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Abstract—Fictitious play is a natural dynamic for equi- game, with expected payofffor the row player and-z
|ibr(;UfT;] play tin zero-sum bgar;ez._ proposedsby Bflovlzn lﬁ], for the column. Moreovet;, 7 andz can be computed in
and shown to converge oninson . Damue arin H § H H H H
conjectured in 1959 t%at f)i/ctitious pla:; ]converges at rate pqunomlql t.lme. with linear p_rogrammmg. This type (?f
O(t~%) with respect to the number of stepst. We disprove crisp prediction is rather rare in Garpe Theory. According
this conjecture by showing that, when the payoff matrix (0 Aumann, zero-sum games are “one of the few areas
of the row player is the n x n identity matrix, fictitious in game theory, and indeed in the social sciences, where
play may converge (for some tie-breaking) at rate as slow a fairly sharp, unique prediction is mades]{
asQ(t™m). Shortly after the proof of the MinMax theorem and

the development of linear programming, G. W. Brown
[. INTRODUCTION proposedfictitious play as an iterative procedure for

Von Neumann's MinMax theorem for two-persorsolving a zero-sum game, or equivalently a linear pro-
zero-sum games marked the birth of Game The86},[ gram [], [7]. The procedure proceeds in steps in which
and is intimately related to the development of linea?layers choose a pure strategy best response to their
programming. Given a payoff matrixl, whoseij-th Opponent’s empirical mixed strategy up until that step.
entry specifies how much the column player playjhg Let us describe it a bit more formally (we focus on

pays the row player playing the theorem states that the simultaneousversion, but our results also hold for
the asynchronousversion, where the players’ moves

. T . T
THAX L Ay = T Ay Ay, alternate): At every stefy the row player chooses some
. . . row i; and the column player chooses some coluinn
wherez, y range over randomized/mixed strategies fo, t ¢ =1, the choices are arbitrary. At+ 1 > 1, the
%Iayers calculate thempirical mixed strategiesf their

there exists a unique value€ R and a pair of mixed opponents in previous steps, nantely

strategiest andy such that:
1
myin #TAy = 2z = max 2" Ay. 1) x(t) = 7 Z €i, s
x <t
Dantzig and von Neumann observed that the Min- 1
Max theorem is implied by strong linear programming y(t) = t ;ej*'
duality [10], [2]. Dantzig also provided a candidate =t
construction for the opposite implication(], and this Then, the row player chooses an arbitrary best response
was also established some decades ldfer | it+1 0 y(t) and the column player chooses an arbitrary
Ultimately, the MinMax theorem provides a very sharfpest responsg; ;1 to z(t), namely
prediction in two-player zero-sum games. It shows that
there is a unique value and a pair of strategies and
7 such that, by playing: the row player can guarantee Jt+1 € argmin {:v(t)TAej} .
himself expected payoff of regardless of what strategy J
the column player adopts, and such that, by playjng The procedure may be viewed as a natural way through
the column player can guarantee herself expected paywffich two players could interact in a repeated game with
of —z regardless of what strategy the row player adoptstage gamd A, —A). The question is whether the se-
In particular,(Z, 9) comprise a Nash equilibrium of thequence(z(t), y(t)); converges to something meaningful.

it+1 € argmax {e;rAy(t)} ,

)
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CCF-1101491. context; it ism when describing row player strategies andwhen
fSupported by ONR grant NO0014-12-1-0999. describing column player strategies.
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In an elegant paper shortly after Brown’s, RobinsoRemark 1. It is crucial for our construction that ties in
showed that the average payoffs of the players in fichoosing a best response(i2) can be broken arbitrarily
titious play converge to the value of the gan83][ In at each step. This is allowed in Karlin’s formulation
particular, it was shown that of the conjecture. To distinguish this case from when
ties are broken in some consistent way or randomly, we

Fal(z(t),y(t)) = max ei Ay(t) - mjmx(t)Aej will call Karlin’s conjecture with arbitra};y tie-breakir?/g
0, ast — oo. Karlin’s strong conjecturewhile that with lexicographic
or random tie-breakingKarlin’'s weak conjectureWith
Hence, becausemin;z(t)4e; < xz(t)TAy(t) < this terminology, Theorem disproves Karlin’s strong
max; e} Ay(t) andmin; z(t)Ae; < z < max; el Ay(t), conjecture.
it follows that all three quantities converge to the value
of the gamex. Interestingly, like Robinson’s upper bound argument,

Robinson’s proof is an elegant induction argumen@Ur lower bound also works by induction. We show
which eliminates one row or one column of at a that slow fictitious play executions fdk can be folded
time. Unraveling the induction, one can also dedud@side fictitious play executions fdk, etc, leading to an
the following bound on the convergence rate of th_gxponentlally slow convergence rate for fictitious play

procedure: in I,,. More intuition about the construction is provided
) in Sectionll, and the complete details can be found in
fa(z(t),y(t)) = O™ m¥n=2), Sectionlll.

. While outperformed by modern learning algo-
which appears rather slow, compared to the convergenms [8], because of its simplicity, fictitious play was
rate of O(t~2) that is typically achieved by no-regret ’ plct, play

learning algorithms 13, [26], [8], and the improved thou_ght_ to prow_de a convincing explanat|0_n of Nash
log ¢ .~ _equilibrium play in zero-sum games. According to Luce
convergence rate aP(=%*) of some no-regret learning e ) )
. ) ¢ and Raiffa “Brown’s results are not only computationally
algorithms, obtained recenthyi]], [32]. Indeed, about o - )
) . . valuable but also quite illuminating from a substantive
ten years after Robinson’s proof and five decades a

0, : . : :
Samuel Karlin conjectured that the convergence rateg%?mt of view. Imagine a pa|r_of play_ers repeating a
fictitious play should be()(t*%) namely game over and over again. It is plausible that at every

stage a player attempts to exploit his knowledge of his
Conjecture 1 ([23]). Fictitious play converges at rate opponent’'s past moves. Even though the game may be
O(t‘%) in all games. too complicated or too nebulous to be subjected to an

adequate analysis, experience in repeated plays may tend

There is some evidence supporting a convergence r%ea statistical equilibrium whose (time) average return

of O(t‘%). As pointed out earlier, a convergence rate .
. . ! . IS approximately equal to the value of the gam27][ In
of O(t~z) is quite common with dynamics that are bp y eq game7l{

known to converge. Indeed, a close relative of fictitioug]iS light, our counterexample sheds doubt on the plau-
play, follow the perturbed leaderis known to achieve ibility of fictitious play in explaining Nash equilibrium

. . behavior. Given our counterexample, it is important to
convergence rate (ﬂ)(t*%) [8]. Also, a continuous time b b

. e investigate whether fictitious play in random payoff zero-
version of fictitious play has been shown to converge in isfies Karlin’ . heth
time O(¢t~!) [19]. Despite this evidence and the apparensum. games sais 1es Rarin's conjectu_re_,_or W ej[ ersome

: cthmce of tie-breaking rule in the definition of fictitious

) P . . . —.sum games. We did perform preliminary simulations of
main result is a counter-example, disproving Karlln§ - . . .

. . . ) . ictitious play with random tie-breaking on our lower
conjecture. IfI,, is then x n identity matrix, we show R .
the followina: bounding instances, as well as on zero-sum games with

9 i.i.d. uniform [0, 1] entries, and they suggest a quadratic
Theorem 1. For everyn > 2, fictitious play forZ,, may rate of convergence. We leave a rigorous study of these
converge at ratéd(t~ =), if ties are broken arbitrarily. important questions for future work.

Our counter-example, provided in Sectidih, con- a) Related Work: Fictitious play is one of the
structs a valid execution of fictitious play fdi, such Most well-studied dynamics in Game Theory, and we

that the empirical mixed strategiest), y(t) of players cannot do it justice in a short exposition. We only

satisfy ment?on a f_ew highlights here. As we _have aIrer_aldy
mentioned, it was proposed by Brown, in a technical
1. ((1),y (1)) = max e; y(t) — minz(t)e; report at RAND corporationd], and was shown to con-
L ! verge in two-person zero-sum games by Robing8). [

=0 ). Miyakawa extended Robinson’s results to two-player



games with two strategies per player assuming a specifi@ row player and; for the column player such that
tie-breaking rule 29, while Shapley constructed a two-Eq (1) is satisfied.

player three-strategy game where fictitious play does not . . i .
converge B5]. Since then a lot of research has bee ynamic: We a'Teady described f!ctmous play in .Sec—
devoted to understanding classes of games where fi f2n . We now |ntr0dl_Jce the r_10t|on of_a dyna_lm_lg as
tious play converges (e.@8, [31], [21], [17], [34, [4]) a formal way to describe a valid execution of fictitious
or does not converge ie.gZ,Z], [i5], [éO], [’12], [’25]). play . -
Surveys can be found in2f], [14], [20]. Other work For a vectow, let min v andmax v denote its minimal
has studied the approximation performance of fictitiodlLnd maximal components. A dynamic as defined in the

play when used as a heuristic to find approximate Na&fXt par_agraph 's a special case of a vector system as
equilibria [9], [16]. defined in B3] that starts from the zero vectors.

In two-person zero-sum games, a convergence radefinition 1. A dynamiqU, V') for A is a sequence of-
of O(t” m+=-2) is implied by Robinson’s proof, and dimensional row vector& (0), U(1), ...and a sequence
S. Karlin conjectured that the convergence rate shouddl m-dimensional column vectorig(0), V' (1), ... such
be O(t~2), which would match what we know is that
achievable by no-regret learning algorithn&$. [ndeed, U@ =1o, o, ..., 0]T,

Harris showed that a continuous analog of fictitious V(0)=10, 0, ..., 0],

play converges in timé&(¢t~1) [19]. On the other hand, q
it is shown in p] that it may take an exponential@"
number of steps (in the size of the representation of Ut+1) = U(t) + € A,

the game) before any Nash equilibrium action is played V(t+1) =V(t) + Aej,

by the pl_ayers_ in ficti_tious pl_ay. Howgver, this is not, herei and j satisfy the conditions

incompatible with Karlin’s conjecture, since the payoffs

may nevertheless still converge at ratg 2z ). In fact, it Vi(t) = max V (1),

is not even prohibited by5] that the empirical stratc?gies U;(t) = min U(t).

converge to Nash equilibrium strategies at réfg 2 ). ) ' _ _ _

As fictitious play is one of the simplest and most Just like there can be multiple valid executions of
natural dynamics for learning in games it is widel)f'Ct't'Ous play.fora mat_nxA, due toltle-breaklngs, there
used in applications, and has inspired several algorith/@" Pe multiple possible dynamics fot. In fact, a
for learning and optimization, including von Neumann'gynamic forA corresponds uniquely to an execution of
variant of fictitious play for linear programmingT], the f'Ct't"%us play for A, if we identify U() and V' (t) with
regret minimization paradigmi, and lots of special- (1) A andtAy(t), respectively. (Recall from Sectidn

ized algorithms in Al. Seeq] for a survey. thatz(¢) andy(t) are thg empirical mixed strategies of
the two players for the first steps.)

In terms of dynamics, Robinson’s argumeB8]|[ im-
plies the following: If (U, V) is a dynamic for ann by
Basic Definitions: A two-player zero-sum gamean be n matrix A, then
represented by am x n payoff matrix A = (ai;), where max V(t) — min U (#)
m andn are the numbers gdure strategiesor the row
playerand thecolumn playeyrespectively. The game is ) ) ]
played when, simultaneously, the row player chooses of@'lin's conjecture 23] amounts to the following: If
of his m strategies, and the column player chooses of: V) is @ dynamic for a matrixi, then
of hern strategies. If the row player chooses strategy max V() — min U (t) o
and the column player chooses stratggyhen the row P =0(t77).

player receives;;; from the column player. ice that in both . b h
The players can randomize their choices of strategié\é(.)t'Cet at in both equations above, the constan®{

A mixed strategyfor the row player is ann-vector z, may depend Oor. Las_tIy, our construction implies that
wherez; > 0 and), z; = 1. Similarly, a mixed strategy there exists a dynami@, V) for I, such that

for the column player is am-vectory, wherey; > 0 max V' (t) —min U (t) 1

and Zj y; = 1. When the players adopt those mixed n =0 ),

strategies, the row player receive§ Ay = Zij Qi TiY;
in expectation from the column player.

A min-max equ_lllbrlum_or Nas_h eqU|I|br|u_onf a 2Any vector presented using rectangular brackets is a coleutor
zero-sum gamed is a pair of mixed strategie$ for by default, unless it is followed by a transpose sign

Il. PRELIMINARIES

= O(t_ 7n+]nf2 )

t

where the constant in)(-) may depend om.



Outline of our Construction: First notice that, by ¢ the first two components o/ (3P + R + ¢) are P
Definition 1, a dynamic(U, V') for I,, satisfies plus, respectively, the two componentsi&f(t), and the
U0) = [0, 0 0" first two components o¥/ (3P + R + t) are Q3 plus,

Ty ’ respectively, the two components Bf (¢).

V(0)=10,0,...,0] For a dynamic(U’,V’) for I, suppose that both
and components of/’(¢) are at mostR, for all ¢t < ¢, for

Ut+1)=U(t)+e}, somety. It can be easily checked that, if we copy this

V(t+1)=V(t) +ej, dynamic in the first two components of our dynamic

(U, V) for I for ¢, steps, then the amount by which the
gap for (U, V) increases, that is, from

max V(3P + R) —minU(3P + R)

where: andj satisfy the conditions
Vi(t) = max V (t),
U;(t) = minU(t).

A special property of the dynamics fdy, is that per- 0
muting then components of every vector in a dynamic  max V(3P + R+ ty) —minU (3P + R + 1y),
for I,, by a common permutation results in another
dynamic for I,,, becausel,, stays the same when its

. at tg.
rows and columns are both permuteddyThis propert 0 . .
. permt Y property We have two goals now. The first is to increase the
allows us to combine many distinct cases in our main

proof. gap for (U, V) as much as possible, and the second is

Forn = 2, we can directly construct a dynamic fy to come back to the pattern we started from (thatis,
that converges at rat@(t*%), which we call themain has three equal compqnents) 0 that we can apply the
dynamic for I, (Figure 2 and Claim3). At each step process agam. To.achlleve our first goal, we wapt the
t, ties are simply broken by selecting the strategy thgppmax V'(to) —min U’ (to) to be as large as possible,

H U ! U
maximizes the ensuing gapax V (t) — min U (¢). subject toma}.(U (o) < R Natu_raIIy, we wan_(U V') .
- . . to be the main dynamic fof,, discussed earlier, as this
For n = 3, there is no obvious way to directly

. _1 achieves a rate of convergence @ft—2). To achieve
conset i o atconerges 126l G sond gl we i 1)~ (11,0
: PS, Y UBP+R+1t) =[P+ R,P+R,P+ R]". Clearly,
U@i3)=[,1,1"%, we must havey, = 2R in this case. So, is it true that
V(3) =10, 1, 2. U'(2R) = [R, R]T, if (U’",V") is the main dynamic for
. . . . . 1,?
,?:mmfg for anelgductwe cons.truct|on, let's in fact assume From (Figure2/Claim 3), we see that there are indeed
that, for somer, we can arrive at infinitely many 7’s such thatU’(2T) = [T, T|*. How-
U(3P) =[P, P, P|", ever, this is not true for all'. Thus, we can’t exactly take
V(3P) = [Q1, Qs, Qs], (U, V") to be the main dynamic fof,, but will need

a padded version of it. Hence, we define tedding
where@: < Q> < Q3. For the next few steps, we letqynamic forz, as in Figurel/Claim 2, which reaches
U increase only in its third component, and only in

its first two components. We can do this as long as the U"(2k) = [k, k]",
third component oV, i.e. Q3, remains its largest. Thus, V"(2k)=[k -1, k+1],

we get fo for all k. The dynamiqU’, V') that we copy intqU, V)
UBP+R)=[P, P, P+R]", first follows the padding dynamic fof;, and then the
V(3P + R) = [Q3, Q3, Q). main dy_pamic forl,. By picking the appropriate moment

of transition, we can ensure th@’, V') still converges
The crucial component of our construction are the next rate©(t~2), andU’(2R) = [R, R]T.

steps, where we let/ and V' increase only their first  calculation shows that, if we repeat the process

two components, simulating a dynamic for tBex 2 syccessively, the dynamic that will be obtained fgr

subgame induced by the first two strategies of bo#bnverges at rat€)(¢~ ). We call the resulting dynamic

players, i.el>. (We are able to do this as long as the thirghe main dynamic for;, and deal withn = 4 in similar

componentot/, i.e. P+ R, remains its largest.) Sinéé  fashion, etc, leading to our main theorem.

and V' have equal first and second components at step

3P + R, any initial portion of any dynami¢U’, V") I1l. THE COUNTEREXAMPLE

for I, can be copied, as long as the component&of In this section, we disprove Karlin's conjecture, by

remain at mostR. Indeed, if we do this, then for all establishing the following.

is exactly the gapnax V' (to) — min U’(to) of (U, V")



Theorem 2. For everyn > 2, there exists a dynamic for By using either of the padding dynamics féy and
I,, such that for infinitely man{s, exchanging the components as necessary, we see the
following:

max V (nT) — min U(nT) = O(T " ).
Claim 2. For anyk > 1, there exists a padding dynamic

Proof of Theoren?: Theorem2 follows directly from for I, such that

Part 1 of the following Lemma (Part 2 is useful for

showing Part 1 by induction): U(2k) = [k, k|,
Lemma 1. Part 1: For everyn > 2, there exists a V(2k)=[k—1,k+1].

dynamic for/,, such that for infinitely many”s, Next, we define thenain dynamic forl,, whose first

UnT)=[T,T,...,T]|", steps are shown in Figuzin the appendix. We claim
the following.

and
) 1 Claim 3. The dynamic given in Figur2 can be extended
max V(nT) —minU(nT) = O(T" ). so that it satisfies the following for all > 1:
Part 2:For everyn > 2 and T > 1, there exists a U(2k(2k — 1))
dynamic for/,, such that k(2K — 1), B(2k — 1T, @
U(TLT) = [Ta T, . "7T]T7 V(Qk 2k — 1))
and =[(k£1)(2k—-1), (kF1)(2k-1)],
max V(nT) —minU(nT) = @(T%). where the choice of or — depends on the parity df.

In either part, the constant hidden B(-) may depend
on n, but not onT. Proof of Claim 3: This can be easily established by
induction onk. Indeed, Figure? establishes the claim

Proof of Lemmal: We prove the lemma by |nduct|0n]cor k—1,2,3. In general, suppose that, for sorhe

on n. For eachn, we prove Part 1 before Part 2.

Base casen = 2: We consider two dynamics fof,, U(2k(2k — 1))

which we call thepadding dynamicsThe first steps of = [k(2k — 1), k(2k — 1)]7T,

the padding dynamics are illustrated on the left and on v (2(2k — 1))

the right respectively of Figuré Notice that the strategy o B B B
chosen by the row (respectively column) player at each = (k4 1)@k = 1), (k = 1)(2k = 1)].

step is exactly the index of the incremented componentGeneralizing what is taking place from Stel8
in U (respectivelyV). - through SteB0 of Figure2, the dynamic proceeds with
We claim the following. both players playing strategy for one step, the row

Claim 1. The dynamics shown in Figuré can be player playing strategy and the column player playing

extended so that the dynamic on the left satisfies ~ Strategy2 for the nextx steps, and both players playing
strategy?2 for the nextdk + 1 steps, resulting in
U(2k) = [k, K",

V(2k)=[k+1, kF1], @) vek+neE+1)-1)

_ _ T
for odd & > 1, while the dynamic on the right satisfies [(k+ D2k +1) - 1), (k+1)(2(k +1) - DI,
(3) for evenk > 2. The choice of+ or — depends on V(2(k+1)(2(k+1) —1))

the parity of[£]. =[kQ2Kk+1)—-1), (k+2)2(k+1)—1).

Proof of Claim1: To see the claim for the dynamic onThis establishes the claim fdr + 1. The derivation is

the left, compard/(t), V' (¢) at stepst = 2 and¢ = 6. similar, if for k Equation §) is satisfied with+ and ¥
The two components o/ () are equal, while the two jnstantiated by— and+ respectivelyd

components o¥/(¢) differ by 2. So, after exchanging the

strategiesl «+» 2, we can repeat the players’ choices at Notice that Claim3 proves Part 1 of Lemma for
Steps3, 4, 5 and6 in Steps7, 8,9 and10 respectively to n = 2.

arrive atU(10) = [5,5]T and V' (10) = [4,6]. And, we Now, for any givenT, we construct a dynamic
can continue the same way ad infinitum, which provg®/’, V') for I, that satisfies the conditions in Part 2
the claim for all oddk’s. Similar argument for the of Lemmal. Let k be the largest integer such that
dynamic on the right proves for all evérs. O k(2k—1) <T,andl =T — k(2k—1)+ 1. Starting with



U(0) = [0.0]*, V(0)=1[0,0] U(0) = (0,0, V(0)=1[0,0]
Step1: row choosed column choose8 row choosed column choose$
U) =10, v(1)=][0,1] U(1) =[1,0]", V(1) =1,0]
Step2: row choose® column choose& row choosed column chooseg&
U@2)=[1" v(©)=[,2] U@2)=1[2,0", V() =[1]
Step3: row choose® column chooses row choose® column chooseg
U@B) =12, vE)=[12] U@B)=21% vE)=[12]
Step4: row choose® column chooses row choose® column chooseg
U4)=[13", V(@4)=[22] U4)=122", v(4)=[1,3]
Step5: row choosed column chooses row choose® column chooses
U(s) =237, V(5)=3,2] U(s) =237, V(5)=1[2,3]
Step6: row choosed column chooses row choose® column chooses
U(6) =[3.3", V(6)=[4,2] U6) = (2,4, V(6)=3,3]

Fig. 1. The padding dynamics fdp.

U’(0) = [0,0]T and V’(0) = [0,0], we first evolve the Claim 4. For anyk > 1, there exists a padding dynamic
vectors to for I,+1 such that
U2l =i, 1", .

. Vin+1Dk)=1k—1,k, ..., k k+1].
as enabled by Clain2. Because the components of
U’(21) and V'(2l) are exactlyl — 1 larger than the Proof of Claim4: We omit most of the details as the
corresponding components@{2) andV/(2) of the main proof is very similar to that of Clain2. For example, in
dynamic forl,, we can further evolve the vectdt& and the top dynamic in Figurg, we see thal/ reaches both
V' for 2k(2k—1)—2 steps, mirroring the players’ choices/1, 1, ., 1]T and(3,3,...,3]T. Since the corresponding
from Steps3 through2k(2k — 1) in the main dynamic values forV' have the same format up to an additive

for I,. Using Claim3, we arrive at shift and a permutation of the components, we can repeat
, T the pattern ad infinitum to prove the cases for ddl
u'er)=[1,1]", Similarly, the bottom dynamic in Figuré deals with
V'(2T) = [T + (2k — 1), T F (2k — 1)), evenk’s. O

which satisfies Next, we define the main dynamic fdr,, 1, which

max V'(2T) — min U’ (2T") pieces together parts of various dynamicsfpobtained
=92k —1 from the inductive hypothesis. We describe this dynamic
_ @(T%) inductively by dividing it intoepochs

1) Initial steps leading to 1st epociftarting with
The constant hidden b@(-) can obviously be chosen U) = [0,...,0]T and V(0) = [0,...,0], we

uniformly for all 7. We have thus proved Part 2 of first evolve the vectors to

Lemmal for n = 2.
" Un+1)=[1,1,..., 1",

Induc_tion Step: Assume that Lemm_a is true for a Vin+1)=[0,1,..., 1,2 ®)
certainn > 2. To prove it forn+1, we first consider two _
padding dynamics fof,, 1, whose first steps are shown as enabled by Claim. We mark those vectors as

in Figure 3 (in the appendix). We suppress the step  the beginning of the st epoch.
numbers and strategy choices in the figure, since these?) Evolution V_Vlth_ln an epochkori > 1, suppose that
can be easily inferred from the vectors. These dynamics  at the beginning of the-th epoch we satisfy
generalize the padding dynamics féy appropriately. B T
Similarly to Claim2, we can show the following: Ulln+)P) =[P, P, ..., PI,

V((TL + 1)P) = [Qla Q27 ) Qn+1]‘



Without loss of generality, let us also assume that We analyze the convergence rate of the main dynamic

Q1 <Q2< - < Qpi1- for I,,+1. For eachi, let (n + 1)T; be the step number
Becausgn+ 1)P = Zj Q;, we have at the beginning of the-th epoch, and~; the gap

J Using theP, @, R, and S notation above, we have the
For the nextR = (n + 1)(Qns1 — P) steps, let following relations:
U increase only in it§n + 1)-th component, and T, = P,

%4 incregseQnH — @ times itsj-th component, Ti1 = P+R,

for all j (the exact order of those increments

doesn’t matter). The process is compatible with the Gi=0En41— P,

definition of a dynamic because, in each of thoseGit+1 = max(S; + Qny1) — (P + R)
R steps, thgn + 1)-th component oft” remains ’

maximal in V', and the firstn components of/ = (@n41 = P) + (maxV(nR) — minU(nR))

remain minimal inU. At the end of these steps, =(Qns1 — P)+ @(R%),
we arrive at R=(n+1)(Qni1 — P).
U((n+1)Qus1) =[P, ..., P, P+ R, g) From the above, along with the initial values fros),(
Vin+ 1)Qnt1) = [Qnt1s -y Quial]. we obtain the following recursive relations:
Now, from our inductive hypothesis, there exists a G =1,
dynamic (U, V) for I,, such that Ty =1,
UnR) =R, R, ..., R|T, Gip1 = Gi+6(((n+1)Gi] ),
V(TLR): [S17 827 tet Sn]7 E+1 :Tl—’—(n—i_l)G“
and where the constants hidden by tk¥-)’s depend only
onn+ 1. A simple calculation based on those relations
max V (nR) — min U (nR) = @(Rn;1 ), yields
G; =0(@i"),
where the constant hidden 6)(-) is independent T, = O™,

of R. Starting from 6), for the nextn R steps, we
increment only the first components of/ and and so n
V, in a way that mirrors the strategy choices of Gi =O(T;"),
the players in the evolution dff and V/, starting
from U(0) = [0,...,0]" and V(0) = [0,...,0],
until U/(nR) and V(nR). Because then + 1)-
th component ofl/ remains minimal inV, we
see that, in each of thoseR steps, a maximal
component among the first components ol is We are now ready to construct, for any givéh a
also a maximal component of the entire veciar dynamic (U’, V') for I, satisfying the conditions in
Similarly, a minimal component among the firsPart 2. Letk be the largest integer so tha; < 7', and
n components ot/ is also a minimal component! = T — T} + 1. Starting from’(0) = [0,...,0]" and
of the entire vector/. Therefore, the process isV'(0) = [0,..., 0], we first evolve the vectors to
compatible with the definition of a dynamic. At / _ T

the end of thex R steps, we have Ulln+ DD =18, -, 1,

U({(n+1)(P+ R))

where the constants hidden by tt¥-)'s depend only
onn+ 1. Consequently, by considering the beginning of
each of the infinitely many epoches, the main dynamic
for I, satisfies Part 1 of Lemmafor n + 1.

Viin+D))=[l—1,1,...,1,1+1],

as enabled by Claimi. Because the components of

=[P+R,...,P+R, P+R|", U'((n+1)l) andV'((n+1)l) are exactly —1 larger than
V((n+1)(P+ R)) the corresponding componentsiéfrn+1) andV (n+1)
= [@n+1+ 51 Qnit + Sns Qnail in the main dynamic fod,,.; (i.e. the vectors marking

the beginning of thést epoch), we can further evolve the
which we mark as the beginning of thié+ 1)-th  vectorsU’” andV’ for (n+1)T},—(n+1) steps, mirroring
epoch. Notice that the vectors have a format th#te players’ choices in Steps+ 2 through (n + 1)T}
allows the induction to continue. (i.e. up until the beginning of the-th epoch) in the main



dynamic for I,, ;1. The components ot/'((n + 1)T) [14]
andV'((n + 1)T") at the end of this process ate- 1
plus the corresponding componentd&f(n+1)T}) and
V((n 4+ 1)T}) in the main dynamic fot,,+1. Thus, we

have

[15]

[16]

U(n+10)T)=[T,T,..., T,
and [17]
max V'((n+1)T) —minU’((n + 1)T)

=Gy, [18]
= @(T,:L“) [19]
= O(T7).

The constant hidden by th®(-)'s can obviously be (20l

chosen uniformly for alll’. We have thus proved Part
2 of Lemmal for n + 1. By induction, the proof of [21]
Lemmal is completedd [22]

O

Remark 2. Notice that, even though we do not explicitl3;23]
state it in Theorem2, our proof implies something [24]
stronger, namely that for every > 2, there exists a

dynamic forZ,, such that for allt (as opposed to just [25]
infinitely manyt’s): 26]

n—1

max V(t) —minU(t) = Ot ).
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APPENDIX

U(0) = [0,0]%,

Step1: row choosed
U(1) =[,0",

Step2: row choose
U2 = [1,1]%,

Step3: row choose®
U@3)=[12",

Step4: row choose
U4)=[1,3]",

Step5: row chooseg
Us) =14,

Step6: row chooseL
U6) =[1,5]",

Step7: row chooseg
U(7) =1,6]",

Step8: row choosed
U@®) = [2,6]",
Step12: row chooses
U(12) = [6,6]",
Step13: row chooses
U(13) = [7,6]",
Step14: row choosed
U(14) = 8,6]",
Step20: row choosed
U(20) = [14,6]T,
Step21: row chooses
U(21) = [15,6]T,
Step22: row choose®
U(22) = 15,77,
Step30: row chooseg
U(30) = [15,15],

cey

V(0) =0,0]
column chooseg
V(1) = [0,1]
column chooseg
V(2) =10,2]
column chooseg
V(3)=10,3]
column choose$
V(4)=[1,3]
column choose$
V(5) =23
column chooses$
V(6) =[3,3]
column choose$
V(7) = [4,3]
column chooses
V(8) =53

column choose$
V(12) =19, 3]

column chooses
V(13) = [10, 3]

column choose&
V(14) = [10, 4]

column chooseg
V(20) = [10,10]

column chooseg
V(21) = [10,11]

column chooseg
V(22) = [10,12]

column chooseg
V(30) = [10, 20]

Fig. 2. The main dynamic fors.




., 0]
., 0]
., 0]

V(0)=1[0, 0, 0, ..

R O]Ta
L) O]Tu
R O]Ta

U©)=1[0, 0, 0, ..

V) =10, 1,0, ..

U) =11, 0,0, ..

V)=, 1, 1, ..

U@2)=I[1, 1,0, ..

51, 2]
51, 2]

Vin+3)=1[2, 1, 1, ..

2,2, 1, ..

Un+3)=[1,1, 1, ..

., 3,3,3, 2
o 3, 4,03, 2

V(n+2)=[3, 3, 3, ..

., 3,2, 3, 3",
., 3,3, 3, 3",

UBn+2) =3, 3, 3, ..

V(3n+3) =3, 3, 3, ..

UBn+3)=[3, 3, 3, ..

and

- 07,
- 0,
S 0,
SHUR

., 0]
., 0]
., 0]
., 0]

V() =10, 0, 0, ..

U) =10, 0, 0, ..

V(1) =1, 0,0, ..

U) =11, 0,0, ..

V(2)=[1, 1,0, ..

U@ =12 0,0, ..

Vi) =[1,1, 1, ..

UB)=1[2 1,0, ..

51,2
1,2

Vin+3)=1[1,2 1, ..

Vin+4) =1, 2, 2, ..

., 3,3, 3,3
., 3,4, 3,3
., 3,4, 3, 4]
., 3,4, 3, 4]

V(3n+3)=3, 3, 3, ..

T

V@n+4)=[3, 3, 3, ..

)

T

V(3n+5) =3, 3, 3, ..

T

V(n+6)=[4, 3, 3, ..

T

., 3,2, 4,3
., 3,3,4,3
., 3,4, 4,3
3,4, 4, 4

UBn+3)=[3, 3, 3, ..

UBn+4)=[3, 3, 3, ..

UBn+5)=[3, 3, 3, ..

UBn+6)=[3, 3, 3, ..

4, 4,4, 3, 4]
4,5, 4, 3, 4]

V(dn+3)=[4, 4, 4, ..

4,3, 4, 4, 47,
* 47 47 47 47 4]T7

Uldn+3)=[4, 4, 4, ..

V(dn+4) =4, 4, 4, ..

U@n—+4) =4, 4, 4, ..

Fig. 3. The padding dynamics fdk, 1.
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