Show simple item record

dc.contributor.advisorHamsa Balakrishnan.en_US
dc.contributor.authorMcFarlane, Patrick Koughen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2016-07-01T18:41:23Z
dc.date.available2016-07-01T18:41:23Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103449
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 111-112).en_US
dc.description.abstractThis thesis analyzes the effects of two algorithms that control the departure of aircraft at congested airports, with an emphasis on the uncertainty of the underlying processes. These algorithms, N-control and dynamic programming, belong to a broader class of control policies called Pushback Rate Control (PRC) policies that calculate a pushback rate for departing aircraft based on the state of the airport surface congestion. During times of congestion, these algorithms limit the amount of aircraft on the airport surface while maintaining departure throughput. This reduces the taxi-out time of aircraft, resulting in reduced fuel burn and emissions. This thesis introduces the policies and simulates their performance at LaGuardia Airport while varying two policy parameters, the length of the prediction interval and the number of prediction intervals, under several types of uncertainty, including the departure schedule and arrival rate. As will be shown, each policy results in significant taxi-out time reductions, saving airlines at least 60,000 minutes of taxiing over a 2-month period with the traditional 15-minute time window simulations. However, when accounting for the uncertainty in the algorithm inputs or the variation of policy parameters, the performance of both PRC policies degrades. By accounting for the variation of policy parameters and the different sources of uncertainty that affect airport surface management, the main contribution of this thesis provides a realistic analysis of PRC policies.en_US
dc.description.statementofresponsibilityby Patrick Kough McFarlane.en_US
dc.format.extent112 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleAnalysis and uncertainty of airport pushback rate control policiesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc952112150en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record