MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Brain and Cognitive Sciences
  • Brain and Cognitive Sciences - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Brain and Cognitive Sciences
  • Brain and Cognitive Sciences - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neural mechanisms underlying the emergence of rhythmic and stereotyped vocalizations in juvenile songbirds

Author(s)
Okubo, Tatsuo
Thumbnail
DownloadFull printable version (17.27Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences.
Advisor
Michale S. Fee.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Complex motor behaviors in humans, such as speech, are not innate, but instead are learned. How does the brain construct neural circuits that generate these motor behaviors during learning? To understand the neural mechanisms underlying learned motor skills, I use vocal learning in songbirds as a model. While previous studies have shown that a premotor area in the songbird brain, HVC, is important for stereotyped adult song, the role of HVC in juvenile song is less known. This thesis characterizes how activity in HVC develops during song learning in juvenile birds. Early in song learning, temporal structure emerged in HVC. During the earliest vocalization of juvenile birds (subsong), HVC neurons exhibit bursts of action potentials. However, only half of the neurons show bursts that are temporally aligned to syllables, and most of these bursts are clustered around onsets of subsong syllables. Over several days, as the bird starts producing the earliest stereotyped vocalization called protosyllables, HVC neurons start exhibiting rhythmic bursts at 5-10 Hz. These rhythmic bursts are aligned to protosyllables, and bursts from different neurons are active at different latencies relative to protosyllables. Thus, as a population, HVC neurons start forming a rhythmic neural sequence. As the bird matures, multiple distinct syllable types emerge from a protosyllable. During this process, some neurons are active only during a specific syllable type ('specific neurons') while others are active during both syllable types ('shared neurons'). These shared neurons are active at similar latencies for both syllable types, and therefore form a shared neural sequence. Over development, fraction of shared neurons decrease and more neurons become specific. These results demonstrate that splitting of a neural sequence into multiple sequences underlies the emergence of a multiple syllable types. Moreover, this sequence splitting is observed during different song learning strategies, suggesting that this is a fundamental neural mechanism for song learning. This work demonstrates how the growth of a rhythmic neural sequence and its subsequence splitting gives rise to complex vocalization in songbirds. This may be a general neural mechanism in which the brain constructs neural circuits during learning of a complex motor behavior.
Description
Thesis: Ph. D. in Neuroscience, Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 243-252).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/103213
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences.
Publisher
Massachusetts Institute of Technology
Keywords
Brain and Cognitive Sciences.

Collections
  • Brain and Cognitive Sciences - Ph.D. / Sc.D.
  • Brain and Cognitive Sciences - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.