Show simple item record

dc.contributor.advisorDana Moshkovitz.en_US
dc.contributor.authorManurangsi, Pasinen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-01-04T20:00:48Z
dc.date.available2016-01-04T20:00:48Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/100635
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 99-105).en_US
dc.description.abstractThe projection games problem (also known as LABEL COVER) is a problem of great significance in the field of hardness of approximation since almost all NP-hardness of approximation results known today are derived from the NP-hardness of approximation of projection games. Hence, it is important to determine the exact approximation ratio at which projection games become NP-hard to approximate. The goal of this thesis is to make progress towards this problem. First and foremost, we present a polynomial-time approximation algorithm for satisfiable projection games, which achieves an approximation ratio that is better than that of the previously best known algorithm. On the hardness of approximation side, while we do not have any improved NP-hardness result of approximating LABEL COVER, we show a polynomial integrality gap for polynomially many rounds of the Lasserre SDP relaxation for projection games. This result indicates that LABEL COVER might indeed be hard to approximate to within some polynomial factor. In addition, we explore special cases of projection games where the underlying graphs belong to certain families of graphs. For planar graphs, we present both a subexponential-time exact algorithm and a polynomial-time approximation scheme (PTAS) for projection games. We also prove that these algorithms have tight running times. For dense graphs, we present a subexponential-time approximation algorithm for LABEL COVER. Moreover, if the graph is a sufficiently dense random graph, we show that projection games are easy to approximate to within any polynomial ratio.en_US
dc.description.statementofresponsibilityby Pasin Manurangsi.en_US
dc.format.extent137 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleOn approximating projection gamesen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc933231949en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record