MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Grain boundary wetness of partially molten dunite

Author(s)
Mu, Shangshang; Faul, Ulrich
Thumbnail
Download410_2016_1250_ReferencePDF.pdf (1.142Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Samples of Fo[subscript 90] olivine and basaltic melt were annealed at a range of temperatures and a pressure of 1 GPa in a piston cylinder apparatus from 1 to 336 h. Post-run samples have melt contents from 0.3 to 6.8 % and mean grain sizes from 4.3 to 84.5 μm. Grain boundary wetness, a measure of the intergranular melt distribution, was determined by analyzing scanning electron microscope images with sufficiently high resolution to detect thin layers wetting grain boundaries, as well as small triple junctions. The measurements show that grain boundary wetness increases with increasing melt content to values well above those predicted by the idealized isotropic equilibrium model for a finite dihedral angle. Additionally, the melt geometry changes with grain size, with grain boundary wetness increasing with increasing grain size at fixed melt content. Grain boundary wetness and dihedral angle of samples annealed at a range of temperatures, but constant melt content does not depend on temperature. These observations emphasize that the dihedral angle alone is not adequate to characterize the melt distribution in partially molten rocks, as the idealized isotropic model does not account for the influence of grain growth. Diffusion creep viscosities calculated from the measured wetness reflect the grain size and melt content dependence. Accordingly, experimentally measured viscosities at small grain sizes underestimate the effect of melt to weaken partially molten rocks for coarser grain sizes. The presence of melt in the mantle may therefore enhance diffusion creep relative to dislocation creep.
Date issued
2016-04
URI
http://hdl.handle.net/1721.1/103170
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Contributions to Mineralogy and Petrology
Publisher
Springer Berlin Heidelberg
Citation
Contributions to Mineralogy and Petrology. 2016 Apr 18;171(5):40
Version: Author's final manuscript
ISSN
0010-7999
1432-0967

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.