Show simple item record

dc.contributor.authorZarzar, Lauren D.
dc.contributor.authorSresht, Vishnu
dc.contributor.authorSletten, Ellen M.
dc.contributor.authorBlankschtein, Daniel
dc.contributor.authorKalow, Julia Ann
dc.contributor.authorSwager, Timothy M
dc.date.accessioned2016-02-09T20:24:02Z
dc.date.available2016-02-09T20:24:02Z
dc.date.issued2015-02
dc.date.submitted2014-10
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.urihttp://hdl.handle.net/1721.1/101147
dc.description.abstractEmulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets’ physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.en_US
dc.description.sponsorshipEni S.p.A. (Firm) (Eni-MIT Alliance Solar Frontiers Program)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Fellowship (EB014682)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Fellowship (GM106550)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nature14168en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleDynamically reconfigurable complex emulsions via tunable interfacial tensionsen_US
dc.typeArticleen_US
dc.identifier.citationZarzar, Lauren D., Vishnu Sresht, Ellen M. Sletten, Julia A. Kalow, Daniel Blankschtein, and Timothy M. Swager. “Dynamically Reconfigurable Complex Emulsions via Tunable Interfacial Tensions.” Nature 518, no. 7540 (February 25, 2015): 520–24.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorZarzar, Lauren D.en_US
dc.contributor.mitauthorSletten, Ellen M.en_US
dc.contributor.mitauthorKalow, Julia Annen_US
dc.contributor.mitauthorSwager, Timothy Manningen_US
dc.contributor.mitauthorSresht, Vishnuen_US
dc.contributor.mitauthorBlankschtein, Danielen_US
dc.relation.journalNatureen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsZarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5764-9383
dc.identifier.orcidhttps://orcid.org/0000-0002-4449-9566
dc.identifier.orcidhttps://orcid.org/0000-0002-3287-3602
dc.identifier.orcidhttps://orcid.org/0000-0002-7836-415X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record