Show simple item record

dc.contributor.authorTulabandhula, Theja
dc.contributor.authorRudin, Cynthia
dc.date.accessioned2016-06-14T19:14:45Z
dc.date.available2016-06-14T19:14:45Z
dc.date.issued2014-12
dc.date.submitted2013-12
dc.identifier.issn0885-6125
dc.identifier.issn1573-0565
dc.identifier.urihttp://hdl.handle.net/1721.1/103110
dc.description.abstractIn this paper, we consider a supervised learning setting where side knowledge is provided about the labels of unlabeled examples. The side knowledge has the effect of reducing the hypothesis space, leading to tighter generalization bounds, and thus possibly better generalization. We consider several types of side knowledge, the first leading to linear and polygonal constraints on the hypothesis space, the second leading to quadratic constraints, and the last leading to conic constraints. We show how different types of domain knowledge can lead directly to these kinds of side knowledge. We prove bounds on complexity measures of the hypothesis space for quadratic and conic side knowledge, and show that these bounds are tight in a specific sense for the quadratic case.en_US
dc.publisherSpringer Science+Business Mediaen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10994-014-5478-4en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleGeneralization bounds for learning with linear, polygonal, quadratic and conic side knowledgeen_US
dc.typeArticleen_US
dc.identifier.citationTulabandhula, Theja, and Cynthia Rudin. "Generalization bounds for learning with linear, polygonal, quadratic and conic side knowledge." Machine Learning 100:2-3 (2015), pp.183-216.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorTulabandhula, Thejaen_US
dc.contributor.mitauthorRudin, Cynthiaen_US
dc.relation.journalMachine Learningen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:15:05Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsTulabandhula, Theja; Rudin, Cynthiaen_US
dspace.embargo.termsNen
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record