Show simple item record

dc.contributor.authorLiu, Zi-Wen
dc.contributor.authorPerry, Christopher
dc.contributor.authorZhu, Yechao
dc.contributor.authorKoh, Dax Enshan
dc.contributor.authorAaronson, Scott
dc.date.accessioned2016-02-02T15:47:54Z
dc.date.available2016-02-02T15:47:54Z
dc.date.issued2016-01
dc.date.submitted2015-11
dc.identifier.issn1050-2947
dc.identifier.issn1094-1622
dc.identifier.urihttp://hdl.handle.net/1721.1/101073
dc.description.abstractWe prove the existence of (one-way) communication tasks with a subconstant versus superconstant asymptotic gap, which we call “doubly infinite,” between their quantum information and communication complexities. We do so by studying the exclusion game [C. Perry et al., Phys. Rev. Lett. 115, 030504 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.030504] for which there exist instances where the quantum information complexity tends to zero as the size of the input n increases. By showing that the quantum communication complexity of these games scales at least logarithmically in n, we obtain our result. We further show that the established lower bounds and gaps still hold even if we allow a small probability of error. However in this case, the n-qubit quantum message of the zero-error strategy can be compressed polynomially.en_US
dc.description.sponsorshipUnited States. Army Research Office (Award W911NF-11-1-0400)en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant Contract W911NF-12-0486)en_US
dc.description.sponsorshipSingapore. Agency for Science, Technology and Research (National Science Scholarship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Alan T. Waterman Award Grant 1249349)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.93.012347en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleDoubly infinite separation of quantum information and communicationen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Zi-Wen, Christopher Perry, Yechao Zhu, Dax Enshan Koh, and Scott Aaronson. "Doubly infinite separation of quantum information and communication." Phys. Rev. A 93, 012347 (January 2016). © 2016 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorLiu, Zi-Wenen_US
dc.contributor.mitauthorZhu, Yechaoen_US
dc.contributor.mitauthorKoh, Dax Enshanen_US
dc.contributor.mitauthorAaronson, Scotten_US
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-01-29T23:00:11Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsLiu, Zi-Wen; Perry, Christopher; Zhu, Yechao; Koh, Dax Enshan; Aaronson, Scotten_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4497-2093
dc.identifier.orcidhttps://orcid.org/0000-0002-8968-591X
dc.identifier.orcidhttps://orcid.org/0000-0003-1333-4045
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record