Show simple item record

dc.contributor.advisorWendy V. Gilbert.en_US
dc.contributor.authorThompson, Mary Katherineen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biology.en_US
dc.date.accessioned2016-02-29T15:02:22Z
dc.date.available2016-02-29T15:02:22Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/101355
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractAlthough the ribosome operates as a single molecular entity, it is composed of both ribosomal RNAs and dozens of proteins. However, the individual contributions of most ribosomal components to translational regulation are unknown. In Chapter 1, I will review the current state of knowledge related to the functions of ribosomal proteins with a focus on the RACK1 protein (Asc1 in yeast), a eukaryote-specific ribosomal protein with many proposed functions in both cellular signaling and translation. In Chapter 2, I will present evidence that the Asc1 protein is required for efficient translation of a specific set of mRNAs with short open reading frames (ORFs), including those that encode ribosomal proteins and nuclear-encoded mitochondrial components. Consistent with these translation defects, ASC1 mutants are unable to grow in conditions requiring full mitochondrial function. Asc1-sensitive mRNAs are highly associated with the translational closed-loop complex, a group of proteins that promotes a loop-like conformation of the mRNA during translation by simultaneous interaction with the 5' and 3' ends of the mRNA molecule. In wild type cells, mRNAs that associate strongly with the translational closed-loop complex are much shorter than other ORFs. Thus, I hypothesize that the closed-loop is preferentially formed and/or stabilized on mRNAs with short ORFs, and that this process is enhanced by the presence of Asc1 on the small ribosomal subunit. The dependence of closed-loop formation on ORF length could also explain why short ORFs have notably higher translation efficiency than longer ORFs, a trend I observed in data collected from several eukaryotes. In Chapter 3, I will present evidence that the mammalian RACK1 protein is also required for expression of mRNAs with short ORFs and for mitochondrial function in HeLa cells, similar to my observations in yeast. These findings hint at a conserved role for the Asc1/RACK1 protein in promoting the function of the closed-loop complex and the translation of short ORFs, which encode a set of highly abundant proteins required for central metabolic functions. Chapter 4 will discuss the biochemical and cell physiological implications of these findings and suggest some avenues for future research.en_US
dc.description.statementofresponsibilityby Mary Katherine Thompson.en_US
dc.format.extent161 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiology.en_US
dc.titleFunctions of the eukaryote-specific ribosomal protein Asc1 /RACK1 in gene-specific translational activityen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.identifier.oclc939620299en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record