Show simple item record

dc.contributor.authorAkeju, Oluwaseun
dc.contributor.authorPavone, Kara J.
dc.contributor.authorWestover, M. Brandon
dc.contributor.authorVazquez, Rafael
dc.contributor.authorPrerau, Michael J.
dc.contributor.authorHarrell, Priscilla G.
dc.contributor.authorHartnack, Katharine E.
dc.contributor.authorRhee, James
dc.contributor.authorSampson, Aaron L.
dc.contributor.authorHabeeb, Kathleen
dc.contributor.authorLei, Gao
dc.contributor.authorPierce, Eric T.
dc.contributor.authorWalsh, John L.
dc.contributor.authorBrown, Emery N.
dc.contributor.authorPurdon, Patrick Lee
dc.date.accessioned2016-04-29T21:02:12Z
dc.date.available2016-04-29T21:02:12Z
dc.date.issued2014-11
dc.date.submitted2014-01
dc.identifier.issn0003-3022
dc.identifier.urihttp://hdl.handle.net/1721.1/102342
dc.description.abstractBackground:: Electroencephalogram patterns observed during sedation with dexmedetomidine appear similar to those observed during general anesthesia with propofol. This is evident with the occurrence of slow (0.1 to 1 Hz), delta (1 to 4 Hz), propofol-induced alpha (8 to 12 Hz), and dexmedetomidine-induced spindle (12 to 16 Hz) oscillations. However, these drugs have different molecular mechanisms and behavioral properties and are likely accompanied by distinguishing neural circuit dynamics. Methods:: The authors measured 64-channel electroencephalogram under dexmedetomidine (n = 9) and propofol (n = 8) in healthy volunteers, 18 to 36 yr of age. The authors administered dexmedetomidine with a 1-µg/kg loading bolus over 10 min, followed by a 0.7 µg kg−1 h−1 infusion. For propofol, the authors used a computer-controlled infusion to target the effect-site concentration gradually from 0 to 5 μg/ml. Volunteers listened to auditory stimuli and responded by button press to determine unconsciousness. The authors analyzed the electroencephalogram using multitaper spectral and coherence analysis. Results:: Dexmedetomidine was characterized by spindles with maximum power and coherence at approximately 13 Hz (mean ± SD; power, −10.8 ± 3.6 dB; coherence, 0.8 ± 0.08), whereas propofol was characterized with frontal alpha oscillations with peak frequency at approximately 11 Hz (power, 1.1 ± 4.5 dB; coherence, 0.9 ± 0.05). Notably, slow oscillation power during a general anesthetic state under propofol (power, 13.2 ± 2.4 dB) was much larger than during sedative states under both propofol (power, −2.5 ± 3.5 dB) and dexmedetomidine (power, −0.4 ± 3.1 dB). Conclusion:: The results indicate that dexmedetomidine and propofol place patients into different brain states and suggest that propofol enables a deeper state of unconsciousness by inducing large-amplitude slow oscillations that produce prolonged states of neuronal silence.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP2-OD006454)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP1-OD003646)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant TR01-GM104948)en_US
dc.language.isoen_US
dc.publisherOvid Technologies (Wolters Kluwer) - Lippincott Williams & Wilkinsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1097/aln.0000000000000419en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleA Comparison of Propofol- and Dexmedetomidine-induced Electroencephalogram Dynamics Using Spectral and Coherence Analysisen_US
dc.typeArticleen_US
dc.identifier.citationAkeju, Oluwaseun, Kara J. Pavone, M. Brandon Westover, Rafael Vazquez, Michael J. Prerau, Priscilla G. Harrell, Katharine E. Hartnack, et al. “A Comparison of Propofol- and Dexmedetomidine-Induced Electroencephalogram Dynamics Using Spectral and Coherence Analysis.” Anesthesiology 121, no. 5 (November 2014): 978–989.en_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorBrown, Emery N.en_US
dc.contributor.mitauthorPurdon, Patrick Leeen_US
dc.relation.journalAnesthesiologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAkeju, Oluwaseun; Pavone, Kara J.; Westover, M. Brandon; Vazquez, Rafael; Prerau, Michael J.; Harrell, Priscilla G.; Hartnack, Katharine E.; Rhee, James; Sampson, Aaron L.; Habeeb, Kathleen; Lei, Gao; Pierce, Eric T.; Walsh, John L.; Brown, Emery N.; Purdon, Patrick L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5651-5060
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record