MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving and maintaining the operational efficiency of a semiconductor equipment manufacturing warehouse

Author(s)
Fong, Hui Ni Grace
Thumbnail
DownloadFull printable version (7.255Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Stephen C. Graves.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The present work addresses an operational inefficiency problem at a semiconductor equipment manufacturing warehouse, Varian Semiconductors Associates and Equipment (VSEA). This problem is important because if unresolved, the warehouse is unable to meet the part delivery time target of 24 hours during the busy period. The downstream effects of the late part delivery are delayed production schedules and in the worst case scenario, a missed shipment to the customer, which is very costly. In order to improve the efficiency of the warehouse so as to consistently deliver parts on time, the picking efficiency needs to be enhanced. Parts are primarily picked from two types of storage locations - GL shelves and Vertical Lift Modules (VLMs). The picking efficiency can be improved by the simultaneous reduction in workload on GL and improvement in the VLM picking efficiency. The first part of this thesis focuses on improving the picking inefficiency at the VLMs by employing a more efficient picking method. From our time study, we find that the pick-and-consolidate (parallel picking) is more efficient than pick-and-pass (sequential picking). The average makespan time savings per order by pick-and-consolidate is 8% (20 minutes). The second part of this paper discusses what is required to maintain a high VLM picking efficiency. New metrics to measure the workload distribution of the VLMs and the average flow time per order are proposed. Three dynamic slotting methods that maintain a balanced workload distribution across the VLMs without the need for periodic review are also examined. The methods are evaluated based on how balanced is the workload distribution across the VLMs and the cost of implementation.
Description
Thesis: M. Eng. in Manufacturing, Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 85-86).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/101336
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.