MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tunable liquid microlenses formed from dynamically re-configurable double emulsions

Author(s)
Nagelberg, Sara (Sara Nicole)
Thumbnail
DownloadFull printable version (5.705Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Mathias Kolle.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Micro-scale optical components capable of on-demand reconfiguration of their internal morphology and composition would enable unprecedented control of light propogation on the microscale. Double emulsions formed from immiscible hydrocarbons and fluorocarbons offer a promising platform as reconfigurable micro-optical lenses. These droplet-based lenses can be reconfigured to strongly focusing, nearly transparent, or strongly scattering geometries. The dynamic variation of the lenses' optical interfaces can greatly enhance the lenses' ability to manipulate light. Finite Difference Time Domain and Raytracing techniques were used to characterize the optical properties of the drops and the simulations were verified experimentally immersing the lenses in an aqueous fluorescent medium in order to visualize their light manipulation capabilities. The lenses show a rapid response to external light stimuli or heat gradients and are susceptible to chemical triggers.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 39-40).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/100102
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.