Show simple item record

dc.contributor.advisorTonio Buonassisi.en_US
dc.contributor.authorSiah, Sin Chengen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2015-12-03T20:56:11Z
dc.date.available2015-12-03T20:56:11Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/100143
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 105-109).en_US
dc.description.abstractThis thesis is focused on the development of a cuprous oxide (Cu₂O) thin-film (TF) solar cell that is fabricated by manufacturing-friendly methods such as electro-deposition, sputtering and atomic layer deposition. Due to its bandgap of close to 2 eV, it has the potential of being applied as top cell in a tandem configuration. Firstly, I perform bottom-up cost and price analysis to investigate the economic feasibility of TF and c-Si based tandem photovoltaic modules. Next, I investigate the formation of good ohmic back contacts on Cu₂O absorber layer and demonstrate that low contact resistivity can be achieved with a variety of metals on heavily doped Cu₂O films by forming a tunnel junction. Then, I apply synchrotron-based X-ray absorption spectroscopy (XAS) to characterize two front contact buffer materials: amorphous Zn-Sn-O (a-ZTO) and Sndoped Ga₂O₃. I elucidate a fundamental loss mechanism in the amorphous Zn-Sn-O (a-ZTO) electron-blocking layer that has origin in local structural disorder and establish the structure-process- property relationship of a-ZTO so that the front buffer layer can be optimized for photovoltaics. Then, I investigate the doping mechanism of Sn dopant atoms in TFs and single crystalline Ga₂O₃:Sn by revealing the doping mechanism so that Ga₂O₃:Sn can be optimized for photovoltaics. Lastly. I apply bulk defect engineering to manipulate the intrinsic point defect structure of Cu₂O towards improved device performance. The key results will inform the processing conditions for improving mobility and minority carrier lifetime in Cu₂O. Keywords - Earth-abundant, thin-film solar cells, tandem, defect engineering, cost modeling, synchrotron.en_US
dc.description.statementofresponsibilityby Sin Cheng Siah.en_US
dc.format.extent109 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleDefect Engineering in Cuprous Oxide (Cu₂O) Solar Cellsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc930146916en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record