Show simple item record

dc.contributor.authorCitorik, Robert James
dc.contributor.authorMimee, Mark Kyle
dc.contributor.authorLu, Timothy K
dc.date.accessioned2016-01-14T17:03:44Z
dc.date.available2016-01-14T17:03:44Z
dc.date.issued2014-09
dc.date.submitted2014-02
dc.identifier.issn1087-0156
dc.identifier.issn1546-1696
dc.identifier.urihttp://hdl.handle.net/1721.1/100834
dc.description.abstractCurrent antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (New Innovator Award 1DP2OD008435)en_US
dc.description.sponsorshipNational Centers for Systems Biology (U.S.) (Grant 1P50GM098792)en_US
dc.description.sponsorshipUnited States. Defense Threat Reduction Agency (HDTRA1-14-1-0007)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies (W911NF13D0001)en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (Interdepartmental Biotechnology Training Program 5T32 GM008334)en_US
dc.description.sponsorshipFonds de la recherche en sante du Quebec (Master's Training Award)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nbt.3011en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleSequence-specific antimicrobials using efficiently delivered RNA-guided nucleasesen_US
dc.typeArticleen_US
dc.identifier.citationCitorik, Robert J, Mark Mimee, and Timothy K Lu. “Sequence-Specific Antimicrobials Using Efficiently Delivered RNA-Guided Nucleases.” Nature Biotechnology 32, no. 11 (September 21, 2014): 1141–1145.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.contributor.mitauthorCitorik, Robert Jamesen_US
dc.contributor.mitauthorMimee, Mark K.en_US
dc.contributor.mitauthorLu, Timothy K.en_US
dc.relation.journalNature Biotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCitorik, Robert J; Mimee, Mark; Lu, Timothy Ken_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9999-6690
dc.identifier.orcidhttps://orcid.org/0000-0002-3083-2671
dc.identifier.orcidhttps://orcid.org/0000-0002-6397-5417
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record