Show simple item record

dc.contributor.advisorKerri L. Cahoy.en_US
dc.contributor.authorRiesing, Kathleen Michelleen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2016-03-03T20:29:13Z
dc.date.available2016-03-03T20:29:13Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/101448
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 121-127).en_US
dc.description.abstractLaunch opportunities for small satellites are rapidly growing and their technical capabilities are improving. Several commercial constellations of small satellites for Earth imaging and scientific observation are making their way onto orbit, increasing the need for high bandwidth data downlink. Obtaining regulatory licensing for current radio frequency (RF) communications systems is difficult, and state of the art nanosatellite RF systems struggle to keep up with the higher demand. Laser communications (lasercom) has the potential to achieve high bandwidth with a reduction in power and size compared to RF, while simultaneously avoiding the significant regulatory burden of RF spectrum allocation. Due to narrow beamwidths, the primary challenge of lasercom is the high-precision pointing required to align the transmitter and receiver. While lasercom has been successfully demonstrated on multiple spacecraft platforms, it has not yet been demonstrated on a scale small enough to meet the size, weight, and power constraints for nanosatellites. The Nanosatellite Optical Downlink Experiment (NODE) developed at MIT is designed to achieve a lasercom downlink of 10 to 100 Mbps within the constraints of a typical 3-U CubeSat. This thesis focuses on the development of the pointing, acquisition, and tracking system for NODE. The key to achieving a high bandwidth downlink is to bridge the gap between existing CubeSat attitude determination and control capabilities and the narrow beamwidths of lasercom. We present a two-stage pointing control system to achieve this. An uplink beacon and detector provide fine attitude feedback to enable precision pointing, and CubeSat body pointing is augmented with a fine steering mechanism. The architecture of the pointing, acquisition, and tracking system is presented, followed by the in-depth design and hardware selection. A detailed simulation of the ground tracking performance is developed, including novel on-orbit calibration algorithms to eliminate misalignment between the transmitter and receiver. A testbed is developed to characterize the selected fine steering mechanism for performance and thermal stability. The proposed system is capable of achieving at least two orders of magnitude better pointing than existing CubeSats to enable high bandwidth nanosatellite downlinks.en_US
dc.description.statementofresponsibilityby Kathleen Michelle Riesing.en_US
dc.format.extent127 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleDevelopment of a pointing, acquisition, and tracking system for a nanosatellite laser communications moduleen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc939664516en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record