MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A high speed wearable system for body coupled communication

Author(s)
Rosner, Devon (Devon J.)
Thumbnail
DownloadFull printable version (14.02Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Charles G. Sodini.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
There are currently no ideal methods by which doctors can read bodily signals detected by implanted devices. Methods are either too high power for long-term implants, such as radio transmission, or pose health threats to the patient, such as connection ports piercing the skin. However, a novel method of transmitting and receiving electronic sensor data is emerging known as body coupled communication (BCC). This method of communication utilizes the inside of the body's low impedance at frequencies on the order of 100 MHz to send signals over that channel and receive the signals at another location on the body. It is also a lower power and more secure wireless option than radio transmission. This thesis presents a 3 Mbps wearable receiver and transmitter system for BCC that was developed from commercially available electrical components and a custom PCB. Both receiver and transmitter are on the same PCB. They share a digital FPGA system, but have separate analog signal conditioning sections on the board.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 83-84).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/100669
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.