
histogram of the original input I (described in Section 4.1). Upon
reception, the server upsamples Ī back to the original resolution
and applies histogram transfer to compute a proxy input image Ĩ .
It processes Ĩ to generate a proxy output Õ = f(Ĩ). The server
then computes a compact recipe r using Ĩ and Õ that describes the
transformation from one to the other, i.e. r(Ĩ) ≈ f(Ĩ). We want
the recipe r to remain valid in a neighborhood of the proxy pair and
compute a high quality approximation of the reference output when
applied to the original input, i.e., r(I) ≈ f(I). The final step is for
the client to download the recipe and apply it on the original input I .
Figure 1 illustrates our pipeline.

Our objective with transform recipes is to represent a variety of
standard photo enhancements that may be spatially varying, multi-

scale, and nonlinear. Each recipe is specific to a given input/filter
pair. Instead of computing a generic approximation of a particular
filter f that is valid for all inputs, we compute an input driven
transform recipe rec that can approximate a number of different
image processing filters. In the rest of this section we describe both
how we decompose images, and how we compute a low-order model
that captures the effect of f on I in this representation: the recipe.

3.1 Transform Recipes

We first describe how to build a recipe r from any input I and the
corresponding output O. We experimentally found that (a) multi-
scale effects play an important role, and (b) recipes only need to
coarsely model the chrominance transformation while a more sophis-
ticated representation of the luminance transformation is desirable.
Following these observations, our construction uses a multi-scale
decomposition of the images and luminance–chrominance separa-
tion. This allows our recipes to adapt the granularity at which the
image transformation is represented for each component.

Spatially adaptive The effects of image filters may be complex at
the scale of an entire image but are often simpler at a local scale, be-
cause image data itself is simpler. The power of our approach comes
from the fact that we fit recipes in a spatially-varying manner on
local image blocks. This allows us to capture complex effects even
though our image representation and transforms are both relatively
simple. We define recipes over w × w blocks where w controls the
trade-off between compactness and accuracy. Small blocks give a
fine-grained, accurate description of the transformation but require
more storage, whereas large blocks give a coarser but more concise
description. We lay out the w × w blocks on a w

2
× w

2
grid, so that

each pair of adjacent blocks share half their area, and we linearly
interpolate pixel values weighted by the distance to the center of the
block to prevent blocking artifacts.

Image decomposition We work in Y CbCr color space like JPEG,
to separate luminance Y from chrominance (Cb, Cr) while still op-
erating on values that span [0, 255] [Hamilton 1992]. To capture
multi-scale effects, we decompose an image into a Laplacian stack –
a multi-scale image decomposition similar to a Laplacian pyramid,
but with all levels stored at the original resolution instead of subsam-
pling which makes it easier to fit recipes. To compute a stack, we
first build a Laplacian pyramid [Burt and Adelson 1983]: we split I
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Figure 3: To reconstruct the output image we decompose the input as a shallow Laplacian stack. We linearly rescale the lowpass residual using
the ratio coefficients Rc. The high-frequency chrominance undergoes an affine transformation parameterized by Ac and bc. We reconstruct the
luminance channel using a combination of an affine transformation (AY , bY ), a linear scaling of the Laplacian stack levels ({m�}), and a
piecewise linear transformation ({qi}). Photograph from the MIT 5k dataset [2011].

and O into n+1 levels where the resolution of each level is half that
of the preceding level in each dimension. The first n levels represent
the details at increasingly coarser scales, and the last level is the
low frequency residual. We set n = log2(w) so that each block is
represented by a single pixel in the residual. Finally, we upsample
all the levels back to the original resolution (with the exception of
the residual that we keep unchanged) to produce a Laplacian stack.
We name the input and output stack levels {L�[I]} and {L�[O]}
respectively.

With this decomposition, we compute a recipe in three steps: we
first represent the transformation of the low-pass residual, then the
transformations of the other stack levels, and finally quantize and
encode these transformations in an off-the-shelf compressed image
format.

3.1.1 Representing the transformation of the residual

Each pixel of the residual affects a large area in the final reconstruc-
tion and even a small error can produce conspicuous artifacts in
smooth regions like sky. Since the residual is only a small fraction
of the data, we represent its transformation with greater precision.

We represent the low frequency part of the transformation by the
ratio of the residuals, i.e., for each pixel p and each channel c ∈
{Y,Cb, Cr}:

Rc(p) =
Ln[Oc](p) + 1

Ln[Ic](p) + 1
(1)

We add 1 to prevent division by zero and ensure that Rc is constant
when Ln[Oc](p) = Ln[Ic](p) for all p, e.g., for edits like sharp-
ening that only modify the high frequencies. This allows better
compression in the final stage. This part of the recipe is illustrated
at the top of Figure 3.

3.1.2 Representing the transformation of the stack levels

Each stack level has as many pixels as the original image so we
cannot afford a per-pixel representation as with the residual. Instead,
we represent the transformation within each block as a function
parameterized by a small number of parameters. Further, when
possible, we work on the combined high-frequency data:

H[I] =

n−1∑
�=0

L�[I] (2)

instead of using the individual levels {L�[I]}.

We experimentally found that chrominance transformations are sim-
ple enough to be well approximated by affine functions, but that no
single simple parametric function captures the diversity of luminance
transformations generated by common photographic enhancements.
Instead, we rely on a combination of multiple functions and use a
sparse regression to retain only a few parameters in the final repre-
sentation.

Chrominance channels Let OCC(p) be the 2D vector contain-
ing the chrominance values of the output O at pixel p. Within each
w × w block B, we model the high frequencies of the chrominance
H[OCC ](p) as an affine function of H[I](p). We use standard
least-squares regression and minimize:

∑
p∈B

‖H[OCC ](p)−Ac(B)H[I](p)− bc(B)‖2 (3)

where Ac and bc are the 2 × 3 matrix and the 2D vector defining
the affine model. This part of the recipe is shown in the middle row
of Figure 3.

Luminance channel We represent the high frequencies of the
luminance H[OY ] with a more sophisticated function consisting of



several components. The first component is an affine function akin
to that used for the chrominance channel: AY (B)H[I](p) + bY (B)
with AY and bY , the 1× 3 matrix and the scalar constant defining
the affine function. This affine component captures the local changes
of brightness and contrast. Next, we apply a per-block multiplica-
tive factor m�(B) to each stack level L� [IY ]. These multiplicative
factors collectively model multi-scale effects. Last, we add a term to
account for non-linearities. We use a piecewise linear function made
of k segments over the luminance range of the block. To define this
function, we introduce k−1 regularly spaced luminance values yi =
minB H[IY ]+ i

k
(maxB H[IY ]−minB H[IY ]), i ∈ {1, . . . , k−1}

and the segment functions si(·) = max(· − yi, 0) where we omit
the dependency on B of yi and si for clarity’s sake. Intuitively, si
creates a unit change of slope at the ith node yi. We use these func-
tions to define our nonlinear term as

∑k−1
i=1 qi(B)si(H[IY ]) where

the {qi(B)} coefficients control the change of slope between two
consecutive linear segments.

To fit the complete model, we use LASSO regression [Tibshirani
1994], i.e., we minimize a standard least-squares term that combines
the three components that we just discussed and sum over all the
pixels of the block B:

∑
p∈B

∥∥∥H[OY ](p)−AY (B)H[I](p)− bY (B)

−
n−1∑
�=0

m�(B)L� [IY ](p)−
k−1∑
i=1

qi(B)si(H[IY ](p))
∥∥∥
2

(4)

to which we add the L1 norm of the free parameters AY (B), bY (B),
{m�(B)}, and {qi(B)}. Compared to a L2-regularized regression,
the LASSO has the benefit of creating sparse coefficient maps that
allow more compact encoding, reducing the size of the recipe by up
to 30%. Both methods otherwise entail almost equal computation
time and are visually indistinguishable.

Solving the optimization problems (Eq. 3 and 4) for each overlapping
block, and computing the low-pass ratio (Eq. 1) gives all the recipe
coefficients (Fig. 4). Our local per-patch optimization yields results
visually identical to a global optimization strategy, while being
several orders of magnitude faster.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: Recipe coefficients computed for the photo in Figure 2.
We remapped the values to the [0; 1] range for display purposes. (a)
lowpass residual Rc. (b,c) affine coefficients of the chrominance Ac

and bc. (d) affine coefficients of the luminance AY and bY . (e)
multiscale coefficients {m�}. (f) non linear coefficients {qi}.

3.1.3 Encoding recipe data

Once we have the recipe coefficients described in Section 3.1, we
pack them as a multi-channel image (Fig.4). We quantize each
channel of the recipe to 8 bits. In practice, this error is small and
does not affect the quality of the reconstruction (< 0.1 dB).

We compress these coefficient maps using off-the-shelf lossless
image compression methods. We save the lowpass residual as a
16-bit float TIFF file, and the highpass coefficients as tiles in a 8-
bit grayscale PNG file. This compression exploits both the spatial
redundancy of the recipe and the sparsity induced by the LASSO
regression and further reduces the data by more than a factor 2.

3.1.4 Reconstructing on the client

We reconstruct the output O on the client by applying the recipe
received from the server and described in the previous section on
the client’s high quality input I . We proceed in two steps: we first
perform the same image decomposition of the original input, and
then apply the corresponding recipe coefficients to each term of this
decomposition as illustrated in Figure 3.

For each pixel p and each channel c ∈ {Y,Cb, Cr}, we obtain the
output low-pass residual by applying the ratios R from Equation 1
onto the input residual:

Ln[Oc](p) = Rc(p)
(
Ln[Ic](p) + 1

)
− 1 (5)

We reconstruct the intensity levels � ∈ [0;n− 1] of the multiscale
component by multiplying them by the factors m� from Equation 4:

L�[ÔY ] = m�L�[IY ] (6)

The above gives the complete Laplacian stack {L�[ÔY ]} together
with the luminance channel that we upsample back to the original
resolution (Equation 5). We collapse this stack to get an intermediate
output luminance channel ÔY . At this point, the reconstruction is
missing the high-frequency luminance components from Equation 4
and the chrominance channels Cr and Cb.

We reconstruct the remaining high-frequency information H[O] by
first computing HB[O] within each block then linearly blending the
results of overlapping blocks. For chrominance, we apply the affine
remapping that we estimated in Equation 3:

HB[OCC ](p) = Ac(B)H[I](p) + bc(B) (7)

For luminance, we apply the affine remapping and the nonlinear
functions that we computed in Equation 4:

HB[OY ](p) = AY (B)H[I](p)+bY (B)+
k−1∑
i=1

qi(B)si(H[IY ](p))

(8)
We linearly interpolate HB[OCC ] and HB[OY ] between overlapping
blocks to get H[OCC ] and H[OY ]

Finally, we combine all the terms to assemble the reconstructed
output. We linearly upsample the chrominance residual (Eq. 5), add
the multiscale component (Eq. 6), and the high-frequency chromi-
nance (Eq. 7) and luminance (Eq. 8) linearly interpolated between
overlapping blocks:

O = up(Ln[OCC ]) + ÔY +H[OCC ] +H[OY ] (9)

where up(·) is the operator that upsamples the residual back to the
original resolution and we implicitly lift the quantities in the right-
hand side to Y CbCr vectors depending on the channels that they
contain.



3.2 Compressing the input image

We now describe the algorithm to compress the input data sent to the
server. In our approach, the server’s purpose is to compute a recipe
and not the final output. We therefore send a modified input to the
server as long as the computed recipe remains faithful. We exploit
this by aggressively compressing the input image sent to the server.
We use the image received on the server to create a proxy input Ĩ
that we process with the filter f to get a proxy output Õ = f(Ĩ).
These two images are then used to construct the recipe as previously
described.

To compress the input image, we first downsample it (typically
by a factor of 4 in each dimension) followed by aggressive JPEG
compression. The compressed image represents around 1% of the
original uncompressed image. This minimizes the latency and en-
ergy consumption due to the upload.

The visual quality of this image is poor but from a signal processing
perspective, the medium and low frequencies of the input image
are only lightly impacted by the downsampling and compression.
The quality degradation is concentrated in the high frequencies.
We empirically observed two main issues. First, some fine details
completely disappear and leave a nearly constant region. In some
blocks, this results in constant features for the regression described
in Equation 4. The optimization might use this constant term as
an affine offset. This issue becomes apparent when the recipe is
later applied to the original image whose corresponding terms are
non-constant (Fig. 5). Second, high-frequency artifacts appear and
edges get softened, which degrade the accuracy of the estimated
recipe and the final reconstructed image. We alleviate these issues by
upsampling the image back to the original resolution when received
by the server and reshaping the histograms of its 3 highest-frequency
bands so that they match those of the original input, as described
by Heeger and Bergen [1995]. In practice, we compute a 3-level
Laplacian pyramid, add low-amplitude Gaussian noise (σ = 0.5%
of the intensity range) to avoid constant regions, and apply histogram
transfer to each level to match the distribution of coefficients of the
original input image. This process adds a minimal computational
overhead: 3 histogram computations on the client and 3 histogram
transfers and a 3-level pyramid on the server. It only requires the
transmission of 3 ZIP-compressed coarsely sampled histograms in
addition to the small compressed image.

The table below reports the PSNR with and without this preprocess-
ing. It shows that the two components of our proxy construction,
upsampling and high-frequency shaping, contribute to the quality
of the final result. Further details are provided in supplemental
material.

freq. shaping no freq. shaping

upsampling 35.8 dB 33.5 dB
no upsampling 28.7 dB 29.6 dB

Figure 6 compares our approach to directly using the low resolution
compressed image. The latter option faces two challenges, as we
previously discussed, the high-frequency signal is highly degraded,
and some filters are not scale-invariant, i.e., their output on a down-
sampled image is not a faithful approximation of the full-resolution
result [Jeong et al. 2011].

4 Evaluation

We evaluated the quality of our reconstruction on 10 different image
processing applications (§ 4.1, summarized in Fig. 11). We studied
the effect of degrading the input to different degrees, and analyzed

(a) reference (b) our method, PSNR =

34.7 dB
(c) no noise added to
the upsampled input be-
fore processing, PSNR =

28.1 dB

Figure 5: Adding a small amount of noise to the upsampled de-
graded image makes the fitting process well-posed and enables our
reconstruction (b) to closely approximate the ground-truth output
(a). Because of the downsampling and JPEG compression, the de-
graded input (not shown) exhibits large flat areas (in particular in
the higher Laplacian pyramid levels). Without the added noise, the
fitting procedure might use the corresponding recipe coefficients as
affine offsets. This generates artifacts (c) when reconstructing from
the high quality input (which does have high frequency content).

(a) reference (b) our method,
PSNR = 34.7 dB

(c) no input upsampling
before processing,
PSNR = 24.2 dB

Figure 6: In this close-up from a Detail Manipulation example,
processing directly the downsampled input before fitting the recipe
fails to capture the higher frequencies of the transformation. Errors
are particularly visible in the eyes and hair. Image, MIT 5k [2011].

the impact of different components of our recipe model (§ 4.2).
Finally, we measured the real-world latency and physical energy
consumption of our approach using a prototype implementation with
a PC server and an Android smartphone (§ 4.3). Systematic results
for different quality settings and the impact of each feature in the
transform recipe pipeline are provided in the supplemental material.

Throughout our analysis, we express the compression factor as a
fraction of the original uncompressed 24-bit bitmap. Though an
uncompressed bitmap is never used in the context of cloud image
processing, it provides a fixed quality reference for all of our com-
parisons. For natural color images, the typical out-of-the-phone data
ratios for JPEG and PNG are 10− 15% 50− 75% respectively. Be-
sides visual comparison, we report both PSNR and SSIM to quantify
the quality of our reconstruction.

4.1 Test applications

We selected a range of applications representative of typical photo
editing scenarios to evaluate the expressiveness of our approach
in capturing different visual effects. Some of these applications
require a large database, and hence cloud processing, while others
could be performed locally but are still computationally intensive We
gathered 168 high-quality images from Flickr and the MIT-Adobe
fiveK dataset [Bychkovsky et al. 2011]. Their resolutions range from
2 to 8 megapixels. The MIT-Adobe fiveK photos are in raw format
and provide a baseline to evaluate reconstruction quality.



input input %down PSNR (dB) SSIM
subsampling Q w %up ours jpeg jdiff ours jpeg jdiff ours jpeg jdiff

— — 32 55.6 1.4 7.9 7.2 41.0 41.2 41.5 0.98 0.97 0.96
standard 2× 30 32 1.0 1.5 1.9 2.0 38.5 30.2 30.6 0.97 0.82 0.83
medium 4× 50 64 0.4 0.5 0.6 0.6 35.8 27.3 27.6 0.96 0.75 0.75

low 8× 80 128 0.2 0.1 0.2 0.2 32.7 24.9 25.1 0.94 0.69 0.69

Table 1: Mean compression factor and reconstruction quality for our ten applications test suite. (The full table of per-application results at all
four quality levels is included as supplemental material, with the input and output images for every tested configuration.) %up refers to the
compression of the input as a fraction of the uncompressed bitmap data, %down to that of the recipe (or output in case of jpeg and jdiff). For a
losslessly compressed input, our method matches the quality of a JPEG-compressed output. We provide this setting as a reference only and do
not recommend using it in practice. The benefits of transform recipes become more dramatic as the input image is compressed. Q is the quality
setting for the JPEG compression of the input. We only recommend the “low” setting when data size is paramount, because the degradation of
the results can be significant in some cases. The jpeg and jdiff methods are given the same input, and use Q = 80 for the output compression.
Since PSNR and SSIM don’t necessarily tell the full story, we refer to the supplemental material for a more in-depth visual comparison.

From these high-quality inputs, we generated proxy inputs for sev-
eral quality levels using a combination of bicubic downsampling (2
to 8 times smaller in each dimension) and JPEG compression (with
quality parameters between 30 and 80). We use JPEG quantization
tables from Adobe Photoshop. This new set of images are what the
server processes in our technique.

We ran each algorithm on this set of inputs for different quality
settings and measured end-to-end approximation fidelity.

Our 10 tested applications were:

Photo editing and Photoshop actions We constructed a com-
plex Photoshop Action including tonal adjustments, color correc-
tion, non-trivial masking, spatially varying blurs, unsharp masking,
high-pass boost, vignetting, white balance adjustments, and detail
enhancement. These operations include both global and local edits,
and were created as a stress test for our model. This is also an
example of using existing code which is not available for a mobile
device, but can be run remotely on a server.

Dehazing This algorithm [Kim et al. 2013] estimates an atmo-
spheric light vector from the input image and removes the cor-
responding haze. The transformation applied to the input image
exhibits sharp transitions often colocated with edges in the input
image.

Edge preserving detail enhancement We test both local Lapla-
cian filtering [Paris et al. 2011] and WLS filtering [Farbman et al.
2008]. These methods are challenging for our approach because the
recipes are not explicitly edge-aware.

Style Transfer This algorithm [Aubry et al. 2014] alters the distri-
bution of gradients in an image to match a target distribution using a
variant of local Laplacian filtering. The algorithm outputs an image
whose style matches that of the example image.

Portrait Style Transfer Shih et al. [2014] spatially matches a
casual portrait to a target example automatically found in a database;
at its core, this technique relies on computationally expensive dense
correspondence. Because of correspondence estimation and database
dependence, this algorithm is a good candidate for cloud processing.
The algorithm also copies the eye highlights from the example as
a post-process; we disabled this step because it is not supported by
our approach.

Time of Day Hallucination This technique by Shih et al. [2013]
requires a large database and a costly computer vision analysis.

Colorization Levin et al. [2004] requires solving a large sparse
linear system that is costly on mobile platforms for large images. We
manually created the scribbles on images from the MIT-5K dataset.

Matting This application lies at the fringe of the scope of our
work since the output image does not resemble a photograph. It is
nonetheless useful in the photo editing context and is a good stress
case for expressiveness. We use the implementation of KNN-matting
available on the authors’ webpage [Chen et al. 2012], and use the
publicly available data from Rhemann et al [2009] as inputs.

L0 smoothing Xu et al. [2011] aggressively remove details and
texture from photographs for stylization. We include it as a failure
case.

4.2 Reconstruction quality

We processed our entire dataset at various levels of compression and
found that our approach produces outputs that are visually similar
to the ground truth, i.e., the direct processing of the uncompressed
input, in all cases except with the most extreme settings and the
L0 smoothing filter. Figure 11 shows a representative example
reconstruction for each application for the quality setting that we
consider “standard.”

We compare our technique to two baseline alternatives set to match
our data rate:

• jpeg: the client sends a JPEG, the server processes it and
transmit the output back as a JPEG image.

• jdiff: the client sends a JPEG input image. The server processes
it and sends back the difference encoded in JPEG. The client
adds the difference back to its local input.

As shown in Table 1, our approach consistently outperforms these
traditional alternatives by a significant margin. jpeg and jdiff match
the quality of our technique only when using full-resolution non-
degraded input and much less compression of the output. A complete
quality study, per image filter can be found in the supplemental
material. In general, with our “standard” setting, our method requires
just 1-2% of the total input/output data (5-10% of the baseline JPEG
solution) to reproduce the reference output to 35 dB and often over
40 dB across all test images for 9 of our 10 test applications. With
the more aggressive “medium” setting, it requires just 0.5% of the
data while still achieving a high fidelity of 33-40 dB.

Robustness to input degradation Figure 8 illustrates the ro-
bustness of our recipes for various compression ratios of the input



(a) reference output (b) affine terms only, PSNR = 32.1dB

(c) affine and multiscale terms for the
luminance, PSNR = 33.6dB

(d) affine, multiscale and non-linear
terms for the luminance, PSNR =

36.4dB

Figure 7: The additional features to model the transformation of the
luminance are critical to capture subtle local effects of the ground
truth output (a) . (b) Using only the affine terms, most of the effect
on high frequencies is lost on the wall and the wooden shutter. (c)
Adding the Laplacian pyramid coefficients, the high frequency details
are more faithfully captured on the wall. (d) Our recipe: with both
the non-linear and multiscale terms, our preserves local contrast
variations. This is particularly visible on the texture of the wooden
shutter (best appreciated digitally). Image, MIT 5k dataset [2011].
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Figure 8: The quality of our reconstruction remains high for differ-
ent settings of our recipe and various degrees of input compression.
Not surprisingly, the reconstruction quality decreases as input and
output compression increase. We report the average PSNR on the
whole dataset. In comparison, both the jpeg and jdiff versions per-
form poorly under low data allowance; they require an order of
magnitude more data to match our quality.

and output. We recommend two levels of compression: “standard,”
which corresponds to about 1.5% of the total data (upstream and
downstream) and generates images often indistinguishable from the
ground truth, and “medium,” which corresponds to about 0.5% of
the data and only introduces minor deviations. In practice, one
would choose the level of accuracy/compression depending on the
application.

Impact of additional luminance terms The extra features for the
luminance channel are critical to the expressiveness of our model.
Both the nonlinear luminance curve and the multiscale features
help capture subtle and local effects (Fig. 7). We summarize these
improvements in the table below for an uncompressed input; a
detailed report per category can be found in Table 2.

with luminance curve without

with multiscale 40.2 dB 38.3 dB
without 38.5 dB 36.6 dB

4.3 Runtime performance & energy efficiency

We implemented a client-server system to evaluate the real-world
runtime and energy consumption. We used a Samsung Galaxy S5
as the client device. We tested three image processing scenarios:
on-device processing, naive cloud processing – where we transferred
the input and output compressed as JPEG with the default settings
of the cellphone, and our recipe-based processing. We measured net-
work connections through WiFi and LTE. Our server is a MacBook
Pro running an Intel Core i7 2.7GHz with 4 cores. For on-device pro-
cessing, we used a Halide-optimized implementation [Ragan-Kelley
et al. 2012; Ragan-Kelley et al. 2013] of the test filters, through the
Java Native Interface on Android.

We implemented and experimented with 5 filters on this setup: Lo-
cal Laplacian, Colorization, Style Transfer, Portrait Transfer and
Time of Day hallucination. We ran Local Laplacian filtering [Paris
et al. 2011] with 40 discretization pyramids levels, which enables
fine-scale detail enhancement, on an 8-megapixel input. For Style
Transfer, we used 3 iterations and 20 discretization levels, as the
authors recommend [Aubry et al. 2014]. We used the default pa-
rameters from the authors’ implementation for the remaining filters.
Portrait Transfer and Time of Day require a large database; we did
not implement them on a mobile device as they need to run on the
server.

To ensure accurate power measurement, we replaced the cellphone
battery with a power generator, and recorded the current and voltage
drawn from the generator. The power usage plot in Figure 9 shows
the energy consumption at each step for the three scenarios on the
Local Laplacian filter. By reducing the amount of data transferred
both upstream and downstream, our method greatly reduces trans-
mission costs and cuts down both end-to-end computation time as
well as power usage (Fig. 9).

For typical mobile network bandwidth (2Mbps upstream, 8 Mbps
downstream), our approach ran 2× faster that the jpeg option in
most cases and up to 4× faster than local processing. Our energy
consumption is between 2 − 7× lower than local processing, and
between 2 − 3× lower than transferring JPEG images (Fig. 12).
Our advantage becomes more significant as the network connection
gets slower and less reliable. The standard jpeg cloud becomes
unpractical because of drastically increasing processing time and
energy consumption (Fig. 10). Thanks to low data transfer, our
method still provides gains over local processing in such situations
and makes cloud image processing possible in the face of network
scarcity for applications that cannot be run locally.



(a) input (b) reference output (d) reference
patch

(e) highest
error patch 

(f) difference
remapped to [0,1]

(c) our reconstruction

Dehazing
PSNR= 34.3 dB
%up = 0.5
%down = 1.8

Detail 
Manipulation
PSNR= 42.5 dB
%up = 0.1
%down = 1.5

L0
PSNR= 25.6 dB
%up = 1.0
%down = 2.4

Local Laplacian
PSNR= 32.4 dB
%up = 0.4
%down = 1.9

Matting
PSNR= 37.7 dB
%up = 0.3
%down = 0.7

Style Transfer
PSNR= 34.6 dB
%up = 0.3
%down = 1.1

Time of Day
PSNR= 37.2 dB
%up = 0.4
%down = 1.6

Photoshop
PSNR= 46.1 dB
%up = 0.7
%down = 1.5

Portrait Transfer
PSNR= 38.5 dB
%up = 0.4
%down = 1.1

Recoloring
PSNR= 48.7 dB
%up = 0.2
%down = 1.5

Figure 11: Our method handles a large variety of photographic enhancements. We filter a highly degraded copy (not shown) of the reference
input (a). From the resulting degraded output, we compute the recipe parameters. We then reconstruct an output image (c) that closely
approximates the reference output (b) computed from the original high-quality input. (d) and (e) are a close-up on the region of highest error
in our reconstruction (shown in red on (a)). (f) is a rescaled difference map that emphasizes the location of our errors. As shown on the L0

smoothing example, our method is not well-suited for filters that significantly alter the structure of the input. Matting example from Rhemann et
al. [2009], other photographs from the MIT 5k dataset [2011].



PSNR (dB) relative PSNR (dB)
features Block overlap � · � · · � � ·

Multiscale � · · � · � · �
Non-linear � · · · � · � �

enhancement Local Laplacian 34.6 -3.9 -3.2 -5.2 -2.2 -4.7 -1.4 -4.2
Dehazing 34.3 -0.8 -0.2 -2.0 -0.3 -1.5 -0.2 -1.8
Detail Manipulation 33.9 -4.4 -3.6 -1.5 -3.2 -1.0 -2.5 -0.6
L0 32.5 -3.5 -3.0 -1.3 -2.7 -0.8 -2.1 -0.6
Matting 32.9 -2.3 -1.5 -2.0 -1.0 -1.3 -0.1 -0.8
Photoshop 40.0 -3.7 -3.0 -3.4 -1.7 -2.3 -1.0 -1.2
Recoloring 44.6 -1.3 -0.1 -1.4 -1.2 -0.1 -0.2 -1.3
Portrait Transfer 36.7 -4.0 -2.9 -2.6 -2.2 -1.3 -1.1 -1.4
Time of Day 35.8 -1.5 -2.1 -2.2 -1.0 -1.6 -1.7 -0.7
Style Transfer 32.8 -4.2 -3.5 -4.0 -0.8 -3.3 -0.0 -0.7

all 35.8 -3.0 -2.3 -2.6 -1.6 -1.8 -1.0 -1.3

Table 2: Per-application PSNR for recipes with an average input compression rate of %up = 1.0, and output compression rate %down = 1.5,
including the relative effect of individual features of our representation. Block overlap allows us to linearly interpolate between overlapping
block and avoids blocking artifacts. Multiscale refers to the use of several pyramid levels to represent the high-pass of the luminance channel.
This allows us to capture subtle multiscale effects. Non-linear refers to the use of a piecewise-linear tone curve in the representation of the
high-pass luminance. This allows us to faithfully capture tonal variations.
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Figure 12: Processing time and energy consumption for the filters for three computation schemes: purely local processing, transferring JPEG
images to and from a cloud server, and our approach using transform recipes with a cloud server. The measurements were performed on a
Samsung Galaxy S5 on LTE with a bandwidth of 2 Mbps upstream and 8 Mbps downstream. This is a typical bandwidth one would get on a
coffee shop’s WiFi or under average LTE coverage. Our method always saves time and energy compared to the other two approaches. We
averaged over 20 runs and report an error range of one standard deviation. The higher variance for JPEG is mainly due to network speed
fluctuations.

4.4 Discussion & limitations

Compared to filter-specific approaches, our generic recipes separate
filter design from compressed representation; they can be used as-is
in existing pipelines and do not require tweaking if the filter is later
changed. One could specialize the recipes for a given application,
but the gain would often be limited since our generic recipes are
already high-fidelity and compact thanks to the LASSO regression
performing a model selection tailored to each specific filter and
image.

The core idea of transform recipes—to exploit similarity between
input and output—assumes a strong correlation between the input
and the output of an image processing algorithm. As a result, our
method does not capture the dramatic transformations of L0 smooth-
ing as effectively as the nine other applications in our tests. It also

cannot represent significant addition of content, such as inpainting
or clone brushing or significant alteration of the image structure such
as Non-Photorealistic Renderings (cartoon, paintbrush effects, etc).
Our existing model also does not account for spatial transformations.
This excludes operations such as barrel distortion correction and
perspective rectification. A parametric warp could be added, but we
so far chose to focus on style transformations.

Although recipe coefficients are coarsely sampled, they are applied
on image data sampled at every pixel. This allows them to generate
results that adapt to the fine-grain structure of the image, including
to features below the size of a block. In particular, within a small
patch, it is possible to capture edge-aware effects even though the
representation has no notion of edge-awareness. The example of
the Matting Laplacian makes this clear. The output alpha matte
is extremely edge aware (black on one side of the edge, white on
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Figure 9: Power consumption over time for three computation
schemes: purely local processing, transferring JPEG images to
and from a server, and our approach using transform recipes with
a server. Measurements from a Samsung Galaxy S5 connected to
an LTE network (with a bandwidth of 2 Mbps upstream and 8 Mbps
downstream) running our Style Transfer application. Our approach
uses less energy and takes less time than either local computation
or traditional server offload.
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Figure 10: Time and Energy vs. bandwidth for the Style transfer
filter. JPEG cloud is not usable when the bandwidth is limited and
reaches 630s and 533J for a 100kbps bandwidth. Our method still
offers energy and time savings compared to local processing in this
regime. For filters that cannot be run on the mobile device (database
or private code) our solution makes processing feasible even in the
face of scarce connectivity.

the other, finely following the edge contour in between) yet Levin
et al. [2008] showed that it can usually be represented as a local
linear combination of the RGB channels, the simplest regression
model one can think of. Similarly, our recipes rely on local regres-
sions with simple, yet richer channels than RGB alone (luminance,
chrominance, stack levels, etc.)

Overall, the development of good recipes requires a trade-off be-
tween expressiveness, compactness and reconstruction cost. In some
scenarios, enhancement-specific recipes might provide significant
gains. We believe our framework provides a strong and general
foundation on which to build future systems.

5 Conclusion

The effectiveness of cloud-based image enhancement is limited by
the time and energy cost of data transfers. In the case of algorithms
that preserve the photographic content of an image, we have shown
that we can dramatically reduce the data transferred between a mo-
bile client and the cloud by exploiting the similarity between the
input and the output. To do this, we introduced transform recipes, a
flexible representation which capture how images are locally modi-
fied by an enhancement. Recipes dramatically reduce the bandwidth
required for cloud computation because they encode edits compactly,
and are robust to input image degradation. They allow the client to
send a highly-compressed input to the server for processing, receive
a compact recipe in return, and apply the recipe locally on the high-
quality input. Finally, we demonstrated that transform recipes can
efficiently represent a wide range of photographic processing algo-
rithms, requiring only 1% of the combined input/output data—an
order of magnitude less than transmitting reasonable-quality JPEG
images—to achieve consistently over 30 dB fidelity to the original
filter. In practical scenarios, this compression leads to dramatically
reduced time and energy costs compared to either local processing
or traditional cloud offload with full images.
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