MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Globally optimal algorithms for multiple-transform signal compression

Author(s)
Nissenbaum, Lucas
Thumbnail
DownloadFull printable version (6.613Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Jae S. Lim.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In video compression, a single transform such as the DCT is typically used. Multiple-transforms such as directional 1-D DCTs have been proposed to exploit the different statistical characteristics of motion compensation residuals. Many issues are associated with this scenario. In this thesis, we will focus on the issue of selecting the appropriate number of coefficients and transforms to be allocated for each block of the signal to optimize the energy compaction. We propose two new methods to select optimal transforms for different blocks in a signal. The first method is based on thresholding, while the second method is based on dynamic programming and related to the multiple-choice knapsack problem. These algorithms are then compared to two other previous algorithms. We analyze the energy compaction performance of these algorithms in terms of different block-sizes and different input characteristics. We then extend all of these algorithms to quantizated coefficients being transmitted, as well as to take a bit-rate constraint into account.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 75-77).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/101583
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.