Show simple item record

dc.contributor.advisorHerbert H. Einstein and John T. Germaine.en_US
dc.contributor.authorKang, Hao, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2016-03-25T13:39:37Z
dc.date.available2016-03-25T13:39:37Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/101841
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 120-124).en_US
dc.description.abstractMuch research has been conducted on fracture toughness and there has been a debate about whether the fracture toughness varies with specimen size. The purpose of this research is to investigate the size effect on the fracture toughness of mortar specimens. First, the methods for calculating elastic modulus, tensile strength, and fracture toughness in previous research are discussed. Some of the fracture toughness calculation methods proposed in them are not convincing, since the underlying assumptions have not been verified by experiments. Then, the experimental setup, including the material properties, specimen preparation, and the testing apparatus, are introduced. The mortar specimens were cast from Type III Portland Cement, finegrained silt, and water. Next, the numerical work on calculating the elastic modulus and the tensile strength is presented. The experimental results are shown. 107 experimental results at different specimen sizes (two-inch, three-inch and four inch) and different flatness angles (23°, 28°, and 39°) were used to investigate how the elastic modulus E, tensile strength [sigma]t, averaged compressive stress at local maximum loading [sigma]A, and averaged compressive stress at local minimum loading [sigma]B change with size and 2[alpha] (flatness angle). The change of fracture toughness, based on the local maximum loading, KICA, and the local minimum loading, KICB, with size and 2[alpha] was analyzed. KICA and KICB appear to be independent of the specimen size; while [sigma]t, [sigma]A, and [sigma]B decrease with increasing specimen sizes. As for the effect of 2[alpha], [sigma]t appears to be independent of 2[alpha], while [sigma]A and [sigma]B decrease with increasing 2[alpha]. In addition, High speed videos and high resolution images indicate that the primary crack initiated at the specimen center, and propagated along the vertical center line.en_US
dc.description.statementofresponsibilityby Hao Kang.en_US
dc.format.extent139 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleAnalyzing the size effect on fracture toughness of mortar through flattened Brazilian testsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc941814794en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record