Show simple item record

dc.contributor.advisorJulie A. Shah.en_US
dc.contributor.authorGu, Keren, M. Eng. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-01-04T19:57:15Z
dc.date.available2016-01-04T19:57:15Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/100597
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 33-36).en_US
dc.description.abstractSupportive communication is an eective collaboration behavior identied in human teams in which team members share information proactively to improve overall team performance. Prior work formulated this objective as the Single-Agent in a Team Decision Problem (SAT-DP) where agents decide whether or not to communicate an unexpected observation during execution time. We extend the SAT-DP denition to include sequential observations, highlighting the need for belief updates of attributed mental models of agents. These updates must be performed effectively and eciently to minimize model divergence and maximize the utility of future communications. In this paper, we present a decision-theoretic solution to the sequential SAT-DP. In our solution, we propose the use of Bayesian plan recognition as one of the methods for reducing divergence in mental models. To achieve computational tractability, we use probabilistic ordered AND/OR trees to compactly represent distributions over possible solutions of hierarchical planning problems. Finally, we evaluate and demonstrate the eectiveness of our proposed approach on decentralized agents collaborating in partially observable environments.en_US
dc.description.statementofresponsibilityby Keren Gu.en_US
dc.format.extent36 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleEnabling supportive communications in decentralized multi-agent teamsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc932129478en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record