MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Preserving patient privacy in biomedical data analysis

Author(s)
Simmons, Sean Kenneth
Thumbnail
DownloadFull printable version (12.15Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Bonnie Berger.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The growing number of large biomedical databases and electronic health records promise to be an invaluable resource for biomedical researchers. Recent work, however, has shown that sharing this data- even when aggregated to produce p-values, regression coefficients, count queries, and minor allele frequencies (MAFs)- may compromise patient privacy. This raises a fundamental question: how do we protect patient privacy while still making the most out of their data? In this thesis, we develop various methods to perform privacy preserving analysis on biomedical data, with an eye towards genomic data. We begin by introducing a model based measure, PrivMAF, that allows us to decide when it is safe to release MAFs. We modify this measure to deal with perturbed data, and show that we are able to achieve privacy guarantees while adding less noise (and thus preserving more useful information) than previous methods. We also consider using differentially private methods to preserve patient privacy. Motivated by cohort selection in medical studies, we develop an improved method for releasing differentially private medical count queries. We then turn our eyes towards differentially private genome wide association studies (GWAS). We improve the runtime and utility of various privacy preserving methods for genome analysis, bringing these methods much closer to real world applicability. Building off this result, we develop differentially private versions of more powerful statistics based off linear mixed models.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 147-154).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/101821
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.