MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generation and tuning of learned sensorimotor behavior by multiple neural circuit architectures

Author(s)
Lynn, Michael (Michael Benjamin)
Thumbnail
DownloadFull printable version (4.134Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences.
Advisor
Matthew A. Wilson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Organisms have a remarkable ability to respond to complex sensory inputs with intricate, tuned motor patterns. How does the brain organize and tune these motor responses, and are certain circuit architectures, or connectivity patterns, optimally suited for certain sensorimotor applications? This thesis presents progress towards this particular problem in three subprojects. The first section re-analyzes a large data set of single-unit recordings in zebra finch area HVC during singing. While HVC is known to be essential for proper expression of adult vocalization, its circuit architecture is contentious. Evidence is presented against the recently postulated gesture-trajectory extrema hypothesis for the organization of area HVC. Instead, the data suggest that the synaptic chain model of HVC organization is a better fit for the data, where chains of RA-projecting HVC neurons are synaptically connected to walk the bird through each time-step of the song. The second section examines how optimal sensorimotor estimation using a Bayesian inference framework could be implemented in a cerebellar circuit. Two novel behavioral paradigms are developed to assess how rats might tune their motor output to the statistics of the sensory inputs, and whether their behavior might be consistent with the use of a Bayesian inference paradigm. While neither behavior generated stable behavior, evidence indicates that rats may use a spinal circuit to rapidly and dynamically adjust motor output. The third section addresses the formation of habitual behaviors in a cortico-striatal network using rats. Stress and depression are known to significantly alter decision-making abilities, but the neural substrate of this is poorly understood. Towards this goal, rats are trained on a panel of decision-making tasks in a forced-choice T-maze, and it is shown that a chronic stress procedure produces a dramatic shift in behavior in a subset of these tasks but not the rest. This behavioral shift is reversed by optogenetic stimulation of prelimbic input to striatum, pinpointing a circuit element which may control stress-induced behavioral changes. Furthermore, a circuit hypothesis is presented to explain why sensitivity to changing reward values diminishes with overtraining.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 25-26).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/100876
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Brain and Cognitive Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.