Show simple item record

dc.contributor.advisorJames R. Glass.en_US
dc.contributor.authorLiu, Leo, M. Eng. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-01-04T20:00:37Z
dc.date.available2016-01-04T20:00:37Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/100633
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 81-83).en_US
dc.description.abstractDeep Neural Networks (DNNs) are eective models for machine learning. Unfortunately, training a DNN is extremely time-consuming, even with the aid of a graphics processing unit (GPU). DNN training is especially slow for tasks with large datasets. Existing approaches for speeding up the process involve parallelizing the Stochastic Gradient Descent (SGD) algorithm used to train DNNs. Those approaches do not guarantee the same results as normal SGD since they introduce non-trivial changes into the algorithm. A new approach for faster training that avoids signicant changes to SGD is to use low-precision hardware. The low-precision hardware is faster than a GPU, but it performs arithmetic with 1% error. In this arithmetic, 98 + 2 = 99:776 and 10 * 10 = 100:863. This thesis determines whether DNNs would still be able to produce state-of-the-art results using this low-precision arithmetic. To answer this question, we implement an approximate DNN that uses the low-precision arithmetic and evaluate it on the TIMIT phoneme recognition task and the WSJ speech recognition task. For both tasks, we nd that acoustic models based on approximate DNNs perform as well as ones based on conventional DNNs; both produce similar recognition error rates. The approximate DNN is able to match the conventional DNN only if it uses Kahan summations to preserve precision. These results show that DNNs can run on low-precision hardware without the arithmetic causing any loss in recognition ability. The low-precision hardware is therefore a suitable approach for speeding up DNN training.en_US
dc.description.statementofresponsibilityby Leo Liu.en_US
dc.format.extent83 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAcoustic models for speech recognition using Deep Neural Networks based on approximate mathen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc933230687en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record