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ABSTRACT

The nature and rationality of expectations are hotly debated in economics and management

science. Expectations are usually portrayed in behavioral simulation models and system

dynamics as adaptive learning processes. This paper presents a behavioral model of trend

expectation formation. The model assumes expectations about the growth rate of a quantity

are formed adaptively from the recent growth rate of the input variable itself. The model is

then tested directly against actual forecasts in two quite different domains: short-term

expectations of inflation and long-term energy demand forecasts. In both cases the model

replicates the evolution of the expectations quite well over extended time periods. The

results support the use of adaptive expectations and trend extrapolation. The results also

suggest the presence of additional judgmental heuristics which can have dynamic and

policy significance. In particular, there seem to be substantial conservatisms in both

inflation expectations and energy demand forecasts: forecasters systematically

underestimate the growth rate of the input. Such conservatisms are consistent with the

empirical literature on judgment and decisionmaking. The results show it is possible to test

the expectation formation processes assumed in behavioral simulation models; implications

for use of adaptive expectations in behavioral models when empirical data are unavailable

are also discussed.



D-3821-1 1

Expectation Formation in Behavioral Simulation Models

The nature and rationality of expectations are hotly debated in economics and

management science. Expectation formation is particularly important in behavioral simulation

models, a class which includes most system dynamics models.1 Expectations are usually

modeled in system dynamics as adaptive learning processes (e.g. Holt et al. 1960, Forrester

1961, Cyert and March 1963, Mass 1975, Lyneis 1980, Meadows 1970, Low 1974, Sterman

and Richardson 1985). Adaptive expectations are common in economic models as well, for

example Irving Fisher's (1930) theory of interest rates, Nerlove's (1958) cobweb model

(Arrow and Nerlove 1958), Friedman's (1957) permanent income hypothesis, Ando and

Modigliani's (1963) lifecycle hypothesis of saving, and Eckstein's (1981) theory of "core

inflation". 2 For example, a firm's expectation of the order rate for its product is often assumed

to adjust over time to the actual order stream. Many times, the adjustment is assumed to be

first-order information smoothing, though more complex patterns of adjustment may be chosen

(e.g. Weymar 1968). Single exponential smoothing has been shown to outperform many other

forecasting methods over longer time horizons (in the M-competition, a forecasting contest

involving over four hundred time series: Makridakis et al. 1982, Makridakis et al. 1984,

Carbone and Makridakis 1986).

However, sometimes expectations respond not just to the past history of the variable

but to its past growth rate as well. For example, the past values and past trend in orders may

be used to estimate the likely future order rate. Growth expectations in behavioral simulation

and system dynamics are often modeled with the TREND function (Richmond 1977,

Richardson and Pugh 1981). The TREND function is a set of differential equations which

represent the formation of expectations about the current rate of growth in a given variable.

But TREND is not just a clever way to calculate the rate of growth of a variable. As the input

to decision rules in models, TREND represents a behavioral theory of how people form
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expectations, and takes into account the time required for people to collect and analyze data,

and to react to changes in the growth rate.

Despite the prevalence of adaptive expectations and the widespread use of the TREND

function in system dynamics modeling, there have been few direct tests of the appropriateness

of these assumptions (exceptions include Sterman 1986b and Hines 1986). Because

expectations are a matter of the first importance in modeling, it is surprising that the system

dynamics community has not tested these assumptions more formally. This paper explores the

structure and behavioral assumptions of the TREND function. The TREND function is then

tested against actual expectations data in two quite different domains: short-term expectations

of inflation and long-term energy demand forecasts.

Portraying Growth Expectations

The causal structure of the TREND function is given in figure 1. The TREND function

can be thought of as an information processing procedure which takes as input a variable

(including its past values) and produces as output a judgment of the current trend in the input

variable:

TRENDt = f(INPUTT) T e (to,t). (1)

The expected growth rate TREND is a state variable whose derivative is:

(d/dt)TRENDt = (rTRENDt-TREND 1)/pT (2)

where
TREND = expected trend in input variable (1/years)
ITREND = indicated trend in input variable (1/years)
'reF = time to perceive trend (years)
INPUT = input variable (input units).

The value of TREND is the expected rate of change in the input variable, expressed as a

fraction of the input variable per time unit. It is assumed that the trend perceived and acted

upon by decisionmakers adjusts adaptively to the trend indicated by the most recently available

data, given by ITREND. First-order information smoothing is assumed.

The lag in the adjustment of the perceived trend represents the time required for a

change in the indicated trend to be recognized and accepted by decisionmakers. The delay in
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the acceptance of a new trend as an operational input is often significant. The adjustment lag

depends not only on the time required for individual decisionmakers to recognize the change,

but on organizational inertia:- a new trend may have to become part of the "conventional

wisdom" before some are willing to act.

ITREND t = [(PPCt-RCt)/RCt]/tHRc (3)

(d/dt)PPCt= (INPUTt-PPCt)/tpp (4)

where
ITREND = indicated trend (1/years)
PPC = perceived present condition (input units)
RC = reference condition (input units)
HRC = time horizon for reference condition (years).

TppC = time to perceive present condition (years).
INPUT = input to trend function (input units)

The indicated trend is given by the difference between the perceived present condition of the

input and its average value over some historical horizon (the reference condition), expressed as

a fraction of the reference condition and annualized by the time horizon between the perceived

present condition and the reference condition. The indicated trend depends not on the true

value of the input variable but on the perceived present condition, which is an exponential

smooth of the raw input. The smoothing represents two factors. First, assessing current

status takes time. There is an inevitable delay in measuring the input variable and

disseminating information about its recent values. In the case of corporate and aggregate

economic data, the data collection and reporting lag may range from several weeks to a year.

In the case of demographic, resource, or environmental data, the delays may be even longer.

Second, even if the raw data were available immediately, smoothing is desirable to filter out

high frequency noise in the raw values. Such noise arises from both the processes themselves,

from measurement error, and from subsequent revisions in the reported data. The extent of

-· noise in one common economic variable is shown in figure 2, the rate of inflation in the U.S.

consumer price index (CPI). The CPI is reported monthly. Between 1947 and 1986 the

standard deviation of inflation from month to month is 111% of its mean value, clearly

showing the need to filter.
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The reference condition RC is also a state variable:

(d/dt)RCt = (PPCt-RCt)/'HR. (5)

The reference condition of the input reflects the value of the input at some time in the past. The

time horizon for the reference condition XHRC determines the relevant historical period

considered in the forecasting process. Equivalently, 1/xHRC is the rate at which old information

is discounted. The reference condition is computed by smoothing the perceived present

condition. Note that the reference condition is based on the perceived present condition rather

than the input variable itself. The raw values are not available to decisionmakers - in most

cases, only averaged data, reported after a significant collection delay, are available.

The judgment of the trend in a variable is often subjective, and strongly conditioned by

experience. Thus, the time horizon for establishing the reference condition may reflect the

memory and experience of individual decisionmakers. For example, managers whose

professional experience was shaped by the high-growth decades of the 1950s and 60s may

continue to forecast high growth despite the low actual growth rates of the 1970s and 80s.

Their judgment may reflect a belief that the past "few years" are an aberration and the economy

will soon resume the growth rate that characterized the past. In such a case, perceived trends

may change only as fast as management turns over and is replaced.

The appendix describes the transient behavior of the TREND function and shows it

produces unbiased estimates in the steady state of exponential input growth.

Example I: Inflationary Expectations

Twice a year since 1946 the Philadelphia-based financial columnist Joseph Livingston

has conducted a survey of academic, business, and government economists. One of the survey

questions solicits forecasts of the Consumer Price Index 6 and 12 months ahead (Carlson

1977). The imputed inflation forecasts have been extensively analyzed in the economics

literature. 3 Figure 3 compares the 6-month and 12-month forecasts to the actual inflation rate

for the corresponding period. Actual inflation was quite volatile from the end of World War II

through the Korean war. Inflation was low during the late 1950s and early 60s. Between the
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mid 60s and 1980, inflation generally accelerated, and fluctuated substantially over the

business cycle. Since 1981 inflation has fallen dramatically. Comparing the forecasts against

the actual outcome highlights:

1. Bias: the forecasters consistently underpredict inflation, particularly during the

1960s and 1970s, when inflation accelerated.

2. Phase shift: the peak (trough) of the expected inflation rate lags the peak (trough) of

the actual inflation rate. Forecasters consistently missed the turning points in

inflation caused by the business cycle.

3. Attenuation: the actual rate of inflation fluctuates significantly over the business

cycle, particularly in the 1970s and 1980s. The amplitude of the forecasts is

substantially less than that of actual inflation.

The bias suggests a steady-state error as inflation accelerated in the 1960s and 1970s.

The phase shift and attenuation are characteristic of simple linear filters such as exponential

smoothing.

In most modeling situations actual expectations data are unavailable and the analyst

must use prior estimates of the parameters. To test this procedure, the analysis of the

Livingston data was performed entirely with prior estimates of the parameters of the TREND

function. (A formal parameter estimation procedure is used in the second example, involving

energy demand forecasts.) The values chosen to model the 6 month forecasts are ppc=2,

ZHRC=12, and rpT=2 months. The Livingston forecasts are dated June and December of each

year. Carlson (1977) shows that due to lags in reporting the CPI and in the time required to

conduct the survey the Livingston panel make their forecasts knowing the CPI only through

April and October, respectively. Thus there is a two-month delay in perceiving the current

value of the index. The prior value of xHRC= 12 months was selected as follows. The raw

inflation data (figure 2) are dominated by high-frequency (monthly) noise. Six and 12 month

forecasts should not be overly sensitive to monthly changes in inflation that may be revised or

reversed next month. For professional reasons (consistency) and cognitive reasons
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(minimizing dissonance) forecasters are unlikely to revise their expectations dramatically from

month to month despite the volatility of the monthly data. A smoothing time of 12 months

attenuates 97% of the month-to-month noise yet will pass through 63% of a change in trend

within one year (Forrester 1961, 417). The value of XrT=2 months implies respondents'

beliefs adjust nearly completely to a change in the indicated trend within 6 months.4 One

would expect xHRC and prr to be slightly longer for the 12-month forecasts. 5

Figure 4 shows the simulation results.6 The TREND function reproduces the bias,

attenuation, and phase shift apparent in the actual forecasts. But the simulated forecasts are

high on average compared to the Livingston data. In fact the TREND function yields a better

forecast than the Livingston panel! The mean absolute error (MAE) between simulated and

actual forecasts is .014, and the root mean square error (RMSE) .0195 (table 1). The Theil

inequality statistics (Theil 1966, Sterman 1984) were used to decompose the mean square error

(MSE) into three components: bias, unequal variation, and unequal covariation between the

simulated and actual forecasts. Fully forty percent of the MSE is caused by bias. The

remainder is due to unequal covariation, meaning 60% of the MSE is unsystematic. The

unequal variation term is virtually zero (the two series have equal variances).

Two interpretations of the bias may be offered. First, the actual forecasting process

used by the Livingston panel may be more sophisticated than the univariate TREND function.

Other economic variables may be considered. Likely candidates include money supply growth,

government budget deficit, and the unemployment rate, as assumed in Caskey (1985). In

addition, different information processing routines may be used. Caskey assumes (on faith

and without test) the Livingston forecasters follow Bayes' rule when updating their forecasts.

However, such a theory must explain why more sophisticated information processing and use

of economic theory produces results decidedly inferior to univariate trend extrapolation.

Alternatively, the Livingston panel may suffer from two common and closely related

judgmental errors identified in behavioral decision theory.
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1. Anchoring and adjustment: People often judge an unknown quantity by first

recalling a known reference point and then using additional cues to adjust the base by some

'stretch factor'. The advantage of the anchoring and adjustment strategy is its simplicity and

intuitive appeal. The disadvantage is the common tendency to underpredict - to revise prior

judgments too little when faced with new data. Judgments are often unintentionally anchored

to reference points that are implicit (such as even odds in a bet, or the axis of a graph).

Judgments exhibit anchoring even when the irrelevance of the anchor to the judgmental task at

hand is made salient to the subjects (Tversky and Kahneman 1974, Hogarth 1980).

2. Conservatism: BDT research supports the existence of judgmental conservatism in

which subjects fail to follow Bayes theorem when updating beliefs (see references above).

Typically, each new observation results in one-fifth to one-half of the adjustment indicated by

Bayes rule (Edwards 1968).

Though the two judgmental errors are closely related, they have distinct dynamic

consequences. A conservative panel which updates its beliefs insufficiently would have longer

time constants XHRC and XpT compared to a Bayesian panel. Lengthening the time constants

does lower the forecasts produced by the model by slowing the rise of expectations during the

inflationary 60s and 70s. But it also introduces more phase lag, causing the peaks of the

simulated forecasts to lag the peaks of the actual forecasts, and it reduces the variance of the

simulated forecasts below that of the actual forecasts. 7 These considerations suggest the

problem is not statistical conservatism but the presence of an anchor which biases the forecast

downward from the values indicated by extrapolation of the recent inflation rate.

The anchoring and adjustment strategy can be modeled as follows: suppose the

Livingston panel forms inflationary expectations as:

tlt+h = (1-a)*TRENDt + a*ANCHORt (6)

where
tlt+h = expectation at time t of average (exponential) inflation rate between t

and t+h (1/years)
h = forecast horizon (years)
TREND = expected inflation rate generated by TREND function (/years)
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ANCHOR = underlying anchor on inflation forecast (1/years)
a = weight on anchor (dimensionless).

In equation 6, the simulated Livingston forecast is a weighted average of the TREND

function with an anchor. The parameters of the TREND function are the same as those used in

figure 4. The anchor can be thought of as an underlying reference point which the panel uses,

consciously or unconsciously, when forecasting.

The simplest assumption is the 'fixed-anchor' model in which ANCHOR= 0. Zero

price change is a natural choice for the anchor: zero change is the simplest naive model;

further, plots of the past rate of inflation are likely to show the x-axis at n-=0, possibly leading

to an unconscious bias towards the axis. 8 Equation 6 then reduces to:

tlt+h = (1-a)*TRENDt (7)

which implies forecasters will always underpredict the magnitude of inflation. Figure 5 shows

the fit of the 'fixed-anchor' model using a weight of .20. The fit is improved substantially

compared to the 'no-anchor' model. The MAE falls by 29%, the RMSE by 21%. The Theil

statistics show the bias is reduced to 8% of the MSE, with the bulk of the remaining error

caused by unequal covariation.

The anchoring and adjustment model fits the forecasts well. But clearly, if ii>O for

extended periods, forecasters should learn to expect continuing inflation and adjust t+h

upward, as argued in Jacobs and Jones 1980. The fact that the 'no-anchor' model is generally

high between 1947 and 1983 suggests the panel's judgments were biased by a feeling that the

underlying inflation rate was lower than the actual rate of inflation. But the underestimation by

the 'no-anchor' model after 1983 suggests the anchor had risen during the high-inflation 70s

causing the panel to continue to forecast high inflation in the mid 80s.

In the 'sea-anchor' model the anchor is specified by the TREND function, but with

much longer parameters:

ANCHOR t = TRENDA(AppC'AHRc'ApT) (8)

where
TRENDA = TREND function for formation of anchor

8
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xAppc - = Time to perceive present condition for anchor (years)

t'AM c = Time horizon for reference condition for anchor (years)

gApT = Time to perceive trend for anchor (years).

The anchor should respond to changes in the underlying inflation trend but not to the

business cycle swings in inflation. The parameters CA were chosen to reflect the long-term

nature of the anchor: App c = 1 year, tAHRc = 10 years, and ApT = 3 years. These values are

long enough to significantly attenuate a signal characteristic of the 3 - 7 year business cycle

(Forrester 1961, 417). The initial value of the anchor was set to -.03%/year, implying the

panel's judgments were initially biased towards mild deflation (many economists, recalling the

deflation of the Great Depression and the recession and falling prices that followed World War

I, worried that the U.S. would return to depression after World War II). The weight on the

anchor was set to .25. Figure 6 compares the simulated and actual forecasts and figure 7

shows the components of the simulated forecast. Note that the anchor reduces the forecasts

until 1983, when inflation falls substantially. The anchor then keeps the simulated forecast

high, improving the fit between 1983 and 1985.

The 'sea-anchor' model is theoretically more satisfying and also more robust, as it

allows for learning: if inflation remains steady the model will eventually produce unbiased

forecasts (as seems to have occurred between 1958 and 1965). Similarly, in a hyperinflation

the fixed-anchor model would seriously underpredict inflation, while the sea-anchor model

would learn' to expect hyperinflation. The sea-anchor model reduces the MAE by another

11%. The MSE is still primarily unsystematic.

Example II: Energy Demand Forecasts

Since 1973 estimates of future energy consumption in the United States have fallen

dramatically (figure 8). The drop in forecasts coincided with a marked slowdown in the

growth of actual consumption. Forecasts made as recently as 1974 projected consumption in

1985 to be near 130 quadrillion BTUs (quads). Actual energy consumption in 1985 was less

than 74 quads. In like fashion, forecasts of consumption in 2000 have fallen by nearly a factor
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of two since 1973. The large errors and seemingly reactive nature of the forecasts suggest

trend extrapolation may have been used in many of the forecasts. Trend extrapolation,

however, seems naive to many observers, who point out that energy demand forecasts are

often the result of extensive studies involving detailed, multidisciplinary analysis.9 How can

trend extrapolation be used to proxy such complex and subtle judgments?

The TREND function provides the expectation of the growth rate in the input variable at

the current moment in time. To produce a forecast of the input's value at some point in the

future one must assume some degree of persistence. For example, one might assume that the

current fractional growth rate in the input will continue throughout the forecast horizon.

Alternatively, one might assume that the rate gradually approaches some more fundamental

reference, that growth will be linear rather than exponential, or that the variable itself

asymptotically approaches some limit.

The model of energy consumption used here assumes continued exponential growth in

primary energy consumption at the currently perceived rate:

tFCFy = PPCt*(l+TRENDt*'ppc)*exp[TRENDt*(FY-t)] (9)
where

tFCFy = Forecast made in year t of Consumption in Forecast Year (Quads/year)
FY = Forecast Year (year)
PPC = Perceived Present Condition (consumption) (Quads/year)
TREND = Expecte4dTrend in Consumption (1/years)
XPPC = Tlme to erceive Present ondition (years).

Note that equation 9 assumes forecasters recognize that it takes time to perceive the input and

that they adjust for the growth they believe has occurred between the time consumption was

measured and the present. In consequence, eq. 9 produces accurate forecasts in the steady

state of exponential growth of actual consumption (Sterman 1986b).

Note that all parameters yield the same result in the steady state. Thus to estimate the

model the actual growth rate of the input variable must vary significantly. Fortunately, the

energy consumption and forecast data span a period which includes major changes in patterns

of energy use, first accelerating up to 1973 and rapidly decelerating thereafter.10

10
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The model is nonlinear, and the parameters were estimated with a multivariate

hillclimbing program.11 The mean absolute error (MAE) between the actual and simulated

forecasts was chosen as the criterion of fit to be minimized in estimating the parameters:

1985

MAE = M AE(XpTXpC) = (1/N) I tHFC, i - tFCrI (10)
t-1947 i

where
N = total forecasts available for forecast horizon FY
tHFCFy = historical forecast in year t of consumption in forecast year (quads/year)
tFCFy = simulated forecast in year t of consumption in forecast year (quads/year)
i = index of historical forecasts (tHFCFY) made in year t.

To guard against the possibility of finding only local minima, the hillclimbing procedure was

run from a variety of initial parameter values.

Table 2 presents the optimal parameter estimates for each forecast horizon. Note that

the minimum possible error is greater than zero because there are often several different

forecasts for each year. The MAE is compared against the mean absolute deviation of the

historical forecasts. The mean absolute deviation (MAD) is computed exactly as in equation 10

but replacing the simulated forecast with the median of the historical forecasts for each year.

Since the median minimizes absolute deviation, the MAD of the historical forecasts is the lower

bound on the MAEs reported in the table.

The optimal parameters for 1980 and 1985 produce MAEs quite close to the lower

bound. As a percentage of the mean historical forecasts, the increase in MAE over the MAD is

just 5 and 2 percent for 1980 and 1985, respectively. Figures 9, 10, and 11 compare the

simulated and actual forecasts for each forecast horizon using the optimal parameters. The

simulated forecasts for 1980 are somewhat low before 1965 but are a good fit after that date.

The simulated forecasts for 1985 are an excellent fit.

However, table 2 and figure 11 show the optimal parameters for the year 2000

forecasts to be implausibly short, particularly XPT and rPPc. The sum of the three parameters

for the year 2000 forecasts is substantially less than the sum for the 1980 and 1985 forecasts.

It is implausible for forecasters to be more responsive to short-term variations in energy growth
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rates when projecting consumption to the distant horizon of 2000 compared to the much nearer

horizon of 1985. Further, the short delays in assessing current consumption and reacting to

changes in the growth rate mean the simulated forecast is far too volatile, swinging wildly in

response to business cycle fluctuations in energy consumption. Finally, the simulated forecast

is biased upward, reaching a peak of over 250 quads in 1969. Attempting to solve the problem

by setting the parameters to the optimal values for 1985 results in the forecasts shown in figure

12. Here the extreme volatility of the forecasts is reduced, but the forecasts are consistently too

high, reaching a peak of 225 quads in 1971. The MAE is 33 quads, double the mean absolute

deviation of the historical forecasts.

The overestimation of the year 2000 forecasts is curious in light of the unbiased 1985

forecasts. The forecasting procedure in equation 9 presumes a continuation of exponential

growth at the currently perceived rate throughout the forecast horizon. For forecasts of

consumption over shorter horizons such as 1980 and 1985 the assumption of uniform

exponential growth is clearly more likely to be valid than for forecasts over an additional 15

years. As with inflation expectations two interpretations can be offered. First, it may be that

the forecasters, through complex reasoning and application of economic theory, recognized that

continued exponential growth at historical rates was unlikely over such an extended time frame

and adjusted the assumed growth rate downward, particularly in the later years. An alternative

interpretation grounded in behavioral decision theory would suggest a downward bias

introduced as exponential growth projects energy consumption progressively farther from its

current level.

Biases in judgment and forecasting, particularly in forecasting exponential growth, are

well known and amply documented elsewhere (see Armstrong 1985, Phillips and Edwards

1966, Wagenaar and Timmers 1979, Tversky and Kahneman 1974).

To test for the presence of bias equation 9 was modified to assume a linear rather than

exponential extrapolation of current energy consumption growth:

tFCFy = PPCt*( +TRENDt*tppc)* [ 1 +TRENDt*(FY-t)]. (9')

�____·__·_1__1___1_�II____��___�
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The linear extrapolation does not necessarily mean forecasters believe energy growth to be a

linear process. A more likely interpretation is simply that they expect the fractional rate of

growth of consumption to decline in the future, resulting in a roughly linear path. -The optimal

parameters for the revised model are also presented in table 2. The linear model generates

parameters which are similar to those for the shorter forecast horizons. The MAE is 19.9

quads, an increase over the MAD of 3 percent of the mean forecast. Figure 13 shows the

revised model virtually eliminates the bias and captures the decline in the forecasts quite well.

Are forecasters also biased for the nearer horizons of 1980 and 1985? The answer

seems to be no. Sterman 1986b shows that the linear model performs significantly worse than

the exponential model for the 1980 and 1985 horizons, consistent with the hypothesis that the

forecasters assume the fractional growth rate to diminish as forecasted consumption becomes

larger.

Interpreting the Results

The results demonstrate that univariate trend extrapolation is an adequate model of

actual expectation formation processes in two quite different domains. Past inflation explains

short-run forecasts of inflation. Past growth in energy consumption can explain the history of

energy demand forecasts, for three distinct forecast horizons.

Do the results imply that forecasts are actually made by trend extrapolation or only that

they can be mimicked by trend extrapolation? Consider the inflation forecasts. The univariate

trend model does not prove that inflationary expectations are in fact purely adaptive or that past

inflation is the only input to the forecast. But the excellent correspondence between the

simulated and actual forecasts shows that other variables have only a weak effect on the

forecast. Such a conclusion is consistent with behavioral decision theory. People prefer

relatively certain information over uncertain, noisy information. The future values of

potentially relevant variables such as monetary policy, unemployment, economic growth,

exchange rates, and budget deficits, are themselves highly uncertain and difficult to forecast.

There is substantial disagreement among economists about the nature of the relationships

Ih1
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between these variables and the rate of inflation. Further, people are incapable of correctly

deducing the consequences of intricate dynamic systems such as the economy and tend instead

to process information with simple, incomplete, and erroneous mental models (Sterman

1986a). Cues other than inflation itself are therefore likely to be heavily discounted in the

forecasting process. 12

Decision aids such as econometric models do not resolve the problem since the

modeler's judgment is always needed to specify the model structure and the future values of the

exogenous variables. In fact, the forecasts of most econometric models are heavily 'add-

factored' or adjusted ad hoc by the modelers (Sterman 1985b). The practice is defended by the

modelbuilders since they are able to bring their expert knowledge and intuition to bear,

overcoming limitations of the models and taking the latest data into account. But experience

and expertise are not proof against error. It has been frequently shown that experts are prone

to many of the same judgmental biases observed in the public at large (Tversky and Kahneman

1974, Kahneman, Slovic, and Tversky 1982). Indeed, Caskey (1985) shows the Livingston

and DRI forecasts of inflation are virtually identical.

The dominance of trend extrapolation over formal models is also apparent for the

energy demand projections. As noted, forecasts of energy consumption have been made with a

wide range of techniques and models. Many of these models are quite complex and do not

appear to be simple univariate extrapolations. Yet regardless of the level of sophistication, each

model relies upon exogenous variables or parameters, and for at least some of these there will

be no strong theory to guide the forecaster in estimating their future values. To illustrate, the

univariate model used here could be improved by using a model that determines energy

consumption in terms of more fundamental economic forces. Two such models are:

ln(CONSt) = ln(EGRt)+ln(GNPt) (11)

ln(CONSt) = al+a2ln(GNPt)+a 3ln(Pt) (12)

where
CONS = energy consumption (quads/year)
EGR = energy/GNP ratio (quads/$)
GNP = real GNP ($/year)

14
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P - = average real energy price ($/BTU)
al, a2, a3 = regression coefficients.

The model in (11) posits energy demand as a function of GNP and the energy/GNP ratio. The

model in (12) allows the energy/GNP ratio to vary with energy prices by. defining energy

consumption in terms of standard income and price elasticities. Such models are easily

estimated and utilize more economic theory than the simple univariate trend forecast used in the

simulations. But one must still forecast the exogenous variables. Trend extrapolation is likely

to be a dominant input to the forecasts of those exogenous variables. Elaborating the model of

energy consumption does not remove the need for trend extrapolation at some level. Indeed,

many of the studies whose forecasts are reported in figure 8 relied on large, complex, and

costly models. Yet, in all these models there are exogenous variables which must be forecast.

Whether these are GNP and the energy/GNP ratio, population growth and assumed energy per

capita, or population growth, assumed future technical progress, and assumed future energy

prices, there is always at least one such exogenous variable for which theory provides no

strong guidance. Such inputs serve as free parameters which can be used to manipulate the

forecasts to be consistent with the conventional wisdom of the time. The correspondence of

the simulated and actual forecasts suggests trend extrapolation acts as a strong constraint upon

choice of these "fudge factors".

Conclusion

Proper representation of the expectation formation process is of paramount importance

in behavioral simulation. This paper shows it is possible to test the expectation formation

process assumed in system dynamics models. The -results support the use of adaptive

expectations and trend extrapolation. The results also suggest that such empirical analysis can

reveal the presence of additional judgmental heuristics which can have dynamic and policy

significance.

Short-term inflation forecasts spanning nearly forty years are explained well by

extrapolation of past price trends. However, the expected inflation rate appears to be anchored

I
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towards an underlying expectation of secular inflation, resulting in underprediction and

attenuation of the business cycle peaks in actual inflation. Similarly, energy demand forecasts

made between the late 1950s and early 1980s were examined. Forecasts of consumption-in

1980 and 1985 seem to be simple exponential extrapolations of past energy consumption itself.

But for forecasts made during the same period to the more distant horizon of the year 2000, the

results strongly suggest a substantial downward bias. In particular, forecasters projected

growth that is roughly linear rather than exponential.

Detailed examination of the methodology and behind-the-scenes reasoning of the

individual forecasters would be required to determine if the errors resulted from explicit

calculation or from inadvertent psychological biases.

The results, particularly the discovery of biases and conservatisms in the forecasting

process, have clear significance for research in system dynamics and policy modeling. The

implications of the judgmental biases for policy modeling of energy and macroeconomic

dynamics are obvious. Equally important, strong empirical support for these biases is found in

the literature on individual decisionmaking behavior. Analysts should and can take advantage

of this literature in the formulation and testing of models of aggregate behavior. Further

development of the relationships between behavioral decision theory and system dynamics

would appear to be a fruitful direction for research.

In terms of modeling practice, two approaches to parameter estimation were used. For

energy demand, a formal estimation procedure was used. The estimated parameters do not

seem unreasonable given known lags in the reporting of energy consumption data, the need to

filter out much of the business-cycle variation in energy consumption, and knowledge of the

transient response of the TREND function. For the inflation forecasts, a-priori parameters

were used and lead to excellent agreement between model and data. While parameters should

always be estimated if data exist, the results suggest modelers can be reasonably confident

using a-priori estimates of the parameters when actual expectations data are unavailable, as is

usually the case in behavioral modeling.
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The complexity of human systems is steadily growing, while our cognitive capabilities

and limitations remain unchanged. Complex models may be useful, even necessary, for policy

design and evaluation, for representing and reconciling alternative viewpoints, or for

developing theoretical understanding. Unfortunately, models are all too often used to forecast

and react to difficulty rather than as a laboratory for the design of robust and resilient systems.

The results presented here call into question the wisdom of the forecasting orientation, and

particularly the utility of large, complex models for forecasting. The cost and effort required to

use such models for forecasting has not proven to be commensurate with their forecast

accuracy when compared to far simpler and less expensive methods. It is hoped the research

reported here will foster a much-needed redirection of modeling away from the prediction of

events and towards the design of robust systems which are less likely to generate problematic

behavior.
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Appendix: Behavior of the TREND function

To be a reasonable model of growth expectation formation, TREND should produce, in

the steady state, an accurate estimate of the growth rate in the input variable. That is, if

INPUTt = INPUTtO*exp(g*(t-to)) (13)

then lim TRENDt = g.

t -oo

The proof relies on the fact that the steady-state response of a first-order exponential smoothing

process to exponential growth is exponential growth at the same rate as the input. In the steady

state, however, the smoothed variable lags behind the input by a constant fraction of the

smoothed value. The equation for a first-order smoothing process is:

(dy/dt) = y' = (x-y)/AT (14)

where AT = the adjustment time of the process. The steady-state solution of equation 14, for

the case of an exponentially growing input (x = xoexp(g(t-to)), xOand to = initial values, g =

growth rate), can be found in most introductory differential equations texts:

y = x/(l+gAT). (15)

That is, the smoothed variable lags the input with a steady-state error proportional to both the

growth rate of the input and the average lag between input and output. The solution can be

verified by substitution in the differential equation (14).

In the TREND function, PPC is a smooth of INPUT, so in the steady state, PPC will

be growing exponentially at rate g. Since RC is a smooth of PPC, it will also be growing at

rate g. Therefore, RC'/RC = g. But by equation (5)

RC' = (PPC-RC)/HRc (16)
so

g = [(PPC-RC)/HR]/RC = ITREND. (17)

Since TREND is a smooth of ITREND, TREND = ITREND = g in the steady state. Thus, in

the steady state, TREND yields an unbiased estimate of the exponential growth rate in the input

variable.
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During transients, of course, TREND will differ from the true growth rate of the

inputl13 To illustrate the transient response, figure 14 shows the adjustment of the expected
trend to an exponentially growing input for various values of the three parameters rpT, ppC,

and XHRc . In the example the input grows at 5 percent/year, starting from a stationary

equilibrium. The true growth rate thus follows a step input from 0 to 5 percent. In all cases

the response of TREND is s-shaped. The expected trend smoothly approaches the true trend
from below, without overshoot. The parameters XPT, XppC, and HRc control the mean and

shape of the distributed lag response of TREND to a change in the input's growth rate.
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NOTES

1 Behavioral simulation models are a class of dynamic models which share the following

characteristics:

(i) A descriptive rather than normative representation of human behavior. Decisionmaking

behavior is portrayed in terms of the heuristics and routines used by the actors in the system

rather than as the behavior which maximizes utility.

(ii) The limitations of human cognitive capabilities are explicitly accounted for in modeling

behavior.

(iii) The availability and quality of information is explicitly treated including possible bias,

misinterpretation, distortion, and delay.

(iv) The physical and institutional structure of the system is explicit, including

organizational design such as task and goal segmentation, the stock and flow networks that

characterize the physical processes under study, and lags between action and response.

(v) A disequilibrium treatment is adopted, focussing on the feedback processes which

cause adjustments in the face of various external disturbances.

See e.g. Simon 1982, Cyert and March 1963, Nelson and Winter 1982, Forrester 1961,

Morecroft 1983, 1985, Sterman 1985, Sterman and Richardson 1985.

2 See e.g. Mincer 1969. Adaptive expectations contrast against rational expectations in

which expectations are assumed to be based on a true model of the system. See Muth 1961,

Lucas 1976, Begg 1982. For critiques of rational expectations see Simon 1979, 1978, Klamer

1983, Shaw 1984 (especially Chapter 10).

3 Caskey 1985, Peek and Wilcox 1984, Hafer and Resler 1982, Bomberger and Frazer

1981, Jacobs and Jones 1980, Pearce 1979, Mullineaux 1978, Pesando 1975. Tim Schiller of

the Federal Reserve Bank of Philadelphia supplied me with the Livingston data. Livingston

asks the panel to forecast the level of the CPI six and twelve months ahead. Following
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Carlson (1977), ILassume the panel have available to them only the level of the CPI two months

prior to the date of the survey, and thus I treat the data as 8 and 14 month forecasts. The.

imputed inflation forecast is computed as:

t;t+h = ln(t-2CPIt+h/CPIt-2 )/[(h+2)/12] h = 6, 12 months.

Note that this yields the continuous compounding growth rate, corresponding to the output of

the TREND function. The actual inflation outcomes are computed by substituting the actual

value of the CPI at t+h for the forecast. Note also that the revised CPI data are used in the

analysis while the panel used the unrevised data.

4 After three time-constants a first-order smoothing process has reached 95% of its final

value. The 97% attenuation is calculated by noting that the period of the highest frequency

signal in a monthly time-series is 2 months.

5 But only slightly. The six month forecast determines the inflation path for the first half of

the annual forecasts. It is unlikely that forecasters will project a radically different inflation rate

for the second half of the forecast year. In fact, the 6 and 12 month forecasts are quite similar.

Longer time constants for the 12 month forecast, by placing less weight on recent data, imply

forecasters expect inflation to regress towards its long-term average more completely after a

year than 6 months.

6 The model is formulated in continuous time. It is simulated by Euler integration with a time

step dt = 1 month, the reporting interval for inflation. The energy forecasts are simulated with

a time step of .125 years, small enough so integration error is not significant.

7 -, Note that the argument above cannot be used to establish statistically whether the panel

follows Bayes' Rule, or to estimate which parameters of the TREND function correspond to a

Bayesian strategy. To do so would require knowledge of the panel's prior beliefs about the
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inflation process, a subject for investigation at the micro-level of the individual panel members.

The argument shows only that a statistically conservative panel would have longer time

constants than a Bayesian panel with the same beliefs. The panel may in fact be conservative

but such conservatism does not explain why the TREND function produces forecasts which

have less bias than the panel's.

8 The graphical argument for ANCHOR-- depends on whether the panel members plot past

inflation before making their forecasts, and suggests examination of the panel's forecasting

process at the micro-level would be a fruitful field study. Most graphs show the x-axis at zero

rather than at other plausible locations such as the average inflation rate over the sample.

9 E.g. DOE 1983 and the studies cited in figure 8.

10 In all cases, the simulations begin in 1947 with an assumed initial growth rate of 2%/year.

Given the parameter values reported below, the simulated forecasts are virtually independent of

the initial growth rate by the late 1950s, when the actual forecast data begin. Energy

consumption grew at 2.1%/year between 1930 and 1945 (Schurr and Netschert 1960, p. 35).

The input to the TREND function is the actual consumption of primary energy in the United

States (DOE 1978 and various issues of the DOE Monthly Energy Review). The actual forecast

data were acquired by digitizing the data shown in figure 8, using a Macintosh computer with

digitizing pad (Sterman 1986b).

11 The data and hillclimbing computer program are available from the author upon request.

12 This argument conflicts with the rational expectations position that economic agents act on

the basis of (or as if they had) expectations which optimally process all available information.

Proponents of rational expectations argue that people cannot be systematically wrong about the
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future or fooled by government actions, while adaptive expectations are myopic and reactive.

The empirical evidence shows that people are in fact often systematically wrong and that they

fail to use information optimally. The adaptive model proposed here does not rule out learning

from experience. But such learning takes time. A proper model of expectations should focus

on the procedures by which people select and filter cues, process that information, and revise

their beliefs if feedback on outcomes becomes available (Simon 1984).

13 The initial values of the state variables are computed so that the TREND function is

initialized in steady-state with respect to an assumed initial growth rate:

PPCtO = INPUTto/(l+TRENDto*TPPC)

RCt= PPCto/(l+TRENDto*THRC)

These initial conditions avoid unwanted transients in the adjustment of TREND to the actual

growth of the input.
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Figure 1

Causal Structure of the TREND Function
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Figure 2: Consumer price inflation in the United States, 1947 to 1985
(Monthly data at annual rates).
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Figure 3: The Livingston panel's 6 and 12 month inflation forecasts,
compared to actual inflation, 1946.6-1985.12
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Figure 4: Simulated Livingston forecasts: No-anchor' model
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Figure 6: Simulated Livingston forecasts: 'Sea-anchor' model
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Table 1

Error analysis of simulated

MAE RMSE
(1/years)

MSE
(1/years) 2

inflation forecasts

UM Us UC
(dimensionless)

No-anchor .0140 .0195 3.81E-4 .40 .00 .60 .88

Fixed-anchor .0099 .0155 2.41E-4 .08 .15 .77 .88

Sea-anchor .0088 .0138 1.92E-4 .16 .03 .81 .91

MAE

(R)MSE

UM

Us

Uc

R

= Mean Absolute Error

= (Root) Mean Square Error

= Fraction of MSE due to bias

= Fraction of MSE due to unequal variance

= Fraction of MSE due to unequal covariance

= Correlation coefficient between simulated and actual forecasts

Model R
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- Figure 8a. Source: DOE 1983, p. 7-9.
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Figure 8b. Source: DOE 1983, p. 7-10.

PROJECTIONS OF U.S. PRIMARY ENERGY CONSUMPTION FOR THE YEAR 2000
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Table 2

Optimal parameter estimates: energy demand forecasts

Forecast
Horizon

rPT TPPC
(years)

THRC MAE MADa

(Quads)

1980 2.7 1.3 2.7 7.2 3.4

1985 1.2 2.4 4.0 5.7 4.1

2000 model 1 b 0.2 0.1 5.0 23.9 16.7

2000 model 1 b 1.2 2.4 4.0 33.3 16.7

2000 model 2 2.0 1.7 2.2 19.9 16.7

a MAE: Mean

MAD: Mean

Absolute Error between simulated and actual forecasts.

Absolute Deviation between forecasts and median forecasts for each year.

b Model 1: Exponential extrapolation of expected growth rate (equation 9).

c Model 2: Linear extrapolation of expected growth rate (equation 9').
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Figure 9: Simulated and actual forecasts of US primary energy consumption in 1980
(Quads/year)
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Figure 10: Simulated and actual forecasts of US primary energy consumption in 1985
(Quads/year)
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Figure 11: Simulated and actual forecasts of US primary energy consumption in 2000,
exponential extrapolation (Quads/year)
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Figure 12: Simulated and actual forecasts of US primary energy consumption in 2000,
exponential extrapolation with optimal parameters for 1985 (Quads/year)
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Figure 13: Simulated and actual forecasts of US primary energy consumption in 2000,
linear extrapolation (Quads/year)
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Figure 14: Response of TREND function to exponential growth in input of 5%/year. Shown
for various values of the parameters ppc (Time to Perceive Present Condition), HRc (Time
Horizon for Reference Condition), and rPT (Time to Perceive Trend).
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