Show simple item record

dc.contributor.advisorThomas Heldt and George C. Verghese.en_US
dc.contributor.authorCiccarelli, Gregory Alanen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-01-15T21:09:28Z
dc.date.available2016-01-15T21:09:28Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/100870
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 161-166).en_US
dc.description.abstractEarly signs of patient deterioration have been documented in the medical literature. Recognition of such signs offers the possibility of treatment with sufficient lead time to prevent irreversible organ damage and death. Pediatric hospitals currently utilize simple, human evaluated rubrics called early warning scores to detect early signs of patient deterioration. These scores comprise subjective (patient behavior, clinician's impression) and objective (vital signs) components to assess patient health and are computed intermittently by the nursing staff. At Boston Children's Hospital (BCH), early warning scores are evaluated at least every four hours for each patient. Many hospitals monitor inpatients continuously to alert caregivers to changes in physiological status. At BCH, each hospital bed is equipped with a bedside monitor that continuously collects and archives vital sign data, such as heart rate, respiration rate, and arterial oxygen saturation. Continuous access to these physiological variables allows for the definition of a continuously evaluated early warning score on a reduced rubric. This thesis quantitatively assesses the performance of BCH's current Children's Hospital Early Warning Score (CHEWS). We also apply several standard machine learning approaches to investigate the utility of automatically collected bedside monitoring trend data for prediction of patient deterioration. Our results suggest that CHEWS offers at least a 6-hour warning with sensitivity 0.78 and specificity 0.90 but only with a prohibitively large uncertainty (48 hours) surrounding the time of transfer. Performance using only standard bedside trend data is no better than chance; improvement may require exploiting additional intra-beat features of monitored waveforms. The full CHEWS appears to capture significant clinical features that are not present in the monitoring data used in this study.en_US
dc.description.statementofresponsibilityby Gregory Alan Ciccarelli.en_US
dc.format.extent166 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleEarly warning of patient deterioration in the inpatient settingen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc844769742en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record