MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Acid-base catalysts for polycondensation of acetaldehyde in flow

Author(s)
Lusardi, Marcella R. (Marcella Rose)
Thumbnail
DownloadFull printable version (9.471Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Acetaldehyde is used as a bio-oil model compound in a polycondensation reaction over two acid-base catalysts, pelletized Evonik P25 TiO₂ and an activated hydrotalcite-like compound (HTlc), to produce high molecular weight molecules in the transportation fuel range. The catalytic performance of these materials is evaluated in a gas phase, atmospheric flow system with a packed bed microreactor designed to mimic process conditions in one step of the overall bio-oil upgrading scheme. The HTlc is activated through calcination at 500 °C followed by rehydration in decarbonated H₂O, generating the active acid-base hydroxyl pairs. Materials are characterized through XRD, low temperature N₂ adsorption-desorption isotherm experiments, TGA, and XPS. In initial experiments, high conversions are achieved but all converted acetaldehyde forms carbonaceous deposits on the catalyst surfaces over a range of temperatures and residence times. When the catalyst bed is reduced by 80%, decreasing both residence time and vapor-solid contact area, high conversions are maintained and the production of liquid phase condensation products is observed on the order of seconds. While yields are low, it is promising that tuning the packed bed results in decreased deposits and generation of liquid phase products. Further adjustments of reaction parameters and catalyst activity are of interest as future work, including shorter residence times and bed lengths, co-feeding a reaction inhibitor, and specific catalyst syntheses for control over active sites.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 71-74).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/101563
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.