Show simple item record

dc.contributor.authorKim, Juho, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-03-03T20:30:11Z
dc.date.available2016-03-03T20:30:11Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/101464
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages [199]-213).en_US
dc.description.abstractMillions of learners today are watching videos on online platforms, such as Khan Academy, YouTube, Coursera, and edX, to take courses and master new skills. But existing video interfaces are not designed to support learning, with limited interactivity and lack of information about learners' engagement and content. Making these improvements requires deep semantic information about video that even state-of-the-art AI techniques cannot fully extract. I take a data-driven approach to address this challenge, using large-scale learning interaction data to dynamically improve video content and interfaces. Specifically, this thesis introduces learnersourcing, a form of crowdsourcing in which learners collectively contribute novel content for future learners while engaging in a meaningful learning experience themselves. I present learnersourcing applications designed for massive open online course videos and how-to tutorial videos, where learners' collective activities 1) highlight points of confusion or importance in a video, 2) extract a solution structure from a tutorial, and 3) improve the navigation experience for future learners. This thesis demonstrates how learnersourcing can enable more interactive, collaborative, and data-driven learning.en_US
dc.description.statementofresponsibilityby Juho Kim.en_US
dc.format.extent213 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleLearnersourcing : improving learning with collective learner activityen_US
dc.title.alternativeImproving learning with collective learner activityen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc940572915en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record