MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved caching strategies for publish/subscribe internet networking

Author(s)
Beckler, Kendra K
Thumbnail
DownloadFull printable version (5.269Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Karen Sollins.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The systemic structure of TCP/IP is outdated; a new scheme for data transportation is needed in order to make the internet more adaptive to modern demands of mobility, information-driven demand, ever-increasing quantity of users and data, and performance requirements. While an information centric networking system addresses these issues, one required component for publish subscribe or content-addressed internet networking systems to work properly is an improved caching system. This allows the publish subscribe internet networking to dynamically route packets to mobile users, as an improvement over pure hierarchical or pure distributed caching systems, To this end, I proposed, implemented, and analyzed the workings of a superdomain caching system. The superdomain caching system is a hybrid of hierarchical and dynamic caching systems designed to continue reaping the benefits of the caching system for mobile users (who may move between neighboring domains in the midst of a network transaction) while minimizing the latency inherent in any distributed caching system to improve upon the content-addressed system.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February 2015.
 
Cataloged from PDF version of thesis. "September 2014."
 
Includes bibliographical references (pages 70-73).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/100334
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.