Show simple item record

dc.contributor.advisorHong Liu.en_US
dc.contributor.authorCrossley, Michael Jamesen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Physics.en_US
dc.date.accessioned2016-06-22T17:51:16Z
dc.date.available2016-06-22T17:51:16Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103242
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 193-199).en_US
dc.description.abstractFluid dynamics is the universal theory of low-energy excitations around equilibrium states, governing the physics of long-lived modes associated with conserved charges. Historically, fluid dynamics has been formulated at the level of equations of motion, in terms of a local fluid velocity and thermodynamic quantities. In this thesis, we describe a new formulation of fluid dynamics in terms of a path integral, which systematically encodes the effects of thermal and quantum fluctuations. In our formulation, the dynamical degrees of freedom are Stuckelberg-type fields associated to the conserved quantities, which are subject to natural symmetry considerations, and the time evolution of the path integral is along the closed-time contour. Our formulation recovers the standard hydrodynamics, including the expected constraints from thermodynamics and the fluctuation-dissipation theorem, as well as an additional non-linear generalization of the Onsager relations. We demonstrate an emergent supersymmetry in the "classical statistical" limit of our theory. For the non-linear fluid, the formalism is encoded in a non-trivial differential geometric structure, with a non vanishing torsion tensor required to recover the correct physics of the most general fluid. Finally, we discuss progress in obtaining a holographic derivation of the action formulation at the ideal level, in which the low energy degrees of freedom emerge naturally as the relative embedding of the boundary and horizon hypersurfaces.en_US
dc.description.statementofresponsibilityby Michael James Crossley.en_US
dc.format.extent199 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleAn action principle for dissipative fluid dynamicsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc951625043en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record