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Do dark matter axions form a condensate with long-range correlation?
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Recently there has been significant interest in the claim that dark matter axions gravitationally thermalize
and form a Bose-Einstein condensate with a cosmologically long-range correlation. This has potential
consequences for galactic scale observations. Here we critically examine this claim. We point out that there
is an essential difference between the thermalization and formation of a condensate due to repulsive
interactions, which can indeed drive long-range order, and that due to attractive interactions, which can
lead to localized Bose clumps (stars or solitons) that only exhibit short-range correlation. While the
difference between repulsion and attraction is not present in the standard collisional Boltzmann equation,
we argue that it is essential to the field theory dynamics, and we explain why the latter analysis is
appropriate for a condensate. Since the axion is primarily governed by attractive interactions—gravitation
and scalar-scalar contact interactions—we conclude that while a Bose-Einstein condensate is formed, the
claim of long-range correlation is unjustified.
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I. INTRODUCTION

Cosmological observations, such as galaxy rotation
curves and anisotropies in the cosmic microwave back-
ground radiation, indicate that the majority of matter in the
Universe is a nonradiating type known as dark matter [1].
Dark matter appears to make up around five times more
mass than ordinary matter, yet we know very little about its
properties. Observational constraints indicate that dark
matter is nonbaryonic, cold and collisionless in nature, a
picture known as cold dark matter [2]. It is important to
develop dark matter models with clear signatures.
Several candidates for the dark matter particle have been

proposed, including weakly interacting massive particles,
sterile neutrinos, and axions, among others. The latter is a
hypothesized particle introduced to solve the CP problem
in QCD [3–5]. This particle physics motivation for axions
makes them a theoretically attractive candidate. In addition,
the proposed mass range and nonrelativistic behavior are
fitting for the dark matter problem.
Axion dark matter has a rich history, including compu-

tations that show the axion can plausibly carry the right
dark matter abundance; e.g., see Refs. [6–9]. Such axion
dark matter is currently being explored in interesting table
top experiments, such as ADMX [10,11], utilizing the

axion to photon coupling, which is a unique signature
(other proposed search strategies include Refs. [12,13]).
Furthermore, axions in an inflationary cosmology can
generate interesting isocurvature signatures [14–16],
and various other interesting ideas include Refs. [17–21].
Here we examine a fascinating new proposal for a cosmo-
logical or galactic scale signature of the axions, which is
deeply intertwined with their bosonic character.
Axions are essentially nonrelativistic with an approx-

imately conserved particle number, and are produced at
high occupancy. Thus they have the capacity to form a
Bose-Einstein condensate (BEC). Recently, it has been
proposed that axionic dark matter will gravitationally
thermalize and form a BEC during the radiation-dominated
era [22,23]. It is then argued that this causes the axion
field’s correlation length to grow dramatically, becoming an
appreciable fraction of the size of the horizon. Furthermore,
it is claimed that this produces a unique signature of
∼10 kpc caustics with a ring geometry in galaxies [24].
There have been many follow-up studies of this fascinating
idea including those in Refs. [25–28] and similar but
distinct ideas such as those in Refs. [29–32].
In this paper we examine whether it is plausible that the

axion’s correlation length grows dramatically. For definite-
ness, we will focus on the case in which the Peccei-Quinn
phase transition happens after inflation, although the
opposite ordering is also possible. We show that while
long-range correlations can be established, in principle, for
repulsive interactions, they do not occur for attractive
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interactions. Hence, although a Bose-Einstein condensate is
still formed, a long-range order is not established. Our
analysis applies to the QCD axion, but also applies to any
bosonic dark matter particle whose behavior is dominated
by attractive interactions. We demonstrate why the proper-
ties of the condensate are captured by classical field theory
and we examine its equilibrium behavior.
This paper is organized as follows: In Sec. II we introduce

the nonrelativistic field theory of axions. In Sec. III we
explain why the classical field approximation is valid. In
Sec. IV we discuss the evolution of modes around a
homogeneous background. In Sec. V we discuss the equi-
librium/ground state configurations. In Sec. VI we discuss
the evolution from realistic initial conditions and provide
coherence length estimates. In Sec. VII we summarize our
results and discuss. Finally, in the Appendix we include
details of Friedmann-Robertson-Walker (FRW) expansion.

II. NONRELATIVISTIC FIELD THEORY

The axion is a scalar field ϕ introduced to solve the
strong CP problem. At first approximation it is a massless
Goldstone boson associated with a spontaneously broken
global symmetry, but picks up a small mass due to
nonperturbative effects in QCD. This leads to the following
potential:

VðϕÞ ¼ Λ4ð1 − cosðϕ=faÞÞ: ð1Þ
Here Λ ∼ 0.1 GeV is associated with the QCD scale, and
fa sets the symmetry breaking scale. It can be shown that
the abundance of axion dark matter in the Universe is
determined by fa with value

Ωa ∼
�

fa
1011–12 GeV

�
7=6

ð2Þ

where the uncertainty in this expression is due to compli-
cations involved in calculating nonperturbative QCD effects,
including the temperature dependence of the axion mass.
For small field values ϕ ≪ fa, it is sufficient to expand

the potential as follows:

VðϕÞ ¼ 1

2
m2ϕ2 þ λ

4!
ϕ4 þ � � � ð3Þ

where m ¼ Λ2=fa and λ ¼ −Λ4=f4a < 0. Using this, we
have the following relativistic Lagrangian density:

L ¼ 1

2
ð∂ϕÞ2 − 1

2
m2ϕ2 −

λ

4!
ϕ4: ð4Þ

It is very useful to treat the axions in a nonrelativistic
approximation, which is extremely well justified. Axions
interact far too weakly to be thermalized in the early
Universe, so their production is dominated by the misalign-
ment mechanism; i.e., when the axion field acquires a mass

during the QCD phase transition, the phase of the field is
generally misaligned with the potential energy minimum.
As suggested by causality, the field ϕ is expected initially
to vary by an Oð1Þ amount from one Hubble patch to the
next, which implies that the typical initial wave number
ki ∼HQCD, the Hubble parameter at the QCD phase
transition. Numerically, HQCD ∼ T2

QCD=MPl, where TQCD

is the temperature of the QCD phase transition,
TQCD ∼ 0.1 GeV, and MPl ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
≈ 1018 GeV is the

reduced Planck mass, so ki ∼ 10−11 eV. The axion mass
increases during the phase transition toward its final value
m, typically Oð10−5 eVÞ, so the axions are highly non-
relativistic shortly after the QCD phase transition. k red-
shifts with the scale factor, so for example by the time of
matter-radiation equality, t ∼ 50; 000 years, the typical
wave number is reduced further by a factor of Oð108Þ.
During structure formation, the axions are accelerated to
galactic speeds of Oð10−3Þc, but the nonrelativistic
approximation continues to be very accurate.
An important feature of the nonrelativistic field theory

approximation is that particle-number violating processes
are ignored. This is highly accurate, since the self-
coupling λ ¼ −Λ4=f4a is extremely small: for Λ ∼
0.1 GeV (typical QCD scale) and fa ∼ 1011 GeV (typical
Peccei-Quinn scale), we have λ ∼ −10−48. The only
scattering process with an amplitude that is first order
in λ is the particle-number preserving process 2ϕ → 2ϕ,
since ϕ → 3ϕ and 3ϕ → ϕ are kinematically forbidden.
Particle-number changing processes, such as the annihi-
lation process 4ϕ → 2ϕ, have cross sections that are
suppressed by an extra factor of λ2. When photon
couplings are included, the relativistic axion can decay
to two photons, but the lifetime is estimated as τ ∼
ðm=20 eVÞ5 times the age of the Universe [33], which is
1028 times the age of the Universe for a typical mass of
10−5 eV. Thus, all particle-number violating processes
can be very safely ignored.
In order to take the nonrelativistic limit, let us rewrite the

real field ϕ in terms of a complex field ψ as follows:

ϕðx; tÞ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψðx; tÞ þ eimtψ�ðx; tÞÞ: ð5Þ

We substitute this into Eq. (4) and dispense with terms that
go as powers of e−imt and eimt, as they are rapidly varying
and average out to approximately zero. We then obtain the
following nonrelativistic Lagrangian for ψ :

L ¼ i
2
ð _ψψ� − ψ _ψ�Þ − 1

2m
∇ψ� ·∇ψ −

λ

16m2
ðψ�ψÞ2:

ð6Þ
For these nonrelativistic fields, the momentum conjugate to
ψ is π ¼ iψ�. Note that this Lagrangian only involves a
single time derivative on the complex field ψ .
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Passing to the Hamiltonian and promoting the physical
quantities to operators for the purpose of quantization, we
obtain

Ĥ ¼ Ĥkin þ Ĥint ð7Þ
where

Ĥkin ¼
Z

d3x
1

2m
∇ψ̂† ·∇ψ̂ ð8Þ

Ĥint ¼
Z

d3x
λ

16m2
ψ̂†ψ̂†ψ̂ ψ̂ : ð9Þ

The first term represents kinetic energy and the second term
represents a short-range interaction, attractive for λ < 0 and
repulsive for λ > 0.
The local number density of particles is given by

n̂ðxÞ ¼ ψ̂†ðxÞψ̂ðxÞ ð10Þ

and the corresponding mass density is ρ̂ðxÞ¼mψ̂†ðxÞψ̂ðxÞ.
With this understanding, it is straightforward to guess the
form of the gravitational contribution to the energy

Ĥgrav ¼ −
Gm2

2

Z
d3x

Z
d3x0

ψ̂†ðxÞψ̂†ðx0Þψ̂ðxÞψ̂ðx0Þ
jx − x0j :

ð11Þ
The total Hamiltonian is the sum

Ĥ ¼ Ĥkin þ Ĥint þ Ĥgrav: ð12Þ

Although we derived this Hamiltonian starting with
fields, we can also derive it using the more fundamental
starting point of many-particle quantum mechanics.
Consider the following Hamiltonian for N nonrelativistic
particles, interacting via a contact interaction and gravity:

Ĥ ¼
XN
i¼1

p̂2
i

2m
þ λ

8m2

X
i<j

δ3ðx̂i − x̂jÞ −
X
i<j

Gm2

jx̂i − x̂jj
: ð13Þ

It is useful to introduce creation and annihilation operators
that act on particle states in the usual way and satisfy
standard commutation relations

½âk; â†k0 � ¼ ð2πÞ3δ3ðk − k0Þ: ð14Þ

Later we will make use of the following dimensionless
occupancy number,

N̂ k ¼ â†kâk=V; ð15Þ

where V is the volume of the box in which the field theory
lives. The kinetic energy can be written in an obvious way,

Ĥkin ¼
Z

d3k
ð2πÞ3

k2

2m
â†kâk; ð16Þ

and there is a similar representation for the other terms.
We can then pass to the field language by defining

ψ̂ðxÞ≡
Z

d3k
ð2πÞ3 âke

ikx ð17Þ

and obtain the field representation of the Hamiltonian
in Eq. (12).

III. CLASSICAL FIELD THEORY
APPROXIMATION

Let us decompose the quantum field ψ̂ as

ψ̂ ¼ ψ þ δψ̂ ð18Þ

where ψ is the expectation value in a given state hψ̂i ¼ ψ
and δψ̂ is the quantum correction. We would like to
estimate the relative size of the quantum correction to
the classical piece.

A. Occupancy number

For coherent states with occupancy number N the
typical relative size of the quantum correction for modes
on scales of the typical wavelengths is

δψ̂

ψ
∼

1ffiffiffiffiffi
N

p : ð19Þ

This relative quantum correction has an interpretation as an
analogue of “shot noise” that occurs for photon fluctuations
around the classical electromagnetic field.
Hence we would like to estimate the occupancy number.

For axions in our galaxy, the number density is given by

ngal ¼
ρgal
m

≈
GeV=cm3

10−5 eV
¼ 1014

cm3
: ð20Þ

For typical virialized particles in the Galaxy, the de Broglie
wavelength is given by

λdB ¼ 2π

mv
≈

2π

10−5 eV × 10−3
≈ 104 cm: ð21Þ

The characteristic occupancy number is then given by

N ∼ ngalλ3dB ≈ 1026 ð22Þ

which is huge. This says that in the Galaxy today, axions
are in the high occupancy number regime. In fact in the
early Universe, before galaxy formation, the typical occu-
pancy number was even higher, since the typical axion
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velocity was lower, which enhances the de Broglie wave-
length; we shall discuss this in Sec. VI D.
In this very high occupancy regime, the relative sizes of

the quantum corrections are very small. This means we
should be able to just use the classical field theory. So let us
return to the field representation of Sec. II and drop the
“hats” on ψ . Then using the Hamilton-Jacobi equations, we
obtain the following approximate equation of motion:

i _ψ ¼ −
1

2m
∇2ψ þ λ

8m2
jψ j2ψ −Gm2ψ

Z
d3x0

jψðx0Þj2
jx − x0j :

ð23Þ

This is rather more complicated than the standard one-
particle Schrödinger equation; this equation is nonlinear
and nonlocal.

B. Free theory thermalization

Having turned to the classical field theory, one might be
concerned that it misses essential aspects of thermalization.
Indeed, one might be concerned that one cannot see the
details of any phase transition to a BEC. Strictly speaking,
ordinary classical fields do not thermalize due to the
Rayleigh-Jeans catastrophe at high wave numbers.
However, if we cut off the theory at some high wave

number kUV, there is normally a well-defined thermal
equilibrium. In fact the classical theory is able to describe
the phase transition. To see this, let us consider a free field
theory in contact with an external heat bath at temperature
T. The free energy functional is

F½ψ � ¼
Z

d3k
ð2πÞ3

�
k2

2m
− μðTÞ

�
jψkj2 ð24Þ

where μðTÞ is the chemical potential. The expectation of
the number of particles is given by the ratio of path integrals

hNi ¼
R
DψN½ψ � exp ð−F½ψ �=TÞR
Dψ exp ð−F½ψ �=TÞ ð25Þ

where the number functional is

N½ψ � ¼
Z

d3k
ð2πÞ3 jψkj2: ð26Þ

Carrying out the path integrals, and dividing by a volume
factor, we obtain the number density nth of thermal particles

nth ¼
Z

d3k
ð2πÞ3

T
k2
2m − μðTÞ : ð27Þ

Cutting off the integral at jkj ¼ kUV we obtain

nth ¼
mTkUV

π2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjμðTÞjp
kUV

tan−1
�

kUVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjμðTÞjp ��

ð28Þ

with μðTÞ ≤ 0. So long as the total number density of
particles is ntot < mTkUV=π2, we can always solve this
equation for μðTÞ, implying that all particles are thermal.
However if ntot > mTkUV=π2, then μðTÞ is stuck at μ ¼ 0
and not all particles can be thermal; there must be a
condensate of particles in the ground state. In the free
theory, the ground state is the k ¼ 0 mode. (Later we
discuss the radical change that occurs when attractive
interactions are included.) The critical temperature for
the phase transition is evidently

Tcrit ¼
π2ntot
mkUV

: ð29Þ

The classical theory does not determine the cutoff kUV,
but if we adopt an estimate from quantum theory,
k2UV=2m ¼ Tcrit, then we find Tcrit ¼ ðπ4=2Þ1=3n2=3tot =m,
which differs by only 10% from the quantum mechanical
answer, Tcrit ¼ 2πðntot=ζð3=2ÞÞ2=3=m. If we keep the
density of particles and the cutoff fixed, then the ratio of
the number of particles in the ground state condensate nc to
the total number of particles ntot is linear in the temperature
T, and given by

ncðTÞ
ntot

¼
�
0 for T > Tcrit

1 − T
Tcrit

for T < Tcrit
: ð30Þ

So for T ≪ Tc almost all particles are in the condensate.
Since cosmological axions are at very high density and are
nonrelativistic, we expect T ≪ Tcrit, if indeed thermal
equilibrium is established.
The two-point correlation function hψ�ðxÞψðyÞi can also

be computed in terms of the chemical potential. In integral
form it is

hψ�ðxÞψðyÞi ¼
Z

d3k
ð2πÞ3

T
k2
2m − μðTÞ e

ik·ðx−yÞ þ ncðTÞ ð31Þ

where we have separated out the thermal piece and the
condensate piece. In the short distance limit jx − yj → 0
this is just the number density, as we computed above, and
is sensitive to the value kUV. On the other hand, in the long
distance limit jx − yj ≫ 1=kUV, the dependence on kUV is
less important and only appears implicitly through μðTÞ. In
this limit the two-point correlation function is

hψ�ðxÞψðyÞi ¼ mT
2πjx − yj e

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjμðTÞj

p
jx−yj þ ncðTÞ: ð32Þ

So for T > Tcrit, with jμðTÞj > 0 and ncðTÞ ¼ 0, the
correlation function falls off exponentially with distance
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and has a finite correlation length. For T ¼ Tcrit, with
μðTcritÞ ¼ 0 and ncðTcritÞ ¼ 0, the correlation function falls
off as a power law. For T < Tcrit, with μðTÞ ¼ 0 and
ncðTÞ > 0, the correlation function asymptotes to a non-
zero value at large distances. Hence there is tremendous
long-range correlation for T < Tcrit. In this paper we shall
examine how this is altered in the interacting theory and
how it depends on the sign of the interaction.
In summary, the classical field theory can adequately

describe the phase transition from a regular phase to a BEC.
While a BEC is a very quantum phenomenon from the
particle point of view, it is a very classical phenomenon
from the field point of view. By including interactions, we
should be able to understand the formation of the BEC, or
otherwise, and its properties, purely by studying the
classical field theory.

IV. EVOLUTION AROUND HOMOGENEOUS
CONDENSATE

In some of the simplest and most familiar BECs, such as
those described by a free theory coupled to an external heat
bath, the system is driven to an equilibrium state where
almost all particles are in the k ¼ 0, or very small k, modes.
From the classical field point of view, this means that the
field ψ is driven to be very slowly varying in space, with
extremely long-range correlation. If the system is entropi-
cally driven to such an equilibrium configuration, it must be
stable against perturbations. In this section, we examine
whether this applies to the axion using linear perturbation
theory.

A. Self-interactions

Let us begin by considering the contact interaction and
ignoring gravity. The equation of motion for the classical
field is

i _ψ ¼ −
1

2m
∇2ψ þ λ

8m2
jψ j2ψ : ð33Þ

Let us decompose the field into a homogeneous piece ψc
and a perturbation δψ as

ψðx; tÞ ¼ ψcðtÞ þ δψðx; tÞ: ð34Þ
The homogeneous piece is, effectively, the condensate,
while δψ represents a small disturbance in it. The con-
densate satisfies the equation

i _ψc ¼
λ

8m2
jψ0j2ψc: ð35Þ

This has a simple periodic solution

ψcðtÞ ¼ ψ0e−iμct ð36Þ
where

μc ¼
λ

8m2
jψ0j2: ð37Þ

The prefactor ψ0 is not a free parameter; its magnitude is
determined by n0 ¼ jψ0j2, where n0 is the density of
particles. On the other hand, the phase of ψ0 is arbitrary.
Any choice for the phase spontaneously breaks the
global Uð1Þ symmetry associated with particle number
conservation.
Perturbing the differential equation (33) to linear order

leads to

i _δΨ ¼ −
1

2m
∇2δΨþ λn0

8m2
ðδΨþ δΨ�Þ ð38Þ

where, for convenience, we have traded δψ for δΨ
through δψ ¼ ψcδΨ. Now we decompose δΨ into real
and imaginary parts as

δΨ ¼ Aþ iB: ð39Þ

Then after Fourier transforming, we obtain

d
dt

�
Ak

Bk

�
¼

�
0 k2

2m

− k2
2m − λn0

4m2 0

��
Ak

Bk

�
: ð40Þ

Depending on the sign of

κk ≡ k2

2m
þ λn0
4m2

ð41Þ

the solutions have one of two possible forms. For κk < 0,
the solutions are pure exponentials,

δΨk ¼ c1ðγk − iκkÞeγkt þ c2ðγk þ iκkÞe−γkt ð42Þ

where c1 and c2 are arbitrary real constants, �γk are the
eigenvalues of the above matrix,

γk ¼
kffiffiffiffiffiffiffi
2m

p ffiffiffiffiffiffiffiffi
−κk

p ð43Þ

and ðγk∓iκkÞ are the eigenvectors. For κk > 0we can begin
with a trial function of the form δΨk ¼ Z1e−iωkt þ Z2eiωkt,
which leads to the solution

δΨk ¼ Zðωk þ κkÞe−iωkt þ Z�ðωk − κkÞeiωkt ð44Þ
where Z is an arbitrary complex constant, and

ωk ¼
kffiffiffiffiffiffiffi
2m

p ffiffiffiffiffi
κk

p
: ð45Þ

Hence, if λ < 0, the modes for k values in the range

k2 < −
λn0
2m

ð46Þ
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experience parametric resonance and there is exponential
growth of perturbations. For higher values of k2 there is no
growth, only oscillations in the perturbation.
The existence of an instability band is therefore deter-

mined by the sign of the self-coupling λ. In summary
we have

λ > 0 ⇒ stability ð47Þ

λ < 0 ⇒ instability: ð48Þ

For the QCD axion, we have λ < 0. This is an attractive
interaction, and hence there is an instability. This means the
homogeneous condensate with long-range correlation is not
an attractor configuration of the system. It is therefore not
the entropically preferred configuration that arises dynami-
cally through thermalization. Similar remarks go through
for very small, but nonzero, kmodes. On the other hand for
systems with λ > 0, the homogeneous configuration is
stable and is an attractor solution under thermalization.

B. Gravity

We now investigate the case of gravity, and ignore the
self-coupling λ. The equations we need to solve are

i _ψ ¼ −
1

2m
∇2ψ þmϕNψ ð49Þ

∇2ϕN ¼ 4πGðmjψ j2 − ρ̄Þ ð50Þ

where we have subtracted out the average background
density ρ̄ in the equation for the Newtonian potential,
which will be appropriate in the FRW analysis given in the
Appendix.
Expanding ψ as before in Eq. (34) we have the trivial

solution for the condensate:

ψcðtÞ ¼ ψ0ðconstantÞ: ð51Þ
The linearized equations for the fluctuations are

i_δΨ ¼ −
1

2m
∇2δΨþmϕN ð52Þ

∇2ϕN ¼ 4πGmn0ðδΨþ δΨ�Þ: ð53Þ

Eliminating ϕN leads to

i_δΨ ¼ −
1

2m
∇2δΨþ 4πGm2n0∇−2ðδΨþ δΨ�Þ ð54Þ

which is identical to the structure of Eq. (38) in the λϕ4

theory with the replacement

λ

8m2
↔ 4πGm2∇−2: ð55Þ

By Fourier transforming, and using the result in Eq. (43),
we obtain

γk ¼
k
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGm3n0

k2
− k2

s
: ð56Þ

So again we find instability for a condensate of long-range
correlation. Modes that satisfy

k < kJ ¼ ð16πGm3n0Þ1=4 ð57Þ
are unstable. Here kJ is a type of Jeans wave number, as it
separates the regime where gravity dominates, leading to
collapse, and the regime where pressure dominates, leading
to oscillations. This pressure is, from the particle point of
view, a type of “quantum pressure,” arising from the
uncertainty principle: even though the background particles
are at rest, a perturbation of wavelength 2π=k implies that at
least some of the particles are localized on this distance
scale, requiring an increase in the energy, with the
accompanying restoring force.
We note that if we were to send G → −G, and consider

repulsive gravity, then the condensate would be stable. It
would in fact be an attractor solution, entropically favored
under thermalization. Although repulsive Newtonian grav-
ity is unphysical, we know that in general relativity, we can
achieve effective repulsion provided by vacuum energy, as
is the case during inflation [34–36]. In this case, the field
organizes into a type of condensate with tremendously
long-range correlation. (There have also been interesting
examples of this with light vector fields [37].)

C. Occupancy number evolution

We can gain further understanding of the behavior of a
perturbed condensate by tracking the evolution of the
occupancy number

N k ¼ jψkj2=V ð58Þ

for each mode. We can use the linearized evolution of
Eqs. (42) and (44), choosing an initial perturbation (at time
ti) with a random phase. Writing δΨkðtiÞ≡ Ak þ iBk, a
randomized phase implies that hA2

ki ¼ hB2
ki≡ σ2k=2, and

hAkBki ¼ 0, which with Eq. (42) implies that hc21i¼ hc22i¼
σ2kðκ2kþ γ2kÞ=8γ2kκ2k and hc1c2i ¼ σ2kðκ2k − γ2kÞ=8γ2kκ2k. We
then find that for κk < 0 the occupancy number evolves
(for k ≠ 0) as

hN kðtÞi ¼ hN i
ki
�
1þ 1

2

�
λn0
4m2

�
2 sinh2ðγkðt − tiÞÞ

γ2k

�
ð59Þ

where hN i
ki is the initial value of hN kðtÞi at t ¼ ti. For

κk > 0 we use Eq. (44) with hZ2i ¼ hZ�2i ¼ σ2kðκ2k −
ω2
kÞ=8ω2

kκ
2
k and hZZ�i ¼ σ2kðκ2k þ ω2

kÞ=8ω2
kκ

2
k, finding the

GUTH, HERTZBERG, AND PRESCOD-WEINSTEIN PHYSICAL REVIEW D 92, 103513 (2015)

103513-6



same result, provided that we use γk ¼ iωk, so
sinh2ðγkðt − tiÞÞ=γ2k ¼ sin2ðωkðt − tiÞÞ=ω2

k. So at early
times, jγkjðt − tiÞ ≪ 1, the sign of λ is unimportant and
the occupancy numbers grow as ∼ðt − tiÞ2. However at late
times, jγkjðt − tiÞ ≫ 1, there is oscillatory or exponential
behavior depending on the sign of λ and the k-mode.

(i) For λ > 0, γk is imaginary for all k and
sinh2ðγkðt − tiÞÞ=γ2k → sin2ðωkðt − tiÞÞ=ω2

k, so the
occupancy number undergoes stable oscillations.
Since we have averaged over phases, it may seem
surprising that we see net growth starting from
t ¼ ti; indeed if we had randomized the phase of
Z instead of δΨ, we would have found a time-
independent occupancy number. The phases are
related in such a way that a random phase for δΨ
results in the phase of Z being more likely to be at
the low end of the occupancy number oscillations. If
we had considered any specific solution, without
averaging over phases, we would have seen larger
oscillations: from Eq. (44), one can show that

hN kðtÞimax

hN kðtÞimin
¼ 1þ 1

ω2
k

�
λn0
4m2

�
k2

2m
þ λn0
4m2

��
ð60Þ

which means that the oscillations for any solution
are at least twice as large as the phase-averaged
oscillations shown in Eq. (59). The important point,
however, is that the oscillations are stable. The
largest ratio of hN kðtÞi=hN i

ki is obtained for the
modes that minimize ωk, which occurs as k → 0, as
the amplitude scales as ∼1=k2. Hence low k-modes
dominate and the homogeneous condensate, or more
generally the configuration dominated by long-
range correlations, is stable.

(ii) For λ < 0, γk is real for a band of k and
sinhðγkðt − tiÞÞ grows exponentially for these
modes. Hence the fastest growth is for the modes
thatmaximize γk, which occurs at k¼ k�, where k� is
given below as Eq. (61). Hence these finite k-modes
dominate and cause the system to evolve towards
localized clumps, as we describe in the next section.

Similar statements go through for gravity.

V. GROUND STATES

When the couplings are attractive, the equilibrium/
ground state of the system is not a homogeneous con-
densate but a localized clump [38–41]. Its structure is
different for the case of self-interactions and gravity, as we
now describe.

A. Solitons

For bosons with self-coupling λ < 0 the system is
unstable toward fragmenting into a complicated configu-
ration governed by a range of wave numbers. The growth
rates are maximized at

k� ¼
ffiffiffiffiffiffiffiffiffiffi
jλjn0
4m

r
: ð61Þ

This sets the characteristic scale at which structures
should form.
In 1þ 1 dimensions this can lead to the production of

stable solitons: ground state configurations at fixed number
of particles. For a soliton ψ s comprised of N particles, the
solution in its center-of-mass frame is

ψ sðx; tÞ ¼
ffiffiffiffiffiffiffiffi
ksN
2

r
sechðksxÞe−iμst ð62Þ

where

ks ¼
jλjN
16m

ð63Þ

μs ¼ −
k2s
2m

ð64Þ

and the ground state energy, as defined by Eqs. (8)
and (9), is

Es ¼ −
λ2N3

1536m3
: ð65Þ

This solution is known as a “Bright soliton.” The wave
number k�, associated with maximal growth away from the
homogeneous configuration, is of the same order as the
dominant wave number that comprises the soliton ks. To
see this, note that the core of the soliton has characteristic
number density ns ∼ ksN. If we rearrange this as
N ∼ ns=ks, insert into Eq. (63), and solve for ks, we find
that parametrically ks ∼ k�.
We note that BECs do not usually form in 1þ 1

dimensions. In fact if one returns to the free theory analysis
of Sec. III B and repeats the analysis in 1 spatial dimension,
one finds no actual phase transition. More interesting is to
go to 3þ 1 dimensions, where a phase transition can take
place. But then the solitons are not exactly stable. Without
further refinement, they are subject to a collapse instability.
In the case of the axion, one can produce so-called
“axitons” in the early Universe [42], which have finite
lifetime.
As we describe in Sec. VI A, in axion cosmology the

claim of thermalization to a BEC comes from consider-
ations of gravitational interactions, to which we now turn.

B. Bose stars

For ordinary (attractive) gravity the system tends to
fragment, in an analogous way to the case with self-
coupling. In this case it can lead to a stable bound state
in 3 dimensions held together by gravity: a “Bose star.”
The Hamiltonian for these gravitationally bound configu-
rations ψg is
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H ¼
Z

d3x
j∇ψgj2
2m

−
Gm2

2

Z
d3x

Z
d3x0

jψgðxÞj2jψgðx0Þj2
jx − x0j : ð66Þ

The ground state comes from minimizing the Hamiltonian
at fixed particle number N. We do not know an exact
solution for this system of equations. However, a varia-
tional approximation will suffice. The ground state will be
spherically symmetric ψðxÞ ¼ ψðrÞ. As a variational
ansatz, we take its profile to be exponential (mimicking
the ground state wave function of the hydrogen atom)

ψgðrÞ ¼
ffiffiffiffiffiffiffiffi
Nk3g
π

s
e−kgre−iμgt ð67Þ

where kg is a variational parameter that has units of wave
number. Substituting into the Hamiltonian and carrying out
the integrals, we obtain

H ¼ Nk2g
2m

−
5Gm2N2kg

16
: ð68Þ

Extremizing H with respect to kg, we obtain the character-
istic wave number of the Bose star

kg ¼
5Gm3N

16
ð69Þ

and the corresponding approximation for the ground state
energy

Eg ¼ −
25G2m5N3

512
: ð70Þ

As in the case of the soliton, the characteristic wave number
kg of the ground state ψg is connected to the characteristic
wave number kJ of the exponentially growing modes away
from the homogeneous condensate ψc. To see this, note that
in the core of the Bose star, the number density ng satisfies
N ∼ ng=k3g; inserting this into Eq. (69) and solving for kg,
we have kg ∼ kJ.

C. Characteristic wave number summary

A summary of the dependence of the typical wave
number of the ground/equilibrium state is given in
Fig. 1. For repulsive interactions, the ground state is
governed by k ¼ 0, while for attractive interactions the
ground state is governed by wave numbers given in
Eqs. (63), (69). We note that for attractive, but very small
couplings, the ground state is still very homogeneous,
governed by large, but not infinite, wavelengths. For large
couplings, the ground states are rather compact. We shall
estimate the relevant scale for the axion in Sec. VI D, and

explain why these characteristic wavelengths (inverse wave
number) also set the typical correlation length.

VI. EVOLUTION FOR REALISTIC STATES

The previous analysis shows that a condensate with
long-range correlation is not the attractor point in phase
space for the axion. Instead the attractor point in phase
space includes Bose clumps: solitons or stars. In this
section we investigate the behavior starting from some
plausible initial conditions.
The axion is a Goldstone boson that arises after the

Peccei-Quinn symmetry is broken. Assuming this happens
after inflation, we expect the axion field to be initially
distributed randomly from one Hubble patch to the next, as
causality forbids any initial superhorizon correlations.
(While inflation allows the possibility of super-Hubble
correlations, we assume that inflationary-era correlations
have no significant influence on the order that arises in
the postinflationary Peccei-Quinn phase transition.) In a
given Hubble patch, the axion field should be fairly
uniform as gradients are energetically disfavored. This
suggests a form of white noise initial conditions with a UV
cutoff kUV ∼Hi, where Hi is the Hubble parameter at the
time of formation.
For simplicity, we assume the axion is initially drawn

from a Gaussian distribution. It has a nonzero two-point
function given by

hψðk; tÞψ�ðk0; tÞi ¼ ð2πÞ3δ3ðk − k0ÞhN kðtÞi: ð71Þ

FIG. 1 (color online). The characteristic wave number ~k≡ k=m
of the ground state as a function of the coupling; self-interactions
~λ [in 1þ 1 dimensions ~λ is normalized as ~λ≡ λN=ð16m2Þ] or
gravity − ~G [in 3þ 1 dimensions ~G is normalized as
~G≡ 5Gm3N=ð16mÞ]. For repulsive interactions (λ > 0 or
G < 0) the ground state is governed by k ¼ 0. For attractive
interactions (λ < 0 or G > 0) the characteristic wave number is
nonzero and given in Eqs. (63), (69).
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Here hN kðtÞiÞ is usually called the power spectrum Pðk; tÞ.
We also assume that initially (t ¼ ti) the real and imaginary
parts of ψ are uncorrelated and identically distributed,
meaning that the autocorrelation function is trivial:

hψðk; tiÞψðk0; tiÞi ¼ 0: ð72Þ

At later times, t > ti, the real and imaginary parts can
become correlated, and the autocorrelation function can
become nonzero. The specific form of the initial power
spectrum hN i

ki is not important for our discussion, but a
reasonable choice would be the following,

hN i
ki ¼

ð2πÞ3=2nave
k3UV

exp ð−k2=ð2k2UVÞÞ; ð73Þ

where nave is the average density of particles. For k ≪ kUV
the spectrum is flat, which is white noise. As long as the
prefactor nave=k3UV ≫ 1 then the occupancy of modes with
k < kUV is large and the classical field theory is adequate to
describe these modes.

A. Relaxation rate

Since the white noise initial distribution for the axion is
rather incoherent on large scales, the evolution of modes is
more complicated than that of the previous section.
However the previous analysis contains some of the central
information in it, as we now explain.
For the case of self-interaction, the equation governing

the evolution of modes is

i _ψk ¼
k2

2m
ψk þ

λ

8m2

Z
d3k0

ð2πÞ3
Z

d3k00

ð2πÞ3 ψk0ψ
�
k00ψkþk00−k0 :

ð74Þ

The evolution of the occupancy number N k ¼ jψkj2=V is
then given by

_N k ¼ −
λV−1

8m2

Z
d3k0

ð2πÞ3
Z

d3k00

ð2πÞ3 ½iψk0ψ
�
k00ψkþk00−k0ψ

�
k þ c:c:�:

ð75Þ

Drawing ψk from an initially Gaussian distribution, with
initially independent real and imaginary parts, we find the
expectation value of the first time derivative is initially zero:

h _N i
ki ¼ 0: ð76Þ

However the expectation value of the second time
derivative is initially nonzero. By taking a time derivative
of Eq. (75), then using Eq. (74), then taking an expectation
value and using Wick’s theorem, we find it to be

hN̈ i
ki ¼

�
λ

4m2

�
2
�
−n2avehN i

ki

þ
Z

d3k0

ð2πÞ3
Z

d3k00

ð2πÞ3 hN
i
k0 ihN i

k00 ihN i
k−k0−k00 i

�
: ð77Þ

(We have used nave ¼
R

d3k0
ð2πÞ3 N k0 to simplify the first term.)

This allows us to estimate a kind of “relaxation rate”: the
typical rate at which modes are initially changing. By

estimating Γk ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhN̈ i

ki=hN i
kij

q
, we find that a typical

value for the bulk of the modes is

Γk ∼
jλjnave
4m2

: ð78Þ

At this early time (and for this special choice of initial
conditions), the evolution is independent of the sign of λ.
But we know that the late time equilibrium behavior
(homogeneous condensate or localized clump) is entirely
controlled by the sign of λ, as we showed in the previous
sections. Indeed the dependence on the sign of λ can be
seen by going to higher time derivatives.
Note that this relaxation rate Γk is the same prefactor that

appears in Eq. (59) for the evolution of modes around the
homogeneous condensate, with n0 → nave. Also, by replac-
ing λ=ð8m2Þ → −4πGm2=k2 appropriately inside the con-
volution integrals, we obtain the gravitational case

Γk ∼
8πGm2nave

k2
: ð79Þ

For the gravitational case, the rate is relatively large at late
times because the wave number redshifts, so there is a
relative enhancement of a2 and it grows. This was noted in
Refs. [22,23] and provided much of the motivation for the
claims of thermalization. For this reason we will focus on
this later in Sec. VI D.

B. Thermalization

The nonlinear evolution of the initial mess of white
noise modes is presumably associated with some form of
thermalization. Since the system is at high occupancy, the
associated temperature is well below the critical temper-
ature Tc, and so the system tries to organize into some form
of BEC.

(i) For λ > 0 (or repulsive gravity), the thermalization is
towards a condensate with almost all particles in the
ground state with k ¼ 0 (or very small k), a
homogeneous configuration with long-range corre-
lation. (For λ > 0 this was nicely seen in the
numerical work of Ref. [43]. But in Ref. [44] it
was later applied incorrectly to the axion, for which
the interactions have the opposite sign.)
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(ii) For λ < 0 (or attractive gravity), there is a “bottle-
neck” to achieve thermalization. In true equilibrium,
the field would organize into a condensate with
almost all particles in the ground state; this would be
a single extremely compact clump of well-defined
phase, as described in Sec. V [Eqs. (63), (69) show
that the ground state has width that is inversely
proportional to the number of particles N]. However,
as a coherent clump is forming locally in one region
of space, its local equilibrium means that it stops
reorganizing the phase in distant regions of space.
So the phases of distant regions can remain un-
correlated. It is therefore difficult to achieve true
global thermal equilibrium. Instead one expects only
intermittent patches of coherent clumps (solitons or
stars) made up of a moderate number of particles,
along with a messy scalar field that has yet to reach
true equilibrium. In any case, no long-range corre-
lation is established. A full simulation of this process
is ongoing work.

C. Comparison to Boltzmann equation

We note that this critical dependence on the sign of λ
arises because we are in the classical field theory limit,
which is applicable to dark matter axions. In other regimes,
the sign of λ can become relatively unimportant.
For instance, in the particle limit, we can usually just

track the classical particle phase space density N ðx;pÞ,
where one treats particles as carrying a well-defined
position and momentum (albeit perhaps allowing for a
semiclassical enhancement from occupancy factors). The
evolution of N ðx;pÞ is described by the Boltzmann
equation, which governs the evolution to equilibrium.
For nonrelativistic 2 → 2 collisions, the evolution equation
can be written as

D
Dt

N p1
¼

Z
d3p2

ð2πÞ3 dσvrel½N p0
1
N p0

2
ð1þN p1

Þð1þN p2
Þ

−N p1
N p2

ð1þN p0
1
Þð1þN p0

2
Þ� ð80Þ

where all the N p’s are evaluated at the same point in space
x. The typical rate of interaction is Γ ∼ naveσvrelN .
Since the particle scattering cross section σ ∝ λ2, the sign

of λ does not appear in this evolution equation. However, in
the high density/coherent limit that is relevant for cosmo-
logical axions, we need to replace this semiclassical
particle description with the classical field description.
Then the sign of λ plays a critical role in the evolution
equation and dictates its equilibrium behavior, as discussed
in the above sections.

D. Coherence length estimate

Having found that attractive interactions do not cause the
system of axions to evolve to an equilibrium state of huge

correlation length—in contradiction to the conclusions of
Refs. [22,23]—we turn now to estimating the actual size of
the correlation length for a universe comprised of radiation-
and axion-dominated matter, focusing on the physically
relevant case of (attractive) gravity. A proper treatment
would require a nonlinear simulation, but here we give a
rough estimate of the length scales.
Initially the characteristic lengths evolve under the

standard redshifting, so the physical wave numbers scale
as kphys ∼ k=a. This continues until the relaxation rates
become comparable to the Hubble expansion rate, Γk ∼H.
At this point the system will attempt to thermalize, and
form Bose stars—although it is subject to the bottleneck
described above. An associated length scale for these Bose
stars can be roughly estimated, as follows.
At the QCD phase transition, when the axion potential

turns on, the characteristic wave number is k∼HQCD∼
T2
QCD=MPl, where MPl≡1=

ffiffiffiffiffiffiffiffiffi
8πG

p
≈1018GeV is the

reduced Planck mass. This also sets the initial correlation
length. Assuming the axions comprised most of the matter
in the universe, the number density of axions at this early
time is na ∼ ρa=m ∼ ðTeq=TQCDÞρtot=m ∼ TeqT3

QCD=m.
The number of axions within a typical de Broglie wave-
length sets a typical occupancy number

N ∼
na
k3

∼
TeqM3

Pl

T3
QCDm

∼
0.1 eV × ð1018 GeVÞ3
ð100 MeVÞ3 × 10−5 eV

ð81Þ

¼ 1061: ð82Þ

At late times, once Γ > H, the system will attempt to
thermalize. As we explained above, the bottleneck to
thermalization means that only a fraction of the axions
will organize into the ground state Bose stars. A rough
estimate would be to take the occupancy number N as the
typical number N of axions that form a Bose star, which is
equivalent to saying that a typical Bose star contains the
total energy of the axion field within one horizon volume at
the time of the QCD phase transition. Furthermore, since
there is no true equilibrium established and distant Bose
stars maintain random phases, we expect the typical size of
the Bose stars to roughly set the correlation length of the
condensate.
Using Eq. (69) we see that the typical wavelength of such

Bose stars, and hence the associated correlation length, is
roughly

ξ ∼
1

Gm3N
∼

8πð1018 GeVÞ2
ð10−5 eVÞ3 × 1061

ð83Þ

∼ km: ð84Þ

On the other hand, the background mess of noncondensed
scalar field can have a larger correlation length before
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galaxy formation. However, inside galaxies, this scale ∼km
is within an order of magnitude or so of the de Broglie
wavelength of virialized axions.
As an upper limit, we note that according to Eq. (57), at

the time of the QCD phase transition the Jeans length was
shorter than the Hubble length. Roughly,

kJ
HQCD

∼
�
2m3na
M2

Pl

�
1=4 MPl

T2
QCD

∼
�
2m2TeqT3

QCD

M2
Pl

�1=4 MPl

T2
QCD

∼
m1=2T1=4

eq M1=2
Pl

T5=4
QCD

∼
ð10−5 eVÞ1=2ð0.1 eVÞ1=4ð1018GeVÞ1=2

ð100 MeVÞ5=4
∼ 10: ð85Þ

Thus, immediately after the QCD phase transition, we
expect correlations up to the Hubble length, but the
correlations with wavelengths between the Jeans length
and the Hubble length will start to disappear, as perturba-
tions grow. Equation (57) shows that the Jeans length grows
as a3=4ðtÞ, so in comoving coordinates it shrinks with time.
Thus, correlations with comoving wavelengths larger than
the Hubble length at the QCD phase transition can never
form, since causality forbids such correlations before the
QCD phase transition (assuming that the Peccei-Quinn
phase transition occurs after inflation), and afterward these
wavelengths are always larger than the Jeans length. Thus,
the comoving correlation length cannot possibly exceed the
Hubble length at the QCD phase transition, which when
scaled to today, is only on the order of

ξrescaled Hubble ∼H−1
QCD

TQCD

T0

∼
MPl

TQCDT0

∼
ð1018 GeVÞ

ð100 MeVÞð10−4 eVÞ
∼ light-year ð86Þ

which is much less than galactic scales. Thus, there does
not appear to be any mechanism for axion thermalization to
lead to a cosmologically large, or galactic scale, correlation
length. A full analysis of the production of these Bose stars
requires a full simulation, which is the topic of ongoing
work.
We finish this section with a comment on the mass of

these Bose stars. Based on the above estimates, the typical
mass is

M ¼ Nm ∼ 1061 × 10−5 eV ð87Þ

∼ 10−10Msun: ð88Þ

This estimate is very close to the maximum possible mass
of a stable QCD-axion star, about 1019 kg≈5×10−12Msun,

that was found in Ref. [45]. So they are much lighter
than solar masses. Such light/low density objects are
unlikely to have cosmological or galactic consequences.
Furthermore, they may be outside the range of micro-
lensing searches.

VII. SUMMARY AND DISCUSSION

In this paper, we investigated the idea that axion dark
matter gravitationally thermalizes to form a Bose-
Einstein condensate with a long-range correlation
length—an intriguing idea that has a unique observa-
tional signature [22,23]. We treated the axion using a
generic low-mass nonrelativistic scalar field theory and
studied its equilibrium behavior. While a BEC of long-
range correlation can form from repulsive interactions,
we showed that the homogeneous, or nearly homo-
geneous, condensate configuration is unstable against
collapse when attractive interactions are included. Hence
the state of long-range correlation is not the entropically
favored equilibrium configuration. Instead the axions try
to form a different type of BEC, namely clumps, either
solitonic for self-interactions or Bose stars for self-
gravity. The full state of the axions would be some
complicated configuration of many BEC clumps that
struggles to achieve true thermal equilibrium, and
phases of distant clumps will tend to be uncorrelated.
The correlation length should be rather small and not of
cosmological significance.
Our analysis applies to the QCD axion, which only

has attractive interactions, and also to any other type of
scalar dark matter candidate with attractive interactions
in the high density/occupancy regime. At late times, the
dominant interaction is ordinarily given by gravity,
which of course is universally attractive. This means
our analysis is very general. We worked in the classical
field theory approximation, which is appropriate in this
limit. Indeed we showed that classical fields can exhibit
a phase transition to a BEC. We noted that Bose-
Einstein condensation is very quantum mechanical from
the particle perspective, but very classical from the field
perspective. If one moves to another regime of low
occupancy, or low coherence, wherein the system is
poorly approximated by the classical field theory, then
other behavior would be possible. For example, if one
passes to the classical particle phase space description,
then the collision term in the Boltzmann equation does
not depend on the sign of the coupling. The equilibrium
behavior indicated by the standard Boltzmann equation
therefore misses the essential equilibrium behavior of
the field theory.
Ongoing work includes a full nonlinear simulation of

the field theory to analyze the production of solitons and
especially Bose stars (the latter is expected to be much
more important at late times). Earlier work along these
lines includes Refs. [42,46]. This will also help to
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provide an understanding of the approach to equilibrium
or otherwise. One might see a form of “quasiequili-
brium” [38] wherein the clumps form and evaporate and
so on.
The qualitative difference in the size of the correlation

length, between attractive and repulsive interactions,
should carry over to many more bosonic dark matter
models. For example, in the string landscape it is possible
to have many light axions [47,48]. These should typically
also have attractive self-interactions, so we expect similar
conclusions to that of the QCD axion. One could also
investigate scalar dark matter models, not motivated by
axions, wherein the couplings are repulsive. In these cases,
the generation of long-range correlations is feasible,
although highly parameter dependent. This could conceiv-
ably lead to novel new galactic behavior. Work on these
subjects is ongoing.
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APPENDIX: INCLUDING FRW EXPANSION

The relativistic action in a flat FRW background is

L ¼ a3
�
1

2
_ϕ2 −

1

2

ð∇ϕÞ2
a2

−
1

2
m2ϕ2 −

λ

4!
ϕ4

�
ðA1Þ

where the scale factor is determined by the Friedmann
equation

H2 ¼ 8πG
3

ρtot: ðA2Þ

Passing to the nonrelativistic field ψ and ignoring rapidly
varying terms gives

L ¼ a3
�
i
2
ð _ψψ� − ψ _ψ�Þ − 1

2m
∇ψ� ·∇ψ

a2
−

λ

16m2
ðψ�ψÞ2

�
:

ðA3Þ

The corresponding classical equation of motion is

i

a3=2
∂tða3=2ψÞ ¼ −

1

2m
∇2ψ

a2
þ λ

8m2
jψ j2ψ : ðA4Þ

Including gravity leads to the following pair of
equations,

i

a3=2
∂tða3=2ψÞ ¼ −

1

2m
∇2ψ

a2
þ λ

8m2
jψ j2ψ þmϕNψ ðA5Þ

∇2ϕN ¼ 4πGa2ðmjψ j2 − ρ̄Þ; ðA6Þ

where we have removed the background density in the
source for the Newtonian potential ϕN .
In order to solve the above equations we can make

several simplifications. Firstly, due to redshifting, the λϕ4

contact interaction is negligibly small at late times, so we
will ignore it here. Secondly, we will linearize around a
coherent homogeneous background as usual. The solution
for ψc is

ψcðtÞ ∝
1

a3=2
: ðA7Þ

The linearized equations of motion for the perturbations are

i_δΨ ¼ −
1

2ma2
∇2δΨþmϕN ðA8Þ

∇2ϕN ¼ 4πGma2n0ðδΨþ δΨ�Þ: ðA9Þ

Fourier transforming and then eliminating ϕN as before
leads to

i_δΨk ¼
k2

2ma2
δΨk −

3

2
mΩa

H2a2

k2
ðδΨþ δΨ�

kÞ ðA10Þ

where Ωa ¼ mn0=ρtot. Breaking up δΨ into real and
imaginary as Aþ iB and then eliminating B, we obtain

Äk þ 2H _Ak −
3

2
ΩaH2Ak þ

�
k2

2ma2

�
2

Ak ¼ 0: ðA11Þ

The first three terms are the “usual” terms one obtains for
the growth of fluctuations in the linearized theory of cold
dark matter (CDM). The last term is a type of quantum
pressure that arises from tracking the de Broglie wave-
length of the axion. One can define a critical wave number
where the pressure term balances the gravitation term (the
Jeans wave number). It is given by

kJ
a
¼ ð6ΩaÞ1=4

ffiffiffiffiffiffiffiffi
Hm

p
ðA12Þ
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and coincides with the Jeans wave number of Eq. (57) that
we found in the absence of expansion.
For k ≪ kJ we can ignore the pressure term and we

recover the usual equation for CDM. Its solutions are well
known:

Ak ∼ logðaÞ; Bk ∝ a0; radiation era ðA13Þ

Ak ∝ a; Bk ∝ a3=2; matter era: ðA14Þ

For k ≫ kJ we are in the pressure-dominated regime,
dominated by oscillations. Putting in numbers, as in
Eq. (86), we find that this regime corresponds to
very small scales, probably irrelevant to the claims
of Ref. [23].
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