Show simple item record

dc.contributor.advisorDaniel Lizarralde.en_US
dc.contributor.authorFeng, Helen Shao-Hwaen_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.coverage.spatialp------en_US
dc.date.accessioned2016-06-20T17:18:49Z
dc.date.available2016-06-20T17:18:49Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103166
dc.descriptionThesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThis thesis examines the structure of Pacific oceanic lithosphere that has been modified by post-formation magmatism in order to better understand the processes of secondary magmatic evolution of the lithosphere, which can have global-scale implications for oceanic and atmospheric chemistry. In the western Pacific, widespread Cretaceous magmatism has modified oceanic lithosphere over hundreds of millions of square kilometers. Seismic models of the upper crust from within the Jurassic Quiet Zone and the crust and upper mantle near the Mariana Trench reveal crust that is locally thickened via focused extrusive volcanism and crust that is modestly but uniformly thickened over broad regions. These distinct modes of magmatic emplacement suggest the operation of both focused and diffuse modes of melt transport through the lithosphere. Analysis of seismic observations from Guaymas Basin, in the Gulf of California, endeavor to advance our understanding of sill-driven alteration of sediments, an important consequence of secondary magmatism. We show that seismically imaged physical disruption to sediments due to igneous sill intrusion can be related to changes in sediment physical properties that reflect alteration processes. We also show how sill thickness can be estimated, enabling alteration intensity to be related to sill thickness in a variety of settings.en_US
dc.description.statementofresponsibilityby Helen Shao-Hwa Feng.en_US
dc.format.extent131 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.titleSeismic constraints on the processes and consequences of secondary igneous evolution of Pacific oceanic lithosphereen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc951629570en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record