Nuclear Engineering - Ph.D. / Sc.D.
http://hdl.handle.net/1721.1/7854
2016-06-23T07:30:32ZNeutron scattering from non-spherical nuclei
http://hdl.handle.net/1721.1/103198
Neutron scattering from non-spherical nuclei
Dunford, Charles L., 1940-
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1964.; MICROFICHE COPY AVAILABLE IN ENGINEERING.; Vita.; Includes bibliographical references (leaves 192-194).
1964-01-01T00:00:00ZOptimization of deep boreholes for disposal of high-level nuclear waste
http://hdl.handle.net/1721.1/97968
Optimization of deep boreholes for disposal of high-level nuclear waste
Bates, Ethan Allen
This work advances the concept of deep borehole disposal (DBD), where spent nuclear fuel (SNF) is isolated at depths of several km in basement rock. Improvements to the engineered components of the DBD concept (e.g., plug, canister, and fill materials) are presented. Reference site parameters and models for radionuclide transport, dose, and cost are developed and coupled to optimize DBD design. A conservative and analytical representation of thermal expansion flow gives vertical velocities of fluids vs. time (and the results are compared against numerical models). When fluid breakthrough occurs rapidly, the chemical transport model is necessary to calculate radionuclide concentrations along the flow path to the surface. The model derived here incorporates conservative assumptions, including instantaneous dissolution of the SNF, high solubility, low sorption, no aquifer or isotopic dilution, and a host rock matrix that is saturated (at a steady state profile) for each radionuclide. For radionuclides that do not decay rapidly, sorb, or reach solubility limitations (e.g., 1-129), molecular diffusion in the host rock (transverse to the flow path) is the primary loss mechanism. The first design basis failure mode (DB 1) assumes the primary flow path is a 1.2 m diameter region with 100x higher permeability than the surrounding rock, while DB2 assumes a 0.1 mm diameter fracture. For the limiting design basis (DB 1), borehole repository design is constrained (via dose limits) by the areal loading of SNF (MTHM/km2 ), which increases linearly with disposal depth. In the final portion of the thesis, total costs (including drilling, site characterization, and emplacement) are minimized ($/kgHM) while borehole depth, disposal zone length, and borehole spacing are varied subject to the performance (maximum dose) constraint. Accounting for a large uncertainty in costs, the optimal design generally lies at the minimum specified disposal depth (assumed to be 1200 in), with disposal zone length of 800-1500 m and borehole spacing of 250-360 meters. Optimized costs range between $45 to $191/kgHM, largely depending on the assumed emplacement method and drilling cost. The best estimate (currently achievable), minimum cost is $134/kgHM, which corresponds to a disposal zone length of -900 meters and borehole spacing of 272 meters.
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2015.; Cataloged from PDF version of thesis.; Includes bibliographical references (pages 223-240).
2015-01-01T00:00:00ZDomain decomposition for Monte Carlo particle transport simulations of nuclear reactors
http://hdl.handle.net/1721.1/97859
Domain decomposition for Monte Carlo particle transport simulations of nuclear reactors
Horelik, Nicholas E. (Nicholas Edward)
Monte Carlo (MC) neutral particle transport methods have long been considered the gold-standard for nuclear simulations, but high computational cost has limited their use significantly. However, as we move towards higher-fidelity nuclear reactor analyses the method has become competitive with traditional deterministic transport algorithms for the same level of accuracy, especially considering the inherent parallelism of the method and the ever-increasing concurrency of modern high performance computers. Yet before such analysis can be practical, several algorithmic challenges must be addressed, particularly in regards to the memory requirements of the method. In this thesis, a robust domain decomposition algorithm is proposed to alleviate this, along with models and analysis to support its use for full-scale reactor analysis. Algorithms were implemented in the full-physics Monte Carlo code OpenMC, and tested for a highly-detailed PWR benchmark: BEAVRS. The proposed domain decomposition implementation incorporates efficient algorithms for scalable inter-domain particle communication in a manner that is reproducible with any pseudo-random number seed. Algorithms are also proposed to scalably manage material and tally data with on-the-fly allocation during simulation, along with numerous optimizations required for scalability as the domain mesh is refined and divided among thousands of compute processes. The algorithms were tested on two supercomputers, namely the Mira Blue Gene/Q and the Titan XK7, demonstrating good performance with realistic tallies and materials requiring over a terabyte of aggregate memory. Performance models were also developed to more accurately predict the network and load imbalance penalties that arise from communicating particles between distributed compute nodes tracking different spatial domains. These were evaluated using machine properties and tallied particle movement characteristics, and empirically validated with observed timing results from the new implementation. Network penalties were shown to be almost negligible with per-process particle counts as low as 1000, and load imbalance penalties higher than a factor of four were not observed or predicted for finer domain meshes relevant to reactor analysis. Load balancing strategies were also explored, and intra-domain replication was shown to be very effective at improving parallel efficiencies without adding significant complexity to the algorithm or burden to the user. Performance of the strategy was quantified with a performance model, and shown to agree well with observed timings. Imbalances were shown to be almost completely removed for the finest domain meshes. Finally, full-core studies were carried out to demonstrate the efficacy of domain-decomposed Monte Carlo in tackling the full scope of the problem. A detailed mesh required for a robust depletion treatment was used, and good performance was demonstrated for depletion tallies with 206 nuclides. The largest runs scored six reaction rates for each nuclide in 51M regions for a total aggregate memory requirement of 1.4TB, and particle tracking rates were consistent with those observed for smaller non-domain- decomposed runs with equivalent tally complexity. These types of runs were previously not achievable with traditional Monte Carlo methods, and can be accomplished with domain decomposition with between 1.4x and 1.75x overhead with simple load balancing.
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2015.; Cataloged from PDF version of thesis.; Includes bibliographical references (pages 151-158).
2015-01-01T00:00:00ZA methodology for modular nuclear power plant design and construction
http://hdl.handle.net/1721.1/96442
A methodology for modular nuclear power plant design and construction
Lapp, Christopher Warren
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1989.; Includes bibliographical references (leaves 390-391).
1989-01-01T00:00:00Z