Show simple item record

dc.contributor.authorBorodin, Alexei
dc.contributor.authorOlshanski, Grigori
dc.date.accessioned2016-02-25T01:46:25Z
dc.date.available2016-02-25T01:46:25Z
dc.date.issued2012-04
dc.date.submitted2011-11
dc.identifier.issn00221236
dc.identifier.issn1096-0783
dc.identifier.urihttp://hdl.handle.net/1721.1/101265
dc.description.abstractWe construct a four-parameter family of Markov processes on infinite Gelfand–Tsetlin schemes that preserve the class of central (Gibbs) measures. Any process in the family induces a Feller Markov process on the infinite-dimensional boundary of the Gelfand–Tsetlin graph or, equivalently, the space of extreme characters of the infinite-dimensional unitary group U(∞). The process has a unique invariant distribution which arises as the decomposing measure in a natural problem of harmonic analysis on U(∞) posed in Olshanski (2003) [44]. As was shown in Borodin and Olshanski (2005) [11], this measure can also be described as a determinantal point process with a correlation kernel expressed through the Gauss hypergeometric function.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0707163)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1056390)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jfa.2012.03.018en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceArxiven_US
dc.titleMarkov processes on the path space of the Gelfand–Tsetlin graph and on its boundaryen_US
dc.typeArticleen_US
dc.identifier.citationBorodin, Alexei, and Grigori Olshanski. “Markov Processes on the Path Space of the Gelfand–Tsetlin Graph and on Its Boundary.” Journal of Functional Analysis 263, no. 1 (July 2012): 248–303.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBorodin, Alexeien_US
dc.relation.journalJournal of Functional Analysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBorodin, Alexei; Olshanski, Grigorien_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2913-5238
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record