MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Civil and Environmental Engineering
  • Civil and Environmental Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Civil and Environmental Engineering
  • Civil and Environmental Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decadal trends in atmospheric organic aerosol :

Author(s)
Boulanger, Kelsey Jane
Thumbnail
DownloadFull printable version (9.495Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Jesse H. Kroll.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Organic aerosol (OA) makes up a substantial fraction of atmospheric particulate matter, yet its sources and controlling factors - and thus its impacts on climate and human health - are not well understood. Recently-developed analytical techniques have provided new insight into OA chemistry, but major uncertainty remains in how OA has changed over the past few decades. Characterizing long-term trends in OA would allow for better calibration of models that currently struggle to replicate ambient organic measurements as well as answer questions of how changes in OA relate to changes in emissions sources, anthropogenic-biogenic emissions interactions, altered chemistry, and more. This work represents a two-fold effort to better constrain our understanding of OA trends spatially, temporally, and chemically. First, trends in aerosol species concentrations over the past two decades are examined using existing data from the U.S. Interagency Monitoring of Protected Visual Environments (IMPROVE) network to provide insight into the long-term OA evolution across the rural U.S. Along with large decreases in total aerosol amounts (30-50%), OA is found to decrease at a fractional rate nearly equivalent to the decreases in three other major aerosol species: nitrate, sulfate, and elemental carbon. This suggests a link between the controlling factors of the different species, but explaining these observations is made challenging by the lack of chemical characterization of historic OA measurements that would help point to changing sources and chemistry. Thus, the second part of this work introduces a technique that enhances our ability to obtain important chemical information from small-volume environmental aerosol samples, such as filter extracts from remote regions like those monitored by the IMPROVE network, that were previously excluded from Aerodyne aerosol mass spectrometer (AMS) analysis due to the prohibitive volumes required for standard atomization. The Small Volume Nebulizer (SVN) nebulizes microlitersized liquid samples, allowing for highly time- and mass-resolved chemical analysis of dissolved organic species on the AMS and providing valuable insight into the factors that control observed OA trends. By examining historic trends in particulate matter loading and composition, and expanding AMS coverage to include small-volume environmental samples, we can begin to answer the question of how and why OA has changed over the past few decades - and what that means for OA chemistry, the climate, and regional and global air quality.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 63-67).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/101836
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Civil and Environmental Engineering - Master's degree
  • Civil and Environmental Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.