Show simple item record

dc.contributor.advisorYoussef M. Marzouk.en_US
dc.contributor.authorHuan, Xunen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2016-03-03T20:28:51Z
dc.date.available2016-03-03T20:28:51Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/101442
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 175-186).en_US
dc.description.abstractExperimental data play a crucial role in developing and refining models of physical systems. Some experiments can be more valuable than others, however. Well-chosen experiments can save substantial resources, and hence optimal experimental design (OED) seeks to quantify and maximize the value of experimental data. Common current practice for designing a sequence of experiments uses suboptimal approaches: batch (open-loop) design that chooses all experiments simultaneously with no feedback of information, or greedy (myopic) design that optimally selects the next experiment without accounting for future observations and dynamics. In contrast, sequential optimal experimental design (sOED) is free of these limitations. With the goal of acquiring experimental data that are optimal for model parameter inference, we develop a rigorous Bayesian formulation for OED using an objective that incorporates a measure of information gain. This framework is first demonstrated in a batch design setting, and then extended to sOED using a dynamic programming (DP) formulation. We also develop new numerical tools for sOED to accommodate nonlinear models with continuous (and often unbounded) parameter, design, and observation spaces. Two major techniques are employed to make solution of the DP problem computationally feasible. First, the optimal policy is sought using a one-step lookahead representation combined with approximate value iteration. This approximate dynamic programming method couples backward induction and regression to construct value function approximations. It also iteratively generates trajectories via exploration and exploitation to further improve approximation accuracy in frequently visited regions of the state space. Second, transport maps are used to represent belief states, which reflect the intermediate posteriors within the sequential design process. Transport maps offer a finite-dimensional representation of these generally non-Gaussian random variables, and also enable fast approximate Bayesian inference, which must be performed millions of times under nested combinations of optimization and Monte Carlo sampling. The overall sOED algorithm is demonstrated and verified against analytic solutions on a simple linear-Gaussian model. Its advantages over batch and greedy designs are then shown via a nonlinear application of optimal sequential sensing: inferring contaminant source location from a sensor in a time-dependent convection-diffusion system. Finally, the capability of the algorithm is tested for multidimensional parameter and design spaces in a more complex setting of the source inversion problem.en_US
dc.description.statementofresponsibilityby Xun Huan.en_US
dc.format.extent186 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleNumerical approaches for sequential Bayesian optimal experimental designen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc939650211en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record